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Disclaimer
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Certain commercial equipment, instruments, or materials are identified in this 
presentation to foster understanding. Such identification does not imply 
recommendation or endorsement by the National Institute of Standards and 
Technology, nor does it imply that the materials or equipment identified are necessarily 
the best available for the purpose.
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Dataset Sources
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MNIST : 
http://yann.lecun.com/exdb/mnist/ 

Fruits360 : 
https://www.kaggle.com/datasets/moltean/fruits

ImageNet : 
https://image-net.org/index.php

Road Sign Detection 
https://makeml.app/datasets/road-signs 



Introduction

4

Image: pixabay/openclipart-vectors-30363 Image: Flaticon.com/Smashicons

Image: pixabay/Nadin Dunnigan

Use Cases

From Road Sign Detection Dataset



A Taxonomy and Terminology of Adversarial Attacks 
and Defenses on Machine Learning (Draft NISTIR 8269)
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A Taxonomy and Terminology of Adversarial Attacks 
and Defenses on Machine Learning (Draft NISTIR 8269)
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A Taxonomy and Terminology of Adversarial Attacks 
and Defenses on Machine Learning (Draft NISTIR 8269)
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Techniques

Poisoning Evasion Oracle



A Taxonomy and Terminology of Adversarial Attacks 
and Defenses on Machine Learning (Draft NISTIR 8269)
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A wide variety of attacks and mitigation strategies
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Poisoning Change the training data

Evasion Change the prediction data

Oracle
Reverse engineer the model or 
dataset

Data
pre-processing

Transform data to 
disrupt adversarial 

changes 

Data 
sanitization

Detect and 
remove 

harmful data

Adversaries

AI Model

Server/Cloud Backend Public Internet

API



Visual Sampling of Attacks
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Original:
Apple

Poisoned
Apple

Target:
Currant

Clean Label Poisoning

Predictions:
Toaster 30% 
Beagle 11% 
Spatula 8% 

Patch Evasion

sports car: 75%

purse: 41%

Noise Evasion

PII

Images From ImageNet and Fruits360 Dataset



Visual Sampling of Defenses
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Image pre-processing Data Sanitization

Images From ImageNet and MNIST Datasets



Evaluation Metrics
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Effectiveness Sensitivity Transferability Generalizability Perturbation
Distance

Time &
Resources

Accuracy

Accuracy
Loss



Details on Metrics
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Images From Fruits360 and ImageNet Datasets



Deployment context also matters!
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Controlled environment

Security Checkpoint

Open environment

Automated Driving

Open environment

Image Forensics

• What is the task?
• Where (and when) can you control the environment?
• What is an adversary’s objective?
• What components does the AI depend on?
• What functions depend on the AI?

Image: Gregory Wallace/CNN Image: Shutterstock Image: Caroline Guntur



Scenario testing, Parameter Sweeping, Evaluation
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Dioptra

• Shallow Net
• AlexNet
• LeNet
• ResNet50
• VGG16
• …

Training 
Architecture

• Patch augmentation
• Poison Frogs
• Adversarial training
• …

Data 
Augmentation

• Spatial smoothing
• Defensive distillation
• …

Inference pre-
processing

• MNIST
• Fruits360
• ImageNet
• …

Dataset

• Fast Gradient Method
• Pixel Threshold
• Patch
• Membership Inference
• …

Attack on 
trained model

• Clean accuracy
• Adversarial accuracy
• Robustness radius
• …

Metric

Image: Flaticon.com/Smashicons



Use Case Exploration

17

Attacks

Defenses

Da
ta

se
ts M

odel
Architectures



Use Cases

• 2nd party testing
• Supermarket CTO looking to purchase image-based pricing solution

• Development and regression testing
• Developers building road sign detection and recognition solution
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2nd Party Testing

Risk Assessment Process

• Identify task
• Is AI necessary?
• Identify threat & deployment 

assumptions
• Which attacks are still relevant?
• Identify metrics applicable to highest 

priority risks
• Build experiments and synthesize 

results

Image-based pricing of produce
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Photo Credit: Rows Of Fresh Fruit In Eco-friendly Boxed by Anna Ivanova from NounProject.com



Image-Based Pricing of Produce
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Threat/Deployment Model
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Costly misclassification Attended self-checkout

No online learning
Freshly generated 

digital representations 

Image: NounProject.com Image From Fruits360 Dataset



Supermarket example: Attack Profile
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Digital manipulation attacks are difficult
in our deployment setting.

Physical manipulation attacks are easier.
Attendants can be trained to look out for them.

Original:
Apple

Poisoned
Apple

Target:
Currant

Data may be poisoned in supply chain.

PII

Training data is not sensitive.
Model extraction attacks would be easy to detect.

Images From MNIST and Fruits360 Dataset



Supermarket example: Some relevant 
metrics
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Image From Fruits360 Dataset



Fruit Classification Combinations Tested
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Dioptra

• Vendor 1 model
(VGG16)

• Vendor 2 model
(Defended VGG16)

Training 
Architecture

• Adversarial training

Data 
Augmentation

• None

Inference pre-
processing

• Fruits360

Dataset

• Patch

Attack on 
trained model

• Clean accuracy
• Adversarial accuracy
• Cost per 

misclassification

Metric

Image: Flaticon.com/Smashicons



Dataset
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• 90380 images of 131 fruits and vegetables
• Training set size: 67692 images
• Test set size: 22688 images

• Selected the 10 most photographed fruits and vegetables:

• Apple
• Banana
• Cherry
• Grape
• Onion
• Peach

• Pear
• Pepper
• Potato
• Tomato



Model Comparison—Clean Data
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Vendor 1 Vendor 2

Accuracy 0.962 0.959
AUC 0.998 0.998
Precision 0.968 0.964
Recall 0.958 0.969

Tested On:



Patch Attack
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Apple
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…

Baseline

0 10 20 30 40 50 60 70 80 90 100

Banana

Apple

Tomato
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…

Patch Applied

Images From Fruits360 Dataset



Model Comparison—Adversarial Data
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Vendor 1 Vendor 2

Accuracy 0.020 0.931
AUC 0.506 0.996
Precision 0.020 0.947
Recall 0.020 0.922

Tested On:



Vendor 2 Details

• Include images with adversarial patches in the training set
• Model learns to ignore the patches
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Images From Fruits360 Dataset

• NB: Adversarial training is not a panacea!
• Same patches were used for training and testing



Purchase Scenario
At the grocery store you buy 5 each of:
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Apples $1.29 - $1.79 / each
Bananas $0.29 - $0.49 / each
Peaches $1.19 - $1.49 / each
Tomatoes $1.59 - $2.29 / each



Cost of Cart 

Cost of Cart, 
$26.05 

Cost of Cart, 
$8.14 

Cost of Cart, 
$24.81 

$0.00

$5.00

$10.00

$15.00

$20.00

$25.00

$30.00

Cost of Cart

Average Cost "Banana" Patch (~2% Accuracy) Defended Model (~93% Accuracy)
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Key Takeaways of Supermarket Scenario
• Focus on impactful operational outcomes

• Monetary impacts will be key to determine if it’s worth buying/deploying

• Identify failure modes most important for your context
• Which types of attacks account for the most risk?

• Include all aspects of the system (including humans!)
• System-level vs component-level analysis

• System context can offer various mitigations
• Technical: Integrate with a patch detection model
• Non-technical: Train attendants to look for possible attacks
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Integration and Regression Testing

Risk Assessment Process

• Identify task
• Is AI necessary?
• Identify threat & deployment 

assumptions
• Which attacks/defenses are still 

relevant?
• Identify metrics applicable to highest 

priority risks
• Build experiments and synthesize 

results

Road Sign Detection and Classification
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From Road Sign Detection Dataset



Road Sign example
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Images From Road Sign Detection Dataset



Threat/Deployment Model
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Freshly generated 
digital representations 

Risk of accidents Unmonitored environment

Primary or backup
human driver



Road Sign example: Attack Profile
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Digital manipulation attacks are difficult
in our deployment setting.

PII

Training data is not sensitive.
Model extraction attacks may pose a concern.

Physical manipulation of environment
could pose serious challenges.

Dataset poisoning could allow for physical
triggers to cause blindness or misclassification.

Images From Road Sign Detection and MNIST Datasets



Road Sign Detection Combinations Explored
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Dioptra

• FasterRCNN
• RetinaNet
• MaskRCNN
• Modified YOLOv1

Training 
Architecture

• Flipping & brightness 
changes

• Backdoor Poisoning

Data 
Augmentation

• JPEG Compression
• Spatial Smoothing

Inference pre-
processing

• Kaggle Road Sign 
Detection competition

Dataset

• Patch (classification)
• Robust DPatch

(detection)

Attack on 
trained model

• Average Precision
• Intersection over 

Union
• Mean Average 

Precision

Metric

Image: Flaticon.com/Smashicons



Dataset Considerations
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Label Training 
Set

Test Set Training 
Set

Test Set

Traffic Light 151 38 79.89% 20.11%

Speed Limit 639 154 80.58% 19.42%

Crosswalk 168 43 79.62% 20.38%

Stop Sign 80 22 78.43% 21.57%

# Images 698 179 79.59% 20.41%

Tracks of images

Original

Augmented

Images From Road Sign Detection Dataset



Performance Metrics

Trained on 3 detection models in Detectron2 model zoo:

Best Model : RetinaNet w/ 3K Training Steps

39

AP AP-50 AP-75 AP-s AP-m AP-l
68.356 86.693 75.122 50.79 85.138 79.596

Label Average Precision
Stop Sign 76.818
Crosswalk 62.346
Speed Limit 84.404
Traffic Light 49.855

mAP(IoU=50:95)

mAP(IoU=50:95)



Robust DPatch Attack
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Robust DPatch evasion attack 
on object detection

Patch position, size, brightness, etc.

Images From Road Sign Detection Dataset

Original JPEG Compression Spatial Smoothing



Patch Attack Results—Modified YOLOv1
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Patch attack reduces mean-average precision relative to baseline

Spatial smoothing defense was effective in mitigating the patch attack
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Backdoor Poisoning Attack
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Backdoor poisoning attack
with teal square trigger

Poisoned Stop Sign labeled as Speed Limit Sign

Images From Road Sign Detection Dataset



Poisoning Results
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Poisoning Results
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Poisoning Results
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Poisoning Results
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Key Takeaways from Road Sign Detection 
• Understand what your metrics are really telling you

• Understand how they work
• Breaking them up into smaller ones

• Understand your tools’ default parameters 
• Important for fair comparison

• Be aware of how dataset characteristics affect metrics
• Class imbalances
• Dataset Artifacts (e.g., “Tracks” of images)

• Testing during development can help improve final product
• More and better data and metrics
• Identify external mitigations such as supply chain protections
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Conclusions
• There are plenty of things to measure

• There can be no small set of metrics good for all uses

• It’s valuable to develop processes for deciding what to measure
• Focus on risks when deciding how to test and evaluate AI-enabled systems

• Tools to help manage evaluation are indispensable
• Customizable automation can help manage the complexity
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Future Work

• Continued Evolution of Dioptra
• Attacks, Defenses, Metrics, Modalities

• Expanding Community of Use



Questions?
https://github.com/usnistgov/dioptra

dioptra@nist.gov
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