# Differential-Linear Cryptanalysis on Xoodyak 

## Orr Dunkelman ${ }^{1}$ Ariel Weizman ${ }^{2}$

## Lightweight Cryptography Workshop 2022

2


Bar-Ilan University erc


אוניברסיטת בר־אילו

## Differential-Linear (DL) Cryptanalysis [HL94]

- Combining a differential characteristic for $E_{0}$ and a linear approximation for $E_{1}$ into an attack on the entire cipher $E=E_{1} \circ E_{0}$.


## Differential-Linear (DL) Cryptanalysis [HL94]

- Combining a differential characteristic for $E_{0}$ and a linear approximation for $E_{1}$ into an attack on the entire cipher $E=E_{1} \circ E_{0}$.



## Differential-Linear (DL) Cryptanalysis [HL94]



$$
\operatorname{Pr}\left[C \cdot \lambda_{O}=C^{\prime} \cdot \lambda_{O} \mid P \oplus P^{\prime}=\Omega_{I}\right]=\frac{1}{2}+2 p \epsilon^{2}
$$

## DL with Partitioning [L16]

- Partitioning the data into $s$ disjoint subsets

$$
\mathcal{F}=\left\{A_{1}, A_{2}, \ldots, A_{s}\right\}
$$

## DL with Partitioning [L16]

- Partitioning the data into $s$ disjoint subsets
$\mathcal{F}=\left\{A_{1}, A_{2}, \ldots, A_{s}\right\}$.
■ One right subset $A_{i}$ satisfies the differential characteristic with significantly higher probability $p_{i} \gg p$, while $\forall j \neq i: p_{j} \approx 0$.


## DL with Partitioning [L16]

- Partitioning the data into $s$ disjoint subsets
$\mathcal{F}=\left\{A_{1}, A_{2}, \ldots, A_{s}\right\}$.
- One right subset $A_{i}$ satisfies the differential characteristic with significantly higher probability $p_{i} \gg p$, while $\forall j \neq i: p_{j} \approx 0$.



## Neutral Bits [B+20]

■ Looking for a subspace $\mathcal{U} \subseteq \mathbb{F}_{2}^{n}$, s.t. given a right pair $\left(P, P^{\prime}\right)$ (w.r.t. the differential part), then
$\forall u \in \mathcal{U}:\left(P \oplus u, P^{\prime} \oplus u\right)$ also right pairs.

## Neutral Bits [B+20]

■ Looking for a subspace $\mathcal{U} \subseteq \mathbb{F}_{2}^{n}$, s.t. given a right pair $\left(P, P^{\prime}\right)$ (w.r.t. the differential part), then
$\forall u \in \mathcal{U}:\left(P \oplus u, P^{\prime} \oplus u\right)$ also right pairs.
■ One right pair produces a (possibly large) set of right pairs, which have the same parity in the beginning of the linear part.

## Neutral Bits [B+20]

■ Looking for a subspace $\mathcal{U} \subseteq \mathbb{F}_{2}^{n}$, s.t. given a right pair $\left(P, P^{\prime}\right)$ (w.r.t. the differential part), then
$\forall u \in \mathcal{U}:\left(P \oplus u, P^{\prime} \oplus u\right)$ also right pairs.
■ One right pair produces a (possibly large) set of right pairs, which have the same parity in the beginning of the linear part.


## Our Results

# DL Cryptanalysis on 

> Xoodyak[D+19]:

## A permutation-based algorithm,

 relies on Xoodoo[D+18].
## Our Results

■ 4-round DL attack, with $2^{23.34}$ data and times complexity.

■ 5-round related-key DL attack, with $2^{22.04}$ data and time complexity.

## A Brief Description of Xoodoo

■ Xoodoo: a 384-bit to 384- bit permutation.
■ A 384-bit state is represented by three planes, each consists of four 32-bit lanes.

- The lanes within a plane are indexed by $x$, the planes are indexed by $y$, and the bits within a lane are indexed by $z$



## The 5 Steps of each Xoodoo Round

(1) $\theta$ :
$P \leftarrow A_{0} \oplus A_{1} \oplus A_{2}$
$E \leftarrow P \lll(1,5) \oplus P \lll(1,14)$
$A_{y} \leftarrow A_{y} \oplus E, y \in\{0,1,2\}$
(2) $\rho_{w e s t}$ :
$A_{1} \leftarrow A_{1} \lll(1,0)$
$A_{2} \leftarrow A_{2} \lll(0,11)$
(3) $\iota$ :
$A_{0} \leftarrow A_{0} \oplus C_{i}$
(4) $\chi$ : (The S-box layer)
$B_{0} \leftarrow \overline{A_{1}} \wedge A_{2}$
$B_{1} \leftarrow \overline{A_{2}} \wedge A_{0}$
$B_{2} \leftarrow \overline{A_{0}} \wedge A_{1}$
$A_{y} \leftarrow A_{y} \oplus B_{y}, y \in\{0,1,2\}$
(5) $\rho_{\text {east }}$ :
$A_{1} \leftarrow A_{1} \lll(0,1)$
$A_{2} \leftarrow A_{2} \lll(2,8)$

## The Initialization Phase

1 The first plane is initialized by an 128-bit key, and the additional two planes by a 256 -bit nonce.

2 Xoodoo is performed on the initialized state.
3 The first 192 bits are visible and XORed to the first block of the plaintext.

## An Overview on the 4-round DL Characteristic



## Note: Xoodoo's characteristics are rotation-invariant!

## Behind the Choice of the Input Difference

## Two active bits in the beginning lead to two active S -boxes.




Only 2 Active S-boxes

## Behind the Choice of the Input Difference

## One active bit in the beginning leads to seven active $S$-boxes.



7 Active S-boxes

## Using Neutral Bits



## Using the Partitioning Technique

- The best input values to S-box 11 are 2 and 6. Thus:
- The XOR of the red bits should be 0 .
- The XOR of the yellow bits should be 1.

■ The best input values to S-box 32 are 1 and 3. Thus:

- The XOR of the blue bits should be 1.
- The XOR of the green bits should be 0 .


## Using the Partitioning Technique

$$
\begin{array}{ll}
K_{11} \oplus K_{102} \oplus K_{125} & =N_{230} \oplus N_{253} \oplus N_{358} \oplus N_{381}, \\
K_{70} \oplus K_{93} & =N_{198} \oplus N_{221} \oplus N_{235} \oplus N_{326} \oplus N_{349} \oplus 1, \\
K_{18} \oplus K_{27} \oplus K_{32} & =N_{146} \oplus N_{155} \oplus N_{274} \oplus N_{283} \oplus 1, \\
K_{7} \oplus K_{16} & =N_{135} \oplus N_{144} \oplus N_{263} \oplus N_{272} \oplus N_{309},
\end{array}
$$

(Where the key bits are indexed by $0 \leq i<128$ and the nonce bits are indexed by $128 \leq i<383$.)

## Adjustments for Attacking 5-Round Xoodyak

1 Use another input difference (and thus also another output mask).

1 A better bias of $2^{-5.36}$ instead of $2^{-9.7}$.
2 Since there is an active key bit, we need related keys.


## Adjustments for Attacking 5-Round Xoodyak

$\boxed{4}$ Add one round preceding:

$$
\left(\Omega A_{0}, \Omega A_{1}, \Omega A_{2}\right) \xrightarrow[1 \text {-round Xoodoo }]{p=2^{-4}}\left(e_{0}, 0, e_{0}\right)
$$

where:

$$
\begin{aligned}
& \Omega A_{0}=a 8 b 23 b 19988109195267451395 a 876 f 3_{x} \\
& \Omega A_{1}=a 8 b 23 b 18988109195267451395 a 876 f 3_{x} \\
& \Omega A_{2}=a 8 b 23 b 18988109195267651395 a 876 f 3_{x}
\end{aligned}
$$

## Adjustments for Attacking 5-Round Xoodyak

3 The entire DL characteristic is:

$$
\left(\Omega A_{0}, \Omega A_{1}, \Omega A_{2}\right) \xrightarrow[5 \text {-round Xoodoo }]{p \approx 2^{-9.36}}\left(e_{0}, 0,0\right)
$$

4 Use neutral bits and the partitioning technique as before.

## Summary

The first DL cryptanalysis on Xoodyak:
■ 4-round DL attack: revealing the entire key with complexity of $2^{23.34}$.

2 5-round RK DL attack: revealing the entire key with complexity of $2^{22.04}$.

## Thank you for

 your attention!
## Questions?

