RISC-V Instruction Set Extensions for Lightweight Symmetric Cryptography

Hao Cheng¹ Johann Großschädl¹ Ben Marshall² Dan Page³ Thinh Pham³

¹ Department of Computer Science, University of Luxembourg. {hao.cheng, johann.groszschaedl}@uni.lu ² PQShield Ltd, Oxford, UK. ben.marshall@pqshield.com ³ Department of Computer Science, University of Bristol. {daniel.page, th.pham}@bristol.ac.uk

May 9, 2022

(Full disclosure: one of the authors is a member of the SPARKLE group [3])

Definition and Motivation

- Lightweight cryptography
 - "Cryptography tailored for resource-constrained devices" [10, Section 1]
 - Efficient on constrained hard/software platforms (vs. existing NIST standards)
 - Efficient for short messages
 - Amenable to countermeasures against implementation attacks
- Efficiency in software
 - ► Fast execution time, small code size, low RAM footprint, ...
 - Largely determined by instruction set ("HW/SW boudary")
 - Idea: Customize/tailor instruction set for target algorithm
 - Goal: Improve SW efficiency at low HW overhead
- Instruction Set Extensions (ISEs) for cryptography
 - Omnipresent for AES and SHA2 family
 - Question: How efficient will ISE for NIST LWC standard be?

RISC-V

- Open Instruction Set Architecture (ISA)
 - Originally developed at UC Berkeley (2010)
 - Provided under open-source licenses (no fees!)
 - Based on well-established RISC principles
- Modular ISA design
 - Minimalist base ISA (RV32I) with only 40 instructions (no rotates!)
 - Optional extensions (many still in development)
 - E.g. extension for bit-manipulation (42 instr.) and scalar cryptography (49 instr.)
- Main differences to ARM
 - 32 instead of 16 integer registers
 - No condition codes (i.e. no add-with-carry, etc)
 - No flexible second operand (i.e. no implicit shift/rotate)
 - Fewer addressing modes, no multi-register load/store

RISC-V Standard Extension for Scalar Cryptography

- General-purpose cryptography instructions
 - Useful for a wide range of cryptographic algorithms
 - Instructions for rotations and permutations
 - Logic-with-negate instructions (e.g. andn), but no logic-with-shift/rotate
 - Carryless multiplication (e.g. AES-GCM)
- Special-purpose instructions
 - For particularly important algorithms
 - AES variants
 - SHA-256 and SHA-512
 - SM3 and SM4
- Entropy source interface
 - For generation of secret-key material
 - Full specification: https://github.com/riscv/riscv-crypto/releases

General ISE Design Principles

- Obey the wider RISC-V design principles
 - Support simple building-block operations
 - Instruction encodings must have at most 2 source and 1 destination registers
 - Instruction length must be 32 bits
 - 3-register instruction can have 5-bit immediate value (optional)
- Use RISC-V scalar register file
 - Operands and result must be read from and written to general-purpose registers
- No special-purpose (micro-)architectural state
 - No special registers, caches, or scratch-pad memory
- Operation of instruction should be executed in 1 cycle in its HW module
 - Constant-time execution must be guaranteed

RISC-V Scalar Cryptography Extension: AES vs SHA2

AES128 encryption

- Most time-critical building block ("kernel"): round function
- 2 custom instructions
 - ★ middle-round encryption: aes32esmi rd, rs1, rs2, imm
 - final-round encryption: aes32esi rd, rs1, rs2, imm
- Speed-up factor: 3.38x vs T-table AES on Rocket core
- HW overhead factor: 1.06x vs base Rocket core (Kintex-7 FPGA)
- Details: https://tches.iacr.org/index.php/TCHES/article/view/8729

SHA256 hashing

- Most time-critical building block ("kernel"): compression function
- 4 custom instructions
 - \star σ_0 and σ_1 : sha256sig0 rd, rs1 and sha256sig1 rd, rs1
 - \star Σ_0 and $\Sigma_1:$ sha256sum0 rd, rs1 and sha256sum1 rd, rs1
- Speed-up factor: roughly 2.0x on Rocket core
- HW overhead factor: 1.07x vs base Rocket core (Kintex-7 FPGA)

ISE Design Flow

- Identify Kernel
 - Profiling tools can help to find the most performance-critical function
- Implement kernel in Assembly language using base ISA
 - Base ISA = RV32I + BitManip (Zbkb) + ScalarCrypto (Zbkx)
- Design custom instructions
 - Follow basic ISE design principles explained before
- Integrate custom instructions into toolchain
 - Assembler (GAS) and instruction-set simulator (Spike)
- HW design of functional unit and integration into RV32I core
 - FPGA prototype of Rocket core
- Implement kernel using ISE
- Detailed evaluation of performance, code size, HW-cost, ...

Integration of Custom Instructions into 32-bit Rocket Core

- HW implementation of ISE
 - Modification of instruction decoder
 - integration of ISE-specific functional unit into Rocket core
- Base RV32I Rocket core: 3303 LUTs (Xilinx Kintex-7 xc7k160tfbg676)
- Base core + BitManip (Zbkb) + ScalarCrypto (Zbkx): 3764 LUTs (1.14x)

LWC Finalists Overview

Name	Specification	AEAD	Hash	Component(s)
Grain128-AEAD	[9]	\checkmark		Stream cipher
GIFT-COFB	[1]	\checkmark		Block cipher
Romulus	[8]	\checkmark	\checkmark	(Tweakable) Block cipher
Ascon	[6]	\checkmark	\checkmark	Permutation
Elephant	[4]	\checkmark		Permutation
PHOTON-Beetle	[2]	\checkmark	\checkmark	Permutation
Schwaemm & Esch	n [3]	\checkmark	\checkmark	Permutation
Xoodyak	[5]	\checkmark	\checkmark	Permutation
ISAP	[7]	\checkmark		Permutation
TinyJAMBU	[11]	\checkmark		(Keyed) Permutation

LWC Finalists Overview

Name	Specification	AEAD	Hash	Component(s)
Grain128-AEAD	[9]	\checkmark		L/NFSRs
GIFT-COFB	[1]	\checkmark		GIFT-128
Romulus	[8]	\checkmark	\checkmark	Skinny-128-384+
Ascon	[6]	\checkmark	\checkmark	Ascon-p
Elephant	[4]	\checkmark		Spongent- <i>π</i> [<i>n</i>] or Keccak- <i>f</i> [<i>m</i>]
PHOTON-Beetle	[2]	\checkmark	\checkmark	PHOTON ₂₅₆
Schwaemm & Esch	า [3]	\checkmark	\checkmark	Sparkle (incl. Alzette ARX-box)
Xoodyak	[5]	\checkmark	\checkmark	Xoodoo
ISAP	[7]	\checkmark		Ascon-p or Keccak-f[m]
TinyJAMBU	[11]	\checkmark		P _n (incl. LFSR)

Kernels and Custom Instructions (1/2)

Ascon

- Kernel: P[6,12] \rightarrow 2 custom instructions
- Elephant
 - Kernel: permutation \rightarrow 3 custom instructions
- GIFT-COFB
 - ▶ Fix-sliced kernel: giftb128 \rightarrow 7 custom instructions
 - ▶ Bit-sliced kernel: giftb128 \rightarrow 2 custom instructions
- Grain-128AEADv2
 - ▶ Kernel: grain_keystream32 \rightarrow 10 custom instructions
- PHOTON-Beetle
 - ▶ Kernel: PHOTON_Permutation \rightarrow 1 custom instruction

Kernels and Custom Instructions (2/2)

- Romulus
 - Table-based kernel: Skinny_128_384_plus_enc → 6 custom instructions
 - Fix-sliced kernel: Skinny128_384_plus \rightarrow 8 custom instructions
- SPARKLE (Schwaemm + Esch)
 - Kernel: sparkle_opt \rightarrow 4 custom instructions
 - Two alternative approaches: 9 and 4 custom instructions
- TinyJAMBU
 - ▶ Kernel: state_update \rightarrow 1 custom instruction
 - Alternative approach: 4 custom instructions
- Xoodyak
 - ▶ Kernel: Xoodoo_Permute_12rounds \rightarrow 1 custom instruction
- ISAP
 - Not implemented (same kernel as Ascon!)

Hardware-Oriented Evaluation of Kernels

Submission	Base core	Base core + Zbkb/x	$\begin{array}{l} \text{Base core} + \\ \text{Zbkb/x} + \mathcal{V}_0^{32} \end{array}$	$\begin{array}{l} \text{Base core } + \\ \text{Zbkb/x} + \mathcal{V}_1^{32} \end{array}$	$\begin{array}{l} \text{Base core} + \\ \text{Zbkb/x} + \mathcal{V}_2^{32} \end{array}$
Ascon			4234 (1.282×)		
Elephant			3938 (1.192×)		
GIFT-COFB (BS)			3906 (1.183×)		
GIFT-COFB (FS)			4370 (1.323×)		
Grain-128AEADv2			4271 (1.293×)		
PHOTON-Beetle	3303 (1.000×)	3764 (1.140×)	3892 (1.178×)		
Romulus (TB)			3998 (1.210×)		
Romulus (FS)			4205 (1.273×)		
Sparkle			3998 (1.210×)	3986 (1.207×)	4483 (1.357×)
TinyJAMBU			3953 (1.197×)	3863 (1.170×)	
Xoodyak]		3814 (1.155×)		

- Results are LUTs of Xilinx Kintex-7 FPGA (overhead factor in parentheses)
- Base core is RV32I Rocket core
- BitManip (Zbkb) and ScalarCrypto (Zbkx) introduce overhead of 1.14x

Software-Oriented Evaluation of Kernels (Latency + Code Footprint)

			Replacement							
		Metric	kernel							
Submission	Kornol		implementation							
	Remen		RV32GC +	RV32GC +	RV32GC +	RV32GC +				
			Zbkb/x	$Zbkb/x + \mathcal{V}_0^{32}$	$\text{Zbkb/x} + \mathcal{V}_1^{32}$	$\text{Zbkb/x} + \mathcal{V}_2^{32}$				
		latonev	700 (1.00~)	280 (2.50×)						
Ascon	P6	footprint	2718 (1.00×)	1050 (2.50×)						
Et al anti-		latency	15804 (1.00×)	1944 (8.13×)						
Elephant	permutation	footprint	25662 (1.00×)	7702 (3.33×)						
	-1 6-1 120	latency	1481 (1.00×)	641 (2.31×)						
	giftb128	footprint	5770 (1.00×)	2410 (2.39×)						
		latency	1386 (1.00×)	972 (1.43×)						
	giilbi28	footprint	4888 (1.00×)	3412 (1.43×)						
	precompute_rkeys	latency	1306 (1.00×)	251 (5.20×)						
		footprint	4830 (1.00×)	768 (6.29×)						
Grain-1284F4Dv2	anain kovetream??	latency	235 (1.00×)	86 (2.73×)						
GIAIN-128AEADV2	grant_keystream52	footprint	858 (1.00×)	262 (3.27×)						
PHOTON Bootlo	PHOTON Rormutation	latency	67035 (1.00×)	1473 (45.51×)						
FIIOTON-Deetile	PHOTON_Permutation	footprint	82486 (1.00×)	3466 (23.80×)						
Bomulus (TB)	Skinny_128_384_plus_enc	latency	14268 (1.00×)	1502 (9.50×)						
rionalas (16)		footprint	23508 (1.00×)	4612 (5.10×)						
	Skippy128 284 pluc	latency	6208 (1.00×)	2156 (2.88×)						
	Skilliy 120_504_pius	footprint	17402 (1.00×)	7274 (2.39×)						
Bomulus (ES)	precompute rtk1	latency	867 (1.00×)	200 (4.34×)						
	precompute_rear	footprint	2814 (1.00×)	610 (4.61×)						
	precompute rtk2 3	latency	3402 (1.00×)	1557 (2.18×)						
	P	footprint	11290 (1.00×)	5186 (2.18×)						
Sparkle	Sparkle_opt	latency	1647 (1.00×)	1185 (1.39×)	1185 (1.39×)	525 (3.14×)				
		footprint	5908 (1.00×)	4456 (1.33×)	4456 (1.33×)	1816 (3.25×)				
Tiny IAMBL	state undate (P1024)	latency	575 (1.00×)	319 (1.80×)	319 (1.80×)					
	State_upuate (F1024)	footprint	2208 (1.00×)	1184 (1.86×)	1184 (1.86×)					
Хооруак	Xoodoo Permute 12rounds	latency	873 (1.00×)	777 (1.12×)						
	hoodoo_i cimute_iziounus	footprint	3394 (1.00×)	3010 (1.13×)						

AEAD Results (Latency + Code Footprint) for 128 bytes of Data/AssocData

	Functionality	Original	Replacement							
Submission		kernel			kernel					
		implementation			implementation					
		RV32GC	RV32GC +		RV32GC +		RV32G	iC +	RV32G	iC +
			Zbkb/x		$Zbkb/x + \mathcal{V}_0^{32}$		Zbkb/x +	- V ³² 1	Zbkb/x +	- V ³² 2
A	aead_encrypt	43005 (1.00×)	32316	(1.33×)	16775	(2.56×)				
ASCON	aead_decrypt	43414 (1.00×)	32694	(1.33×)	17159	(2.53×)				
Fleehent	aead_encrypt	16044010 (1.00×)	401543	(39.96×)	65118(246.38×)				
Elephant	aead_decrypt	16044075 (1.00×)	402787	(39.83×)	65079 (246.53×)				
	aead_encrypt	687611 (1.00×)	42048	(16.35×)	27774	(24.76×)				
GIFT-COFD (B3)	aead_decrypt	687543 (1.00×)	42093	(16.33×)	27819	(24.71×)				
CIET.COER (ES)	aead_encrypt	687611 (1.00×)	41884	(16.42×)	33763	(20.36×)				
Gil 1-001 D (13)	aead_decrypt	687543 (1.00×)	41749	(16.47×)	33642	(20.44×)				
Creater 1284EADu2	aead_encrypt	87682 (1.00×)	85826	(1.02×)	64083	(1.37×)				
GIGIN-126AEADV2	aead_decrypt	86656 (1.00×)	84897	(1.02×)	63148	(1.37×)				
PHOTON Bootlo	aead_encrypt	8065027 (1.00×)	1149521	(7.02×)	29372 (274.58×)				
rnoion-Deelle	aead_decrypt	8063672 (1.00×)	1150013	(7.01×)	29407 (274.21×)				
Domuluo (TD)	aead_encrypt	1018364 (1.00×)	213180	(4.78×)	32880	(30.97×)				
HUITIUIUS (TE)	aead_decrypt	1017990 (1.00×)	213444	(4.77×)	33049	(30.80×)				
Domuluo (EC)	aead_encrypt	177043 (1.00×)	203476	(0.87×)	40351	(4.39×)				
nomulus (FS)	aead_decrypt	177326 (1.00×)	203444	(0.87×)	41257	(4.30×)				
Sparkle	aead_encrypt	30033 (1.00×)	12883	(2.33×)	9724	(3.09×)	9721	(3.09×)	5218	(5.76×)
	aead_decrypt	30053 (1.00×)	12910	(2.33×)	9756	(3.08×)	9756	(3.08×)	5268	(5.70×)
TinyJAMBU	aead_encrypt	39851 (1.00×)	33574	(1.19×)	19118	(2.08×)	19118	(2.08×)		
	aead_decrypt	40432 (1.00×)	34033	(1.19×)	19562	(2.07×)	19562	(2.07×)		
Yoopyak	aead_encrypt	192338 (1.00×)	14579	(13.19×)	13616	(14.13×)				
AUODYAK	aead_decrypt	192149 (1.00×)	14397	(13.35×)	13429	(14.31×)				

Baseline is the optimized (resp. reference) implementation of the designers

AEAD Throughput (Cycles/Byte) for 16/128/1024 bytes of Data/AssocData

Concluding Remarks

Main observations

- HW-oriented candidates achieve a higher speed-up than SW-oriented ones
- Nonetheless, SW-oriented candidates remain the top-performers
- ISE narrow the gap between the fastest and slowest candidate
- Only SPARKLE is able to outperform AES-GCM
- Source code
 - Available on GitHub: https://github.com/scarv/lwise
 - Feedback is welcome!
 - Proposals for better ISE are welcome!
 - ISE proposals have to follow design guidelines

References

- S. Banik et al. GIFT-COFB. Submission to NIST (version 1.1). https://csrc.nist.gov/CSRC/media/Projects/lightweightcryptography/documents/finalist-round/updated-spec-doc/gift-cofb-spec-final.pdf. 2021.
- Z. Bao et al. PHOTON-Beetle. Submission to NIST. https://csrc.nist.gov/CSRC/media/Projects/lightweightcryptography/documents/finalist-round/updated-spec-doc/photon-beetle-spec-final.pdf. 2021.
- [3] C. Beierle et al. Schweim and Esch: Lightweight Authenticated Encryption and Hashing using the SPARKLE Permutation Family. Submission to NIST (version 1.2). https://csrc.nist.gov/CSR/uedia/Projects/lightweight-cryptography/documents/finalistround/updated-spec-doc/sparkle-spec-final.pdf. 2021.
- T. Beyne et al. *Elephant*. Submission to NIST (version 2.0). https://csrc.nist.gov/CSRC/media/Projects/lightweightcryptography/documents/finalist-round/updated-spec-doc/elephant-spec-final.pdf. 2021.
- J. Daemen et al. Xoodyak, a lightweight cryptographic scheme. Submission to NIST (version 2.0). https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-specdoc/xoodyak-spec-final.pdf. 2021.
- [6] C. Dobraunig et al. Ascon. Submission to NIST (version 1.2). https://csrc.nist.gov/CSRC/media/Projects/lightweightcryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf. 2021.
- [7] C. Dobraunig et al. ISAP. Submission to NIST (version 2.0). https://csrc.nist.gov/CSRC/media/Projects/lightweightcryptography/documents/finalist-round/updated-spec-doc/isap-spec-final.pdf. 2021.
- [8] C. Guo et al. Romulus. Submission to NIST (version 1.3). https://csrc.nist.gov/CSRC/media/Projects/lightweightcryptography/documents/finalist-round/updated-spec-doc/romulus-spec-final.pdf. 2021.
- M. Hell et al. Grain-128AEADv2. Submission to NIST (version 2.0). https://csrc.nist.gov/CSRC/media/Projects/lightweightcryptography/documents/finalist-round/updated-spec-doc/grain-128aead-spec-final.pdf. 2021.
- [10] National Institute of Standards and Technology (NIST). Submission Requirements and Evaluation Criteria for the Lightweight Cryptography Standardization Process. https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/final-lwc-submission-requirements-august2018.pdf. 2018.
- [11] H. Wu and T. Huang. TinyJAMBU. Submission to NIST (version 2.0). https://csrc.nist.gov/CSRC/media/Projects/lightweightcryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf. 2021.