Al Security Metrics and Threats

Harold Booth

Computer Scientist National Institute of Standards and Technology Computer Security Division

Paul Rowe

Principal Cyber Resiliency Researcher The MITRE Corporation

Disclaimer

Certain commercial equipment, instruments, or materials are identified in this presentation to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

Acknowledgements

Joint work with NCCoE Dioptra Team

Dataset Sources

MNIST : http://yann.lecun.com/exdb/mnist/

Special thanks to: James Glasbrenner

Howard Huang

Andrew Hand Julian Sexton

for code development and contributions to slides

Fruits360 : https://www.kaggle.com/datasets/moltean/fruits

ImageNet : https://image-net.org/index.php

Road Sign Detection https://makeml.app/datasets/road-signs

Introduction

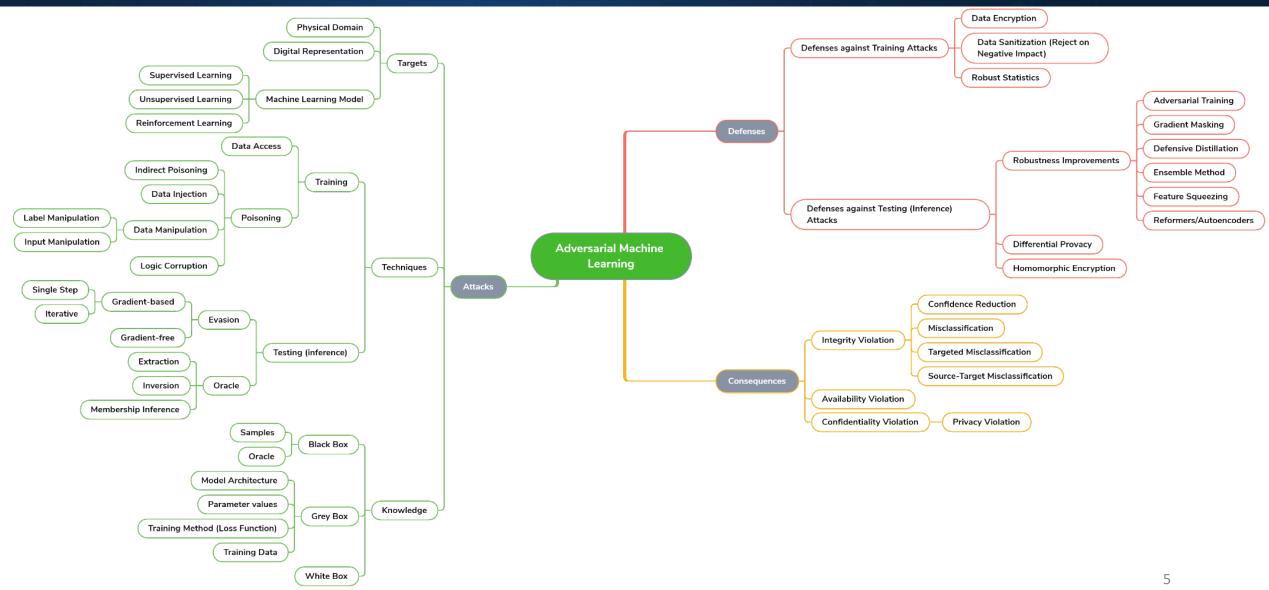
Image: pixabay/openclipart-vectors-30363

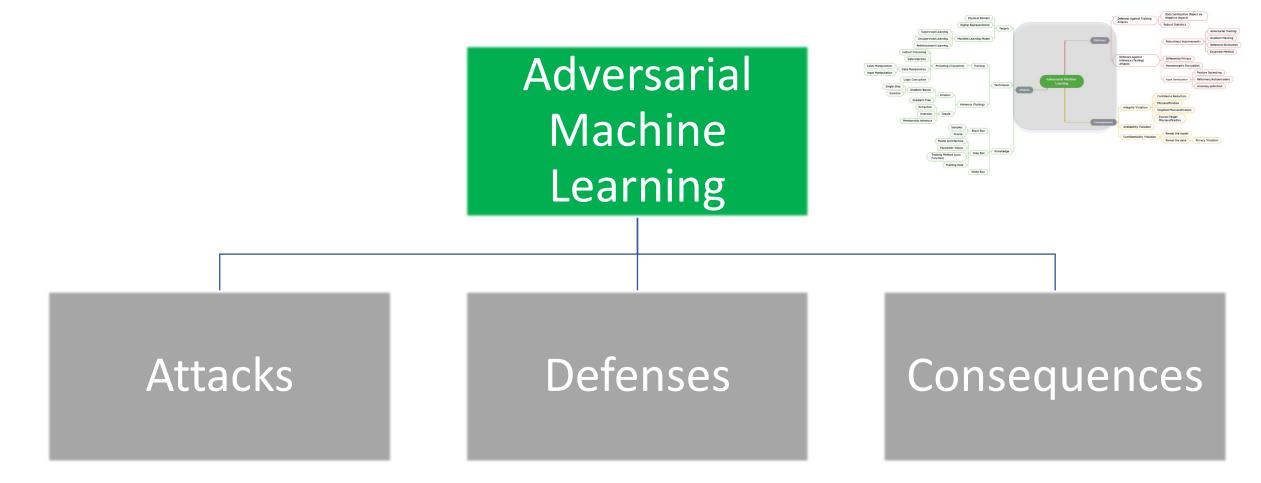
Use Cases

Image: pixabay/Nadin Dunnigan

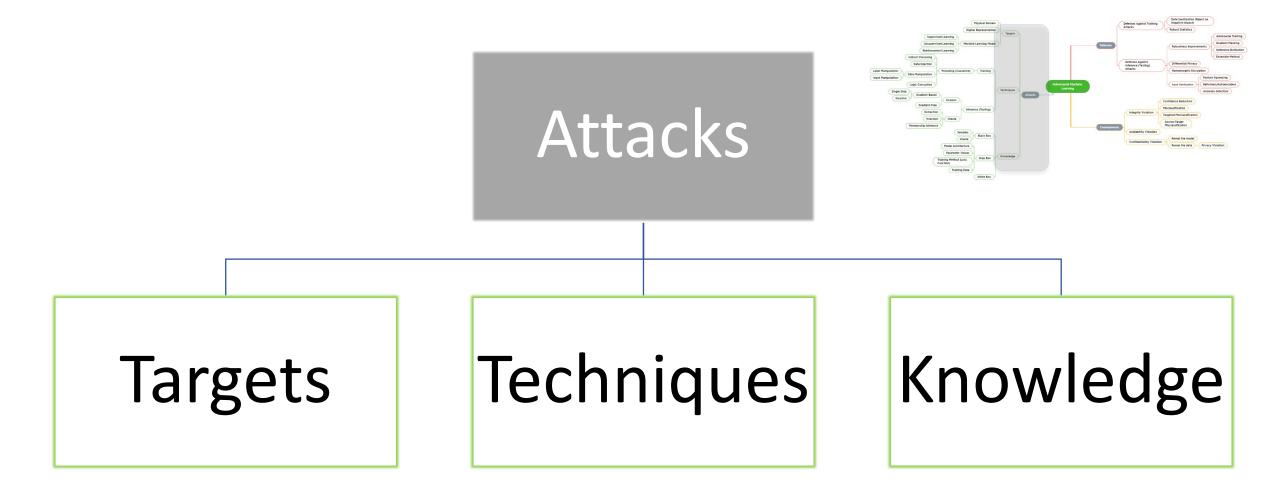
Image: Flaticon.com/Smashicons

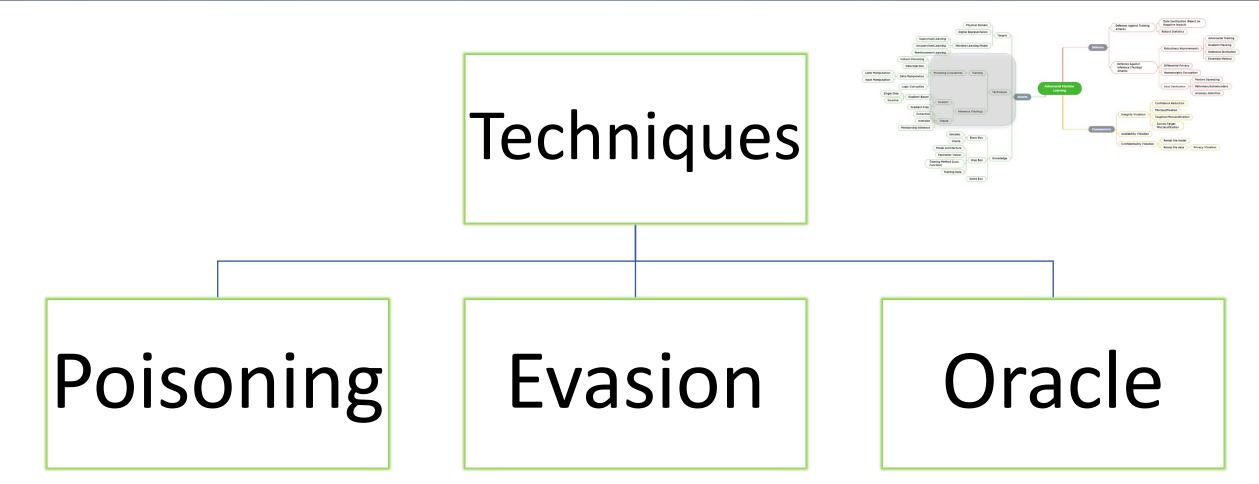
From Road Sign Detection Dataset

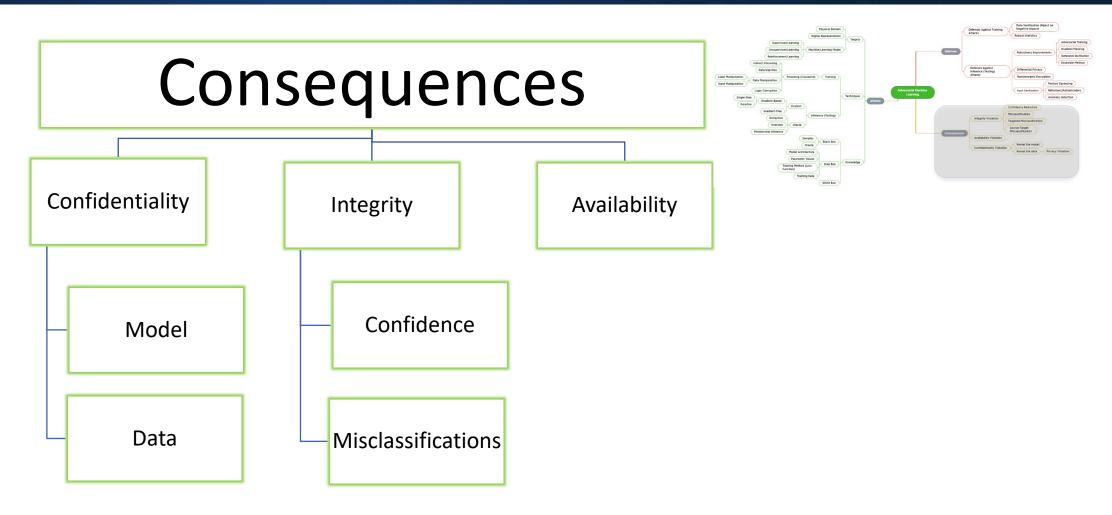




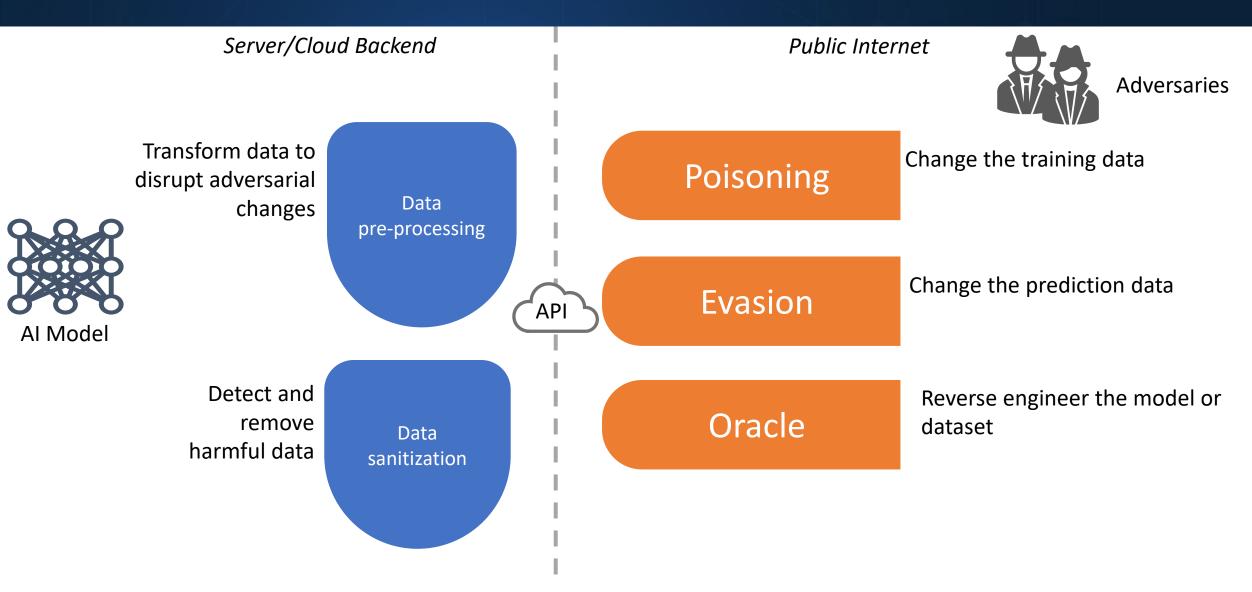
NIST





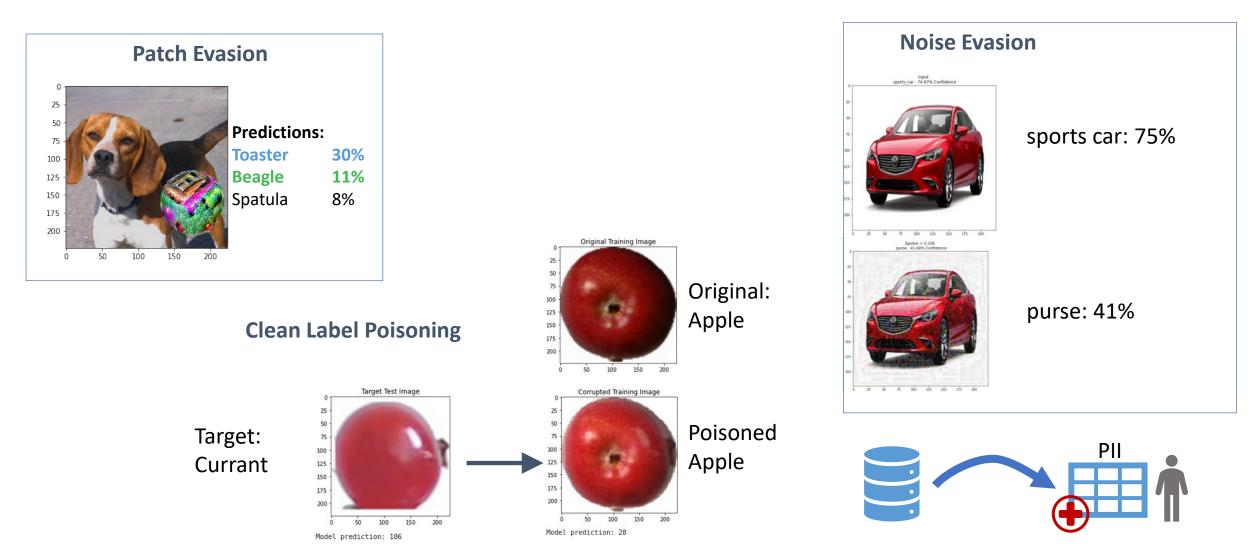


A wide variety of attacks and mitigation strategies



NIST

Visual Sampling of Attacks



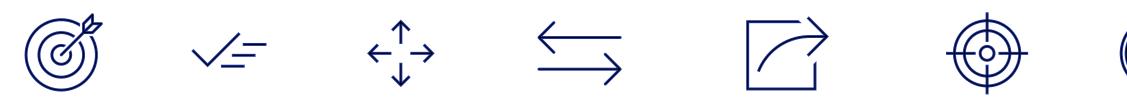
Visual Sampling of Defenses

Image pre-processing

Data Sanitization

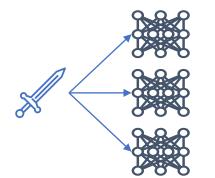
Evaluation Metrics

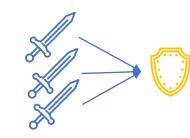
NIST



Accuracy Effectiveness Sensitivity Transferability Generalizability

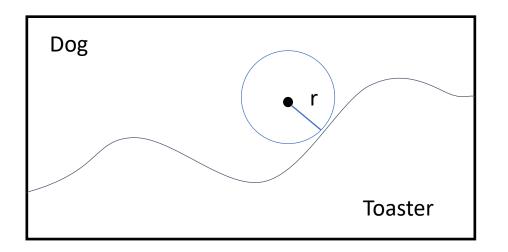
Perturbation Distance Time & Resources

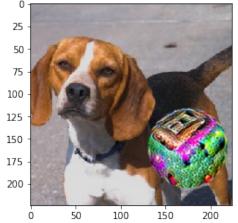




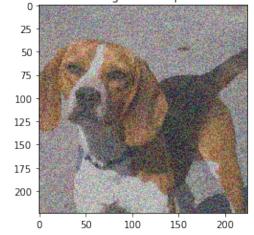
Loss

Details on Metrics



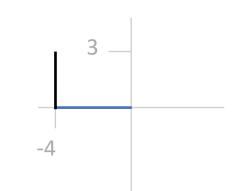


Blending at 40.00 percent



L1 - Manhattan

3



Deployment context also matters!

Security Checkpoint

Image: Gregory Wallace/CNN

Controlled environment

Automated Driving

Open environment

Image Forensics

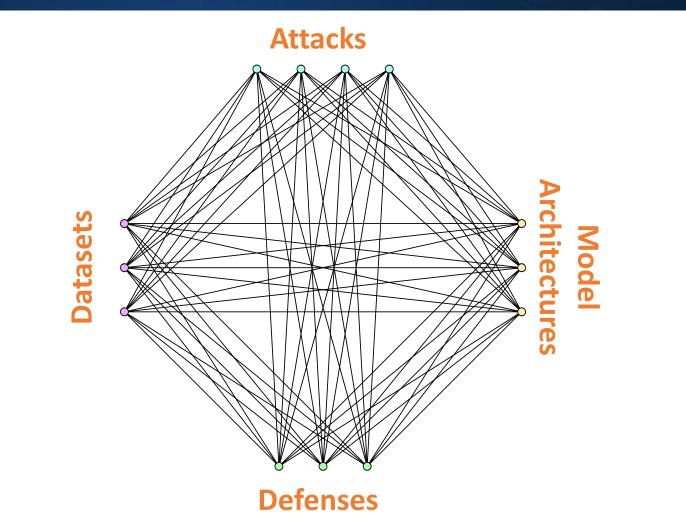
Image: Caroline Guntur

Open environment

- What is the task?
- Where (and when) can you control the environment?
- What is an adversary's objective?
- What components does the AI depend on?
- What functions depend on the AI?

Scenario testing, Parameter Sweeping, Evaluation

Use Case Exploration



- 2nd party testing
 - Supermarket CTO looking to purchase image-based pricing solution
- Development and regression testing
 - Developers building road sign detection and recognition solution

2nd Party Testing

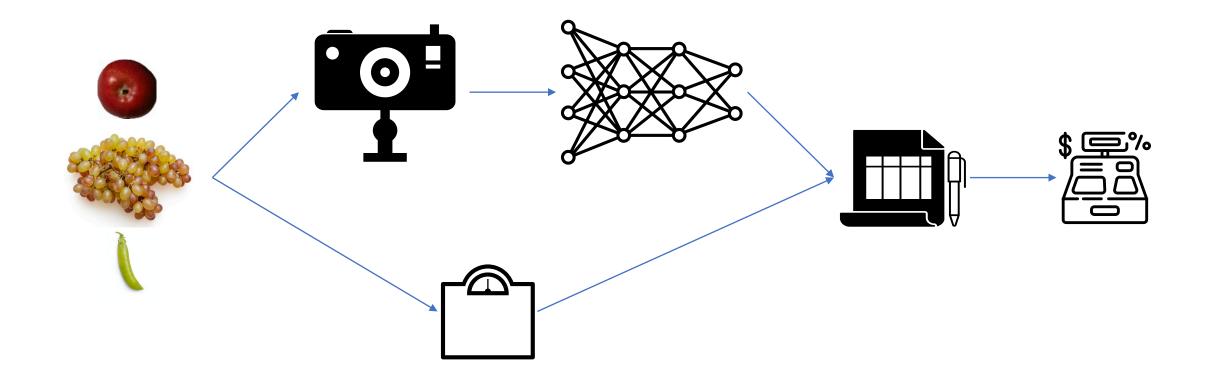
Risk Assessment Process

- Identify task
- Is AI necessary?
- Identify threat & deployment assumptions
- Which attacks are still relevant?
- Identify metrics applicable to highest priority risks
- Build experiments and synthesize results

Image-based pricing of produce

Photo Credit: Rows Of Fresh Fruit In Eco-friendly Boxed by Anna Ivanova from NounProject.com

Image-Based Pricing of Produce

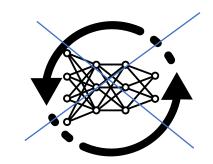


Threat/Deployment Model

Image: NounProject.com

Image From Fruits360 Dataset

Costly misclassification

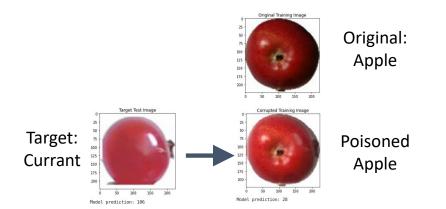


No online learning

Attended self-checkout

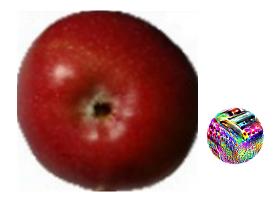
Supermarket example: Attack Profile

Digital manipulation attacks are difficult in our deployment setting.



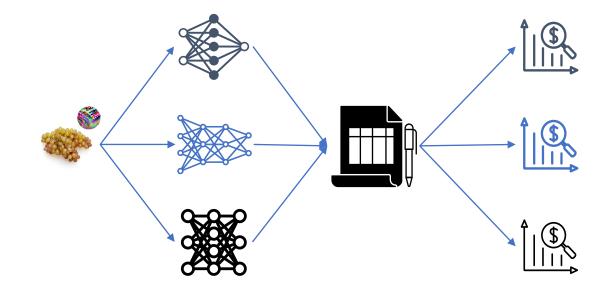
Data may be poisoned in supply chain.

Training data is not sensitive. Model extraction attacks would be easy to detect.



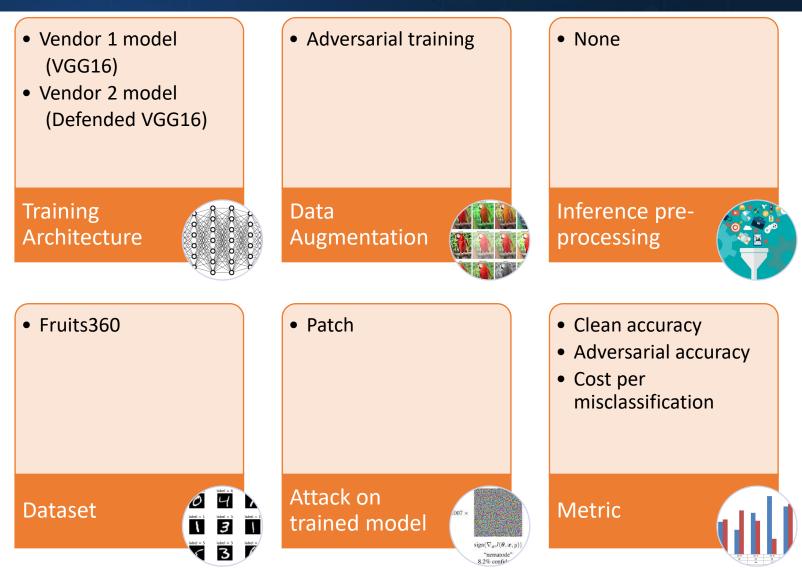
Physical manipulation attacks are easier. Attendants can be trained to look out for them.

Supermarket example: Some relevant metrics



Fruit Classification Combinations Tested

Image: Flaticon.com/Smashicons



- 90380 images of 131 fruits and vegetables
 - Training set size: 67692 images
 - Test set size: 22688 images
- Selected the 10 most photographed fruits and vegetables:
 - Apple
- Pear

Banana

• Pepper

• Potato

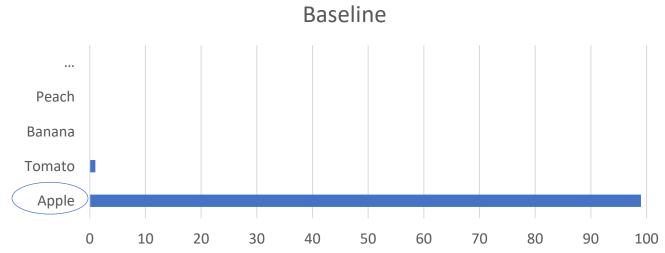
- Cherry
- Grape Tomato
- Onion
- Peach

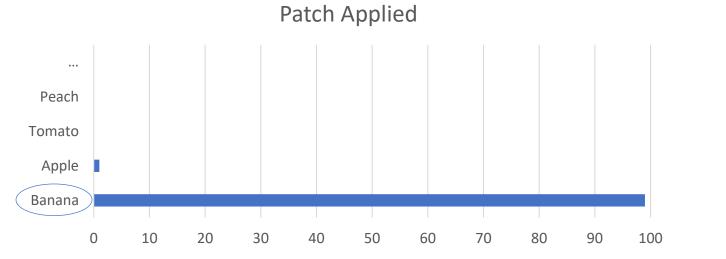
Model Comparison—Clean Data

Tested On:

	Vendor 1	Vendor 2
Accuracy	0.962	0.959
AUC	0.998	0.998
Precision	0.968	0.964
Recall	0.958	0.969

Patch Attack



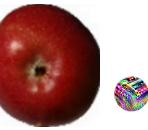


NIST

Model Comparison—Adversarial Data

		Vendor 1	Vendor 2
	Accuracy	0.020	0.931
	AUC	0.506	0.996
	Precision	0.020	0.947
	Recall	0.020	0.922

Tested On:



Vendor 2 Details

- Include images with adversarial patches in the training set
 - Model learns to ignore the patches

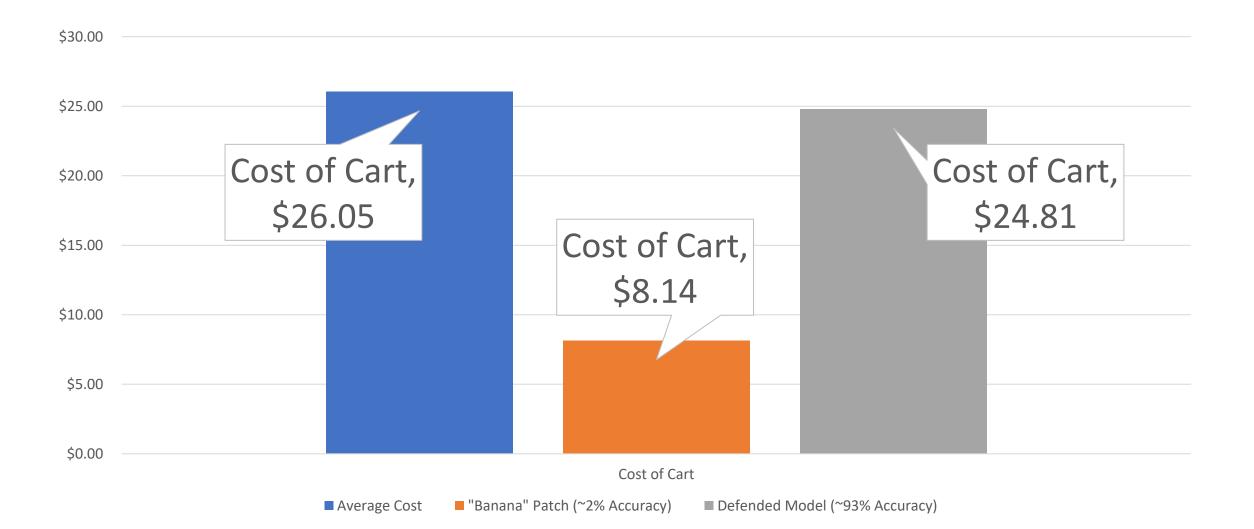
- NB: Adversarial training is not a panacea!
 - Same patches were used for training and testing

Purchase Scenario

At the grocery store you buy 5 each of:

Apples	\$1.29 - \$1.79 / each
Bananas	\$0.29 - \$0.49 / each
Peaches	\$1.19 - \$1.49 / each
Tomatoes	\$1.59 - \$2.29 / each

Cost of Cart



Key Takeaways of Supermarket Scenario

- Focus on impactful operational outcomes
 - Monetary impacts will be key to determine if it's worth buying/deploying
- Identify failure modes most important for your context
 - Which types of attacks account for the most risk?
- Include all aspects of the system (including humans!)
 - System-level vs component-level analysis
- System context can offer various mitigations
 - Technical: Integrate with a patch detection model
 - Non-technical: Train attendants to look for possible attacks

Integration and Regression Testing

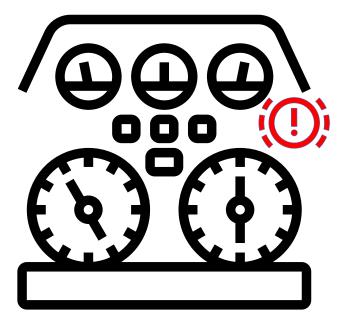
Risk Assessment Process

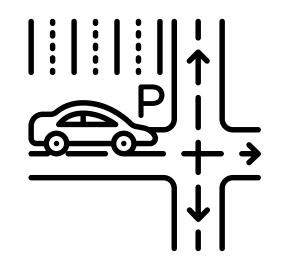
- Identify task
- Is AI necessary?
- Identify threat & deployment assumptions
- Which attacks/defenses are still relevant?
- Identify metrics applicable to highest priority risks
- Build experiments and synthesize results

Road Sign Detection and Classification

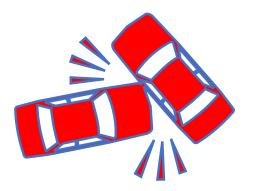
From Road Sign Detection Dataset

Road Sign example





Threat/Deployment Model



Risk of accidents

Unmonitored environment

Road Sign example: Attack Profile

Digital manipulation attacks are difficult in our deployment setting.

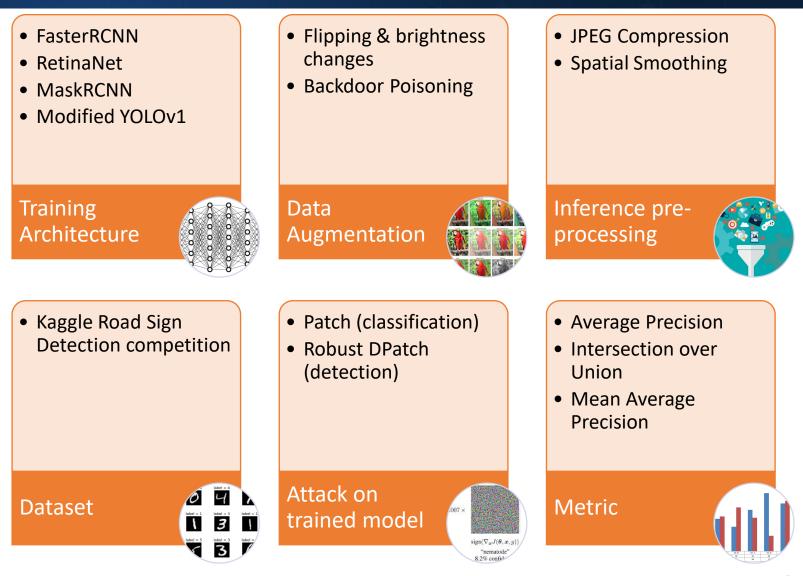
Physical manipulation of environment could pose serious challenges.

Training data is not sensitive. Model extraction attacks may pose a concern.

Dataset poisoning could allow for physical triggers to cause blindness or misclassification.

Road Sign Detection Combinations Explored

Image: Flaticon.com/Smashicons



Dataset Considerations

Label	Training Set	Test Set	Training Set	Test Set
Traffic Light	151	38	79.89%	20.11%
Speed Limit	639	154	80.58%	19.42%
Crosswalk	168	43	79.62%	20.38%
Stop Sign	80	22	78.43%	21.57%
# Images	698	179	79.59%	20.41%

Original

Tracks of images

Augmented

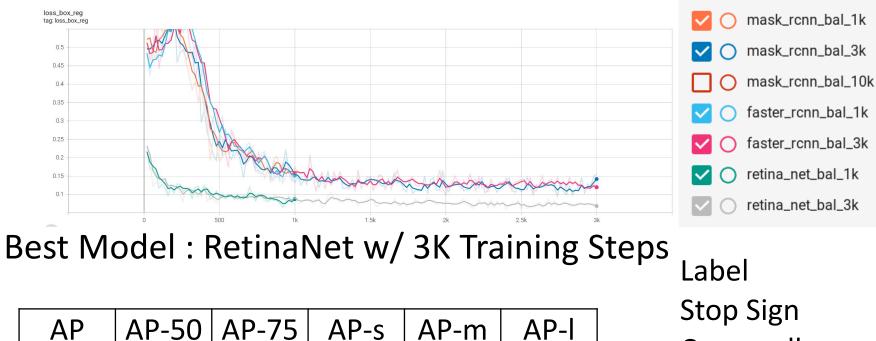
Images From Road Sign Detection Dataset

Performance Metrics

68.356 86.693 75.122

mAP(IoU=50:95)

Trained on 3 detection models in Detectron2 model zoo:



50.79 85.138 79.596

MAP(IoU=50:95) Average Precision 76.818 62.346 84.404 49.855

Crosswalk

Speed Limit

Traffic Light

Robust DPatch Attack

Robust DPatch evasion attack on object detection

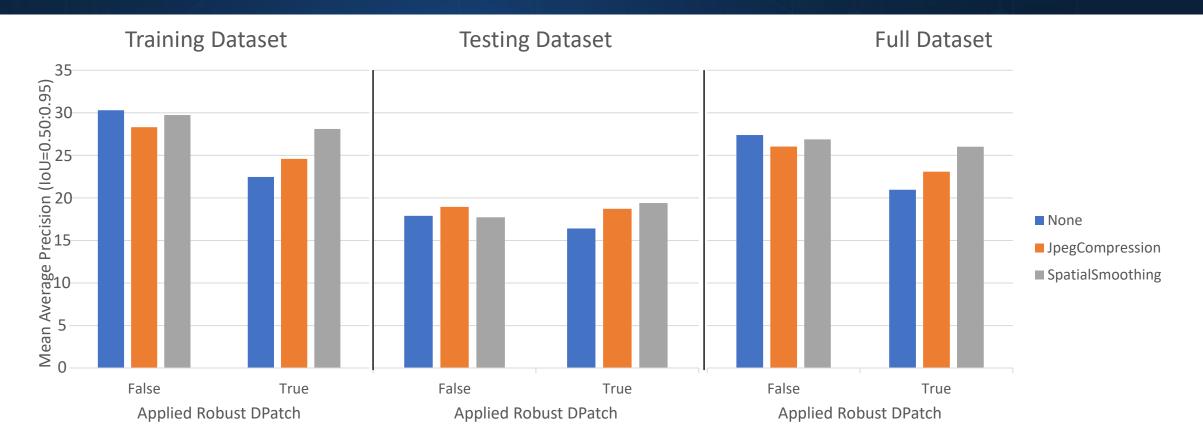
Patch position, size, brightness, etc.

Original

JPEG Compression

Spatial Smoothing

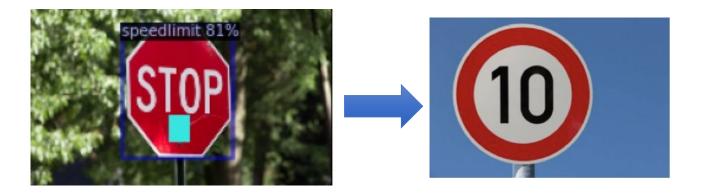
Patch Attack Results—Modified YOLOv1



- Patch attack reduces mean-average precision relative to baseline
- Spatial smoothing defense was effective in mitigating the patch attack

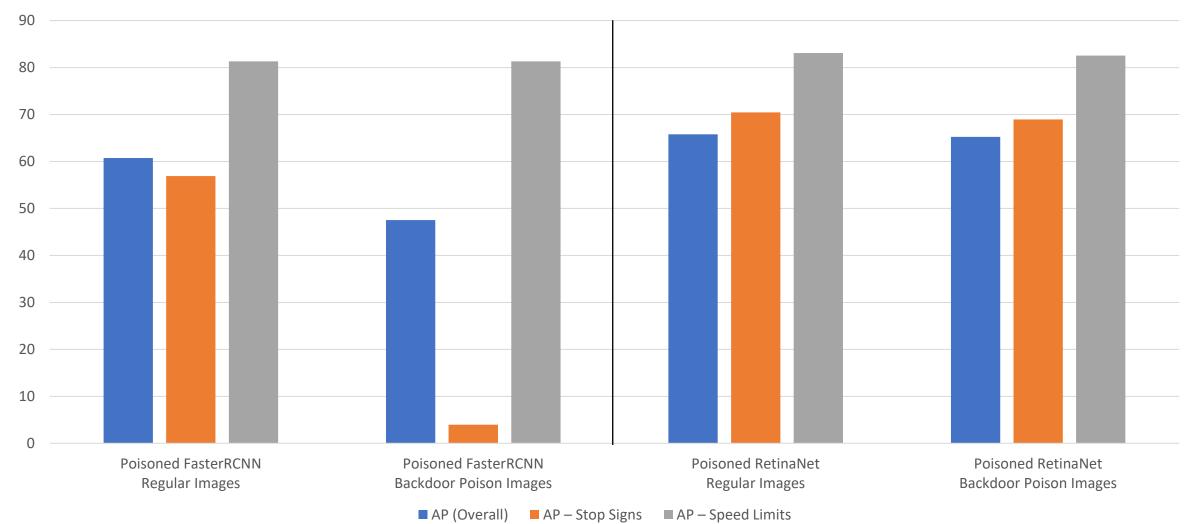
Backdoor Poisoning Attack

Backdoor poisoning attack with teal square trigger

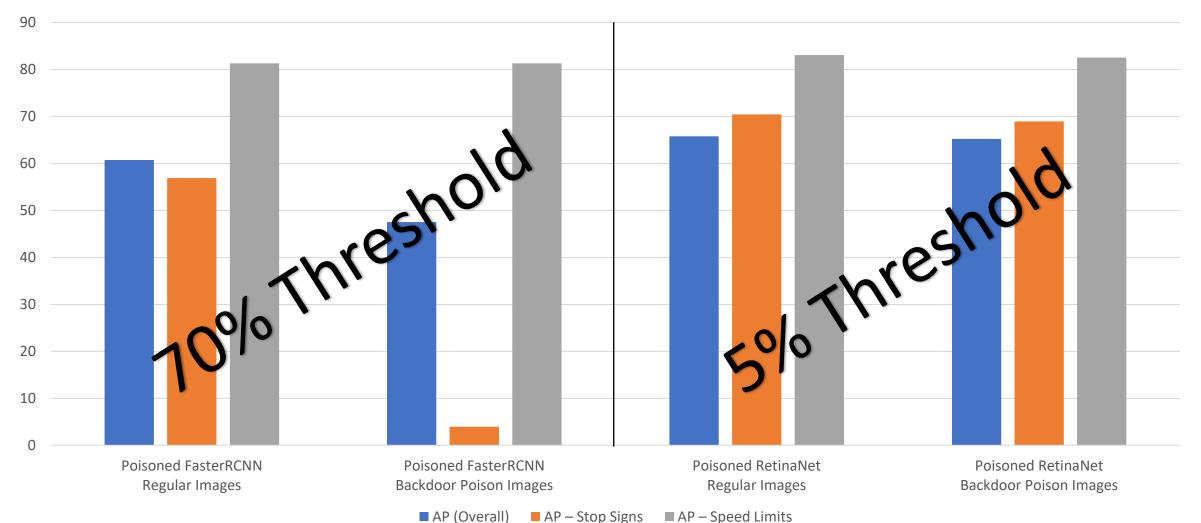


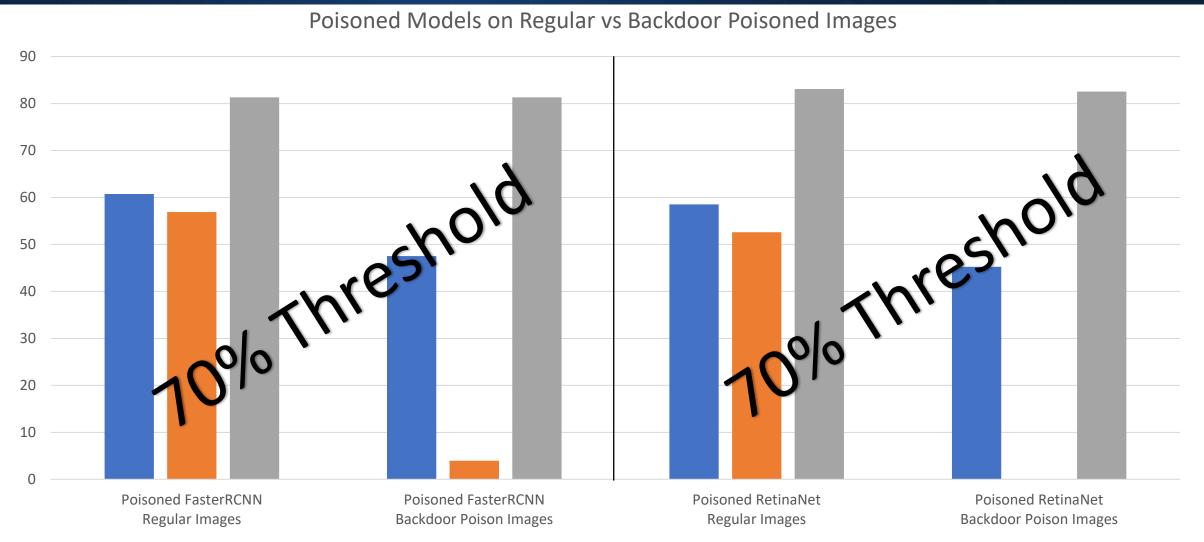
Poisoned Stop Sign labeled as Speed Limit Sign

Poisoned Models on Regular vs Backdoor Poisoned Images

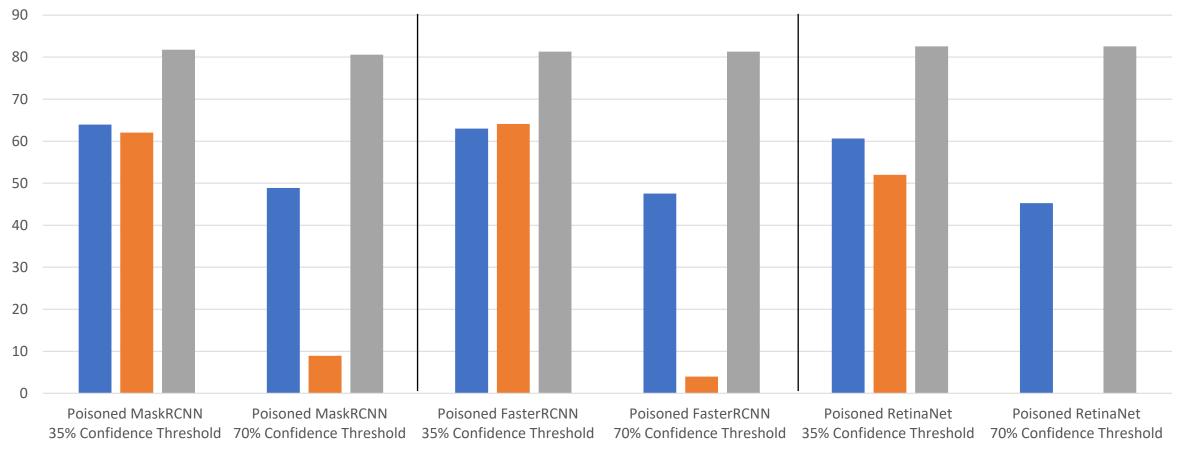


43





Poisoned Models Backdoor Poisoned Images – 35% vs 70% Confidence Threshold



■ AP – Overall ■ AP – Stop Signs ■ AP – Speed Limits

Key Takeaways from Road Sign Detection

- Understand what your metrics are really telling you
 - Understand how they work
 - Breaking them up into smaller ones
- Understand your tools' default parameters
 - Important for fair comparison
- Be aware of how dataset characteristics affect metrics
 - Class imbalances
 - Dataset Artifacts (e.g., "Tracks" of images)
- Testing during development can help improve final product
 - More and better data and metrics
 - Identify external mitigations such as supply chain protections

Conclusions

- There are plenty of things to measure
 - There can be no small set of metrics good for all uses
- It's valuable to develop processes for deciding what to measure
 - Focus on risks when deciding how to test and evaluate AI-enabled systems
- Tools to help manage evaluation are indispensable
 - Customizable automation can help manage the complexity

Future Work

- Continued Evolution of Dioptra
 - Attacks, Defenses, Metrics, Modalities
- Expanding Community of Use

Questions?

https://github.com/usnistgov/dioptra

dioptra@nist.gov

References

- G. K. Dziugaite, Z. Ghahramani, and D. M. Roy, "A study of the effect of JPG compression on adversarial images," arXiv, arXiv:1608.00853, Aug. 2016. doi: 10.48550/arXiv.1608.00853.
- T. B. Brown, D. Mané, A. Roy, M. Abadi, and J. Gilmer, "Adversarial Patch," arXiv, arXiv:1712.09665, May 2018. doi: 10.48550/arXiv.1712.09665.
- S. Kotyan and D. V. Vargas, "Adversarial Robustness Assessment: Why both \$L_0\$ and \$L_\infty\$ Attacks Are Necessary." arXiv, Jul. 16, 2020. Accessed: May 20, 2022. [Online]. Available: <u>http://arxiv.org/abs/1906.06026</u>
- Adversarial Robustness Toolbox (ART) v1.10. Trusted-AI, 2022. Accessed: May 17, 2022. [Online]. Available: https://github.com/Trusted-AI/adversarial-robustness-toolbox.
- C. Liao, H. Zhong, A. Squicciarini, S. Zhu, and D. Miller, "Backdoor Embedding in Convolutional Neural Network Models via Invisible Perturbation." arXiv, Aug. 30, 2018. Accessed: May 20, 2022. [Online]. Available: <u>http://arxiv.org/abs/1808.10307</u>
- T. Gu, B. Dolan-Gavitt, and S. Garg, "BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain." arXiv, Mar. 11, 2019. Accessed: May 20, 2022. [Online]. Available: <u>http://arxiv.org/abs/1708.06733</u>
- T. J. L. Tan and R. Shokri, "Bypassing Backdoor Detection Algorithms in Deep Learning." arXiv, Jun. 06, 2020. Accessed: May 20, 2022. [Online]. Available: http://arxiv.org/abs/1905.13409
- Y. Sharma and P.-Y. Chen, "Bypassing Feature Squeezing by Increasing Adversary Strength," arXiv, arXiv: 1803.09868, Mar. 2018. doi: 10.48550/arXiv.1803.09868.
- A. Turner, D. Tsipras, and A. Mądry, "Clean-Label Backdoor Attacks," p. 21.
- K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition." arXiv, Dec. 10, 2015. Accessed: May 20, 2022. [Online]. Available: http://arxiv.org/abs/1512.03385
- N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, "Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks." arXiv, Mar. 14, 2016. Accessed: May 20, 2022. [Online]. Available: <u>http://arxiv.org/abs/1511.04508</u>
- X. Liu, H. Yang, Z. Liu, L. Song, H. Li, and Y. Chen, "DPatch: An Adversarial Patch Attack on Object Detectors," arXiv, arXiv:1806.02299, Apr. 2019. doi: 10.48550/arXiv.1806.02299.
- T. Strauss, M. Hanselmann, A. Junginger, and H. Ulmer, "Ensemble Methods as a Defense to Adversarial Perturbations Against Deep Neural Networks," arXiv, arXiv:1709.03423, Feb. 2018. doi: <u>10.48550/arXiv.1709.03423</u>.
- I. J. Goodfellow, J. Shlens, and C. Szegedy, "Explaining and Harnessing Adversarial Examples," arXiv, arXiv:1412.6572, Mar. 2015. doi: 10.48550/arXiv.1412.6572.
- W. Xu, D. Evans, and Y. Qi, "Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks," 2018. doi: 10.14722/ndss.2018.23198.
- A. Saha, A. Subramanya, and H. Pirsiavash, "Hidden Trigger Backdoor Attacks." arXiv, Dec. 20, 2019. Accessed: May 20, 2022. [Online]. Available: http://arxiv.org/abs/1910.00033

References

- A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks," in *Advances in Neural Information Processing Systems*, 2012, vol. 25. Accessed: May 20, 2022. [Online]. Available: <u>https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html</u>
- C. A. Choquette-Choo, F. Tramer, N. Carlini, and N. Papernot, "Label-Only Membership Inference Attacks." arXiv, Dec. 05, 2021. Accessed: May 20, 2022. [Online]. Available: http://arxiv.org/abs/2007.14321
- R. Shokri, M. Stronati, C. Song, and V. Shmatikov, "Membership Inference Attacks against Machine Learning Models." arXiv, Mar. 31, 2017. Accessed: May 20, 2022. [Online]. Available: <u>http://arxiv.org/abs/1610.05820</u>
- Z. Li and Y. Zhang, "Membership Leakage in Label-Only Exposures." arXiv, Sep. 17, 2021. Accessed: May 20, 2022. [Online]. Available: http://arxiv.org/abs/2007.15528
- "MLflow A platform for the machine learning lifecycle," *MLflow*. <u>https://mlflow.org/</u> (accessed May 17, 2022).
- A. Athalye, N. Carlini, and D. Wagner, "Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples," arXiv, arXiv:1802.00420, Jul. 2018. doi: 10.48550/arXiv.1802.00420.
- M. Lee and Z. Kolter, "On Physical Adversarial Patches for Object Detection," arXiv, arXiv:1906.11897, Jun. 2019. doi: 10.48550/arXiv.1906.11897.
- N. Papernot and P. McDaniel, "On the Effectiveness of Defensive Distillation," arXiv, arXiv:1607.05113, Jul. 2016. doi: 10.48550/arXiv.1607.05113.
- J. Su, D. V. Vargas, and S. Kouichi, "One pixel attack for fooling deep neural networks," *IEEE Trans. Evol. Computat.*, vol. 23, no. 5, pp. 828–841, Oct. 2019, doi: 10.1109/TEVC.2019.2890858.
- A. Shafahi *et al.*, "Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks." arXiv, Nov. 10, 2018. Accessed: May 20, 2022. [Online]. Available: http://arxiv.org/abs/1804.00792
- X. Liu et al., "Privacy and Security Issues in Deep Learning: A Survey," IEEE Access, vol. 9, pp. 4566–4593, 2021, doi: 10.1109/ACCESS.2020.3045078.
- "Project Jupyter." <u>https://jupyter.org</u> (accessed May 17, 2022).
- "Road Sign Detection | Kaggle." https://www.kaggle.com/datasets/andrewmvd/road-sign-detection (accessed May 20, 2022).
- X. Hu, D. Wu, H. Li, F. Jiang, and H. Lu, "ShallowNet: An Efficient Lightweight Text Detection Network Based on Instance Count-Aware Supervision Information," in *Neural Information Processing*, Cham, 2021, pp. 633–644. doi: <u>10.1007/978-3-030-92185-9_52</u>.
- "Stanford Cars Dataset." https://www.kaggle.com/jessicali9530/stanford-cars-dataset (accessed May 20, 2022).
- K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for Large-Scale Image Recognition." arXiv, Apr. 10, 2015. Accessed: May 20, 2022. [Online]. Available: http://arxiv.org/abs/1409.1556
- "What is Dioptra? Dioptra 0.0.0 documentation." <u>https://pages.nist.gov/dioptra/</u> (accessed May 20, 2022).
- J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You Only Look Once: Unified, Real-Time Object Detection." arXiv, May 09, 2016. Accessed: May 20, 2022. [Online]. Available: http://arxiv.org/abs/1506.02640