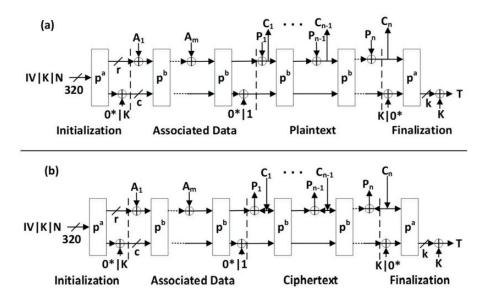


Need for Low-latency Ciphers: A Comparative Study of NIST LWC Finalists

Tolga Yalcin, Samaneh Ghandali {tyalcin, samaneh}@google.com

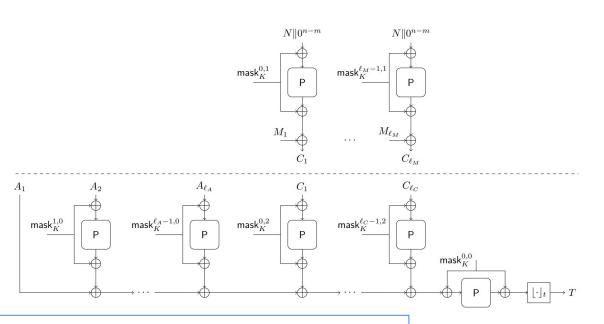
Overview


- Fair evaluation of NIST LWC finalists for low-latency applications, e.g. memory encryption
- Include known ciphers in the comparison
 - AES-128
 - PRINCE v2
 - KECCAK in duplex mode
- Evaluation methodology:
 - Use of open-source tools for synthesis (**yosys**) and timing analysis (**openSTA**)
 - Use of open-source generic library (Nangate 45nm)
 - No back-annotation (no SDF)
 - All ciphers evaluated in unrolled fashion using for single-cycle operation
 - \circ ~ All RTL codes written from scratch for fair comparison
 - Performance figures not absolute relative comparison

ASCON

Google

- ASCON is a sponge-based cipher, which has a sponge state of 320 bits and two permutations *pa* and *pb*
- Ascon authenticated encryption or decryption consists of four phases:
 - initialization
 - Associated Data (AD)
 - Plaintext or Ciphertext
 - finalization
- Permutation *pa* applies to initialization and finalization, and *pb* applies to AD and Plaintext or Ciphertext.
- Ascon-128 includes a 128-bit Key, a 128-bit Npub, a 128-bit Tag, a 64-bit data block, and 12 and 6 rounds of *pa* and *pb*, respectively

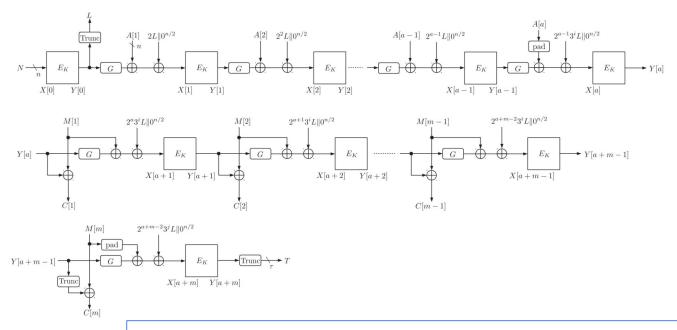

Ascon authenticated (a) encryption and (b) decryption

Fastest instance is Ascon-128a: Can encrypt 128 bits of data every 8 rounds *Unrolled 8 rounds:*

- Area: 24.437 KGE
- Delay: 2.97 ns, Max Freq: 336.7 MHz
- Throughput: 43.098 Gbps
- Tput/Area = 1.763 Gbps/KGE

Elephant

- Elephant is a nonce-based encrypt-then-MAC construction
- Encryption is performed using counter mode
- Message authentication is performed using a variant of the protected counter sum MAC function


Fastest instance is Delirium: Can encrypt 200 bits of data every 18 Keccak rounds *Unrolled 18 rounds:*

- Area: 28.350 KGE
- Delay: 8.16 ns , Max Freq: 122.55 MHz
- Throughput: 24.510 Gbps
- Tput/Area = 864.54 Mbps/KGE

Google

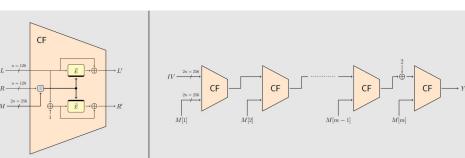
GIFT-COFB

 GIFT-COFB authenticated instantiates the COFB (COmbined FeedBack) block cipher based AEAD mode with the GIFT block cipher

Single instance: Can encrypt 128 bits of data every 40 GIFT rounds *Unrolled 40 rounds:*

- Area: 28.709 KGE
- Delay: 12.53 ns , Max Freq: 79.81 MHz
- Throughput: 10.215 Gbps
- Tput/Area = 355.82 Mbps/KGE

Romulus

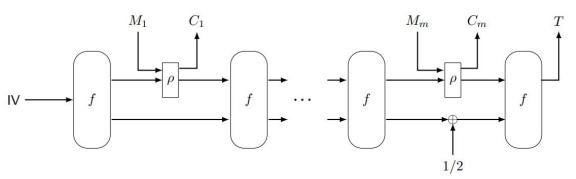

 Romulus is three authenticated encryption schemes with associated data (AEAD) and a hash function, all based on a tweakable block cipher (TBC) Skinny.

Single instance is Romulus-N: Can encrypt 128 bits of data every 40 Skinny rounds *Unrolled 40 rounds:*

- Area: 43.392 KGE
- Delay: 22.97 ns Max Freq: 43.535 MHz
- Throughput: 5.572 Gbps
- Tput/Area = 128.42 Mbps/KGE

A[1]A[2]A[3]A[4]A[a-1]pad(A[a])A[a-2]Ntt M[1]NM[2]Npad(M[m])N 0^n tt $S \xrightarrow{n}$ $\widetilde{E}_{K}^{w_{M},\overline{m}}$ $lsb_{|M[m]|}$ C[1]C[2]TC[m]

Romulus-N: nonce-based AE (NAE) scheam

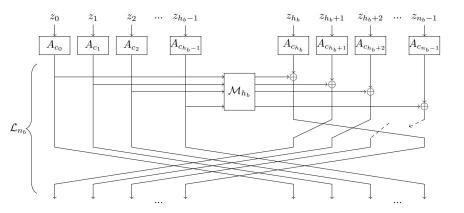


Romulus-T: leakage-resilient AE Romulus-T and a hash function Romulus-H

Google

PHOTON-Beetle

- PHOTON-Beetle is an authenticated encryption and hash family, that uses a sponge-based mode Beetle with the P256 being the underlying permutation
- PHOTON-Beetle-AEAD: a family of authenticated encryptions
- PHOTON-Beetle-Hash: a family of hash functions

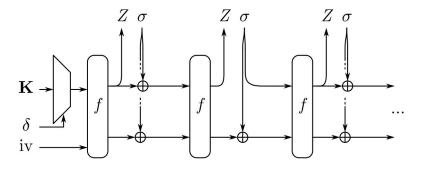

PHOTON-Beetle-AEAD.ENC with a AD blocks and m message blocks

Fastest instance is Beetle-AEAD[128]: Can encrypt 128 bits of data every 12 PHOTON rounds Unrolled 12 rounds:

- Area: 343.55 (96.512*) KGE
- Delay: 12.87 (36.43*) ns , Max Freq: 77.700 (27.450*) MHz
- Throughput: 9.945 (3.513*) Gbps
- Tput/Area = 28.949 (36.406) Mbps/KGE
- *: MixColumnsSerial implementation

SPARKLE

- Sparkle family of permutations together with the AEAD instances Schwaemm and the hash functions Esch.
- Esch: Efficient, Sponge-based, and Cheap Hashing
- Schwaemm: Sponge-based Cipher for Hardened but Weightless Authenticated Encryption on Many Microcontrollers



Fastest instance is Schwaemm256-128: Can encrypt 256 bits of data every 7 Sparkle rounds *Unrolled 7 rounds:*

- Area: 128.51 KGE
- Delay: 59.75 ns , Max Freq: 16.736 MHz
- Throughput: 4.2845 Gbps
- Tput/Area = 33.339 Mbps/KGE

Xoodyak

 It is based on the duplex construction, and on its full-state variant when it is fed with a secret key

Single instance: Can encrypt 256 bits of data every 12 Xoodo rounds *Unrolled 12 rounds:*

- Area: 34.148 KGE
- Delay: 4.78 ns , Max Freq: 209.21 MHz
- Throughput: 40.167 Gbps
- Tput/Area = 1176.3 Mbps/KGE

AES and PRINCE

Google

Both AES-128 and PRINCE_v2 evaluated in XEX mode

• Tweak generation is not included in the evaluation

AES-128: Can encrypt 128 bits of data every 10 rounds *Unrolled 10 rounds:*

- Area: 83.581 KGE
- Delay: 14.34 ns , Max Freq: 69.735 MHz
- Throughput: 8.9261 Gbps
- Tput/Area = 106.80 Mbps/KGE

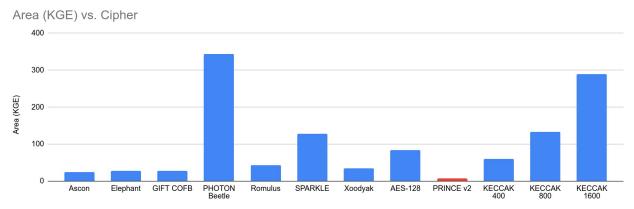
PRINCE_v2: Can encrypt 64 bits of data every 12* rounds Unrolled 12 rounds:

- Area: 7.9813 KGE
- Delay: 3.89 ns , Max Freq: 257.07 MHz
- Throughput: 16.452 Gbps
- Tput/Area = 2061.4 Mbps/KGE

KECCAK-400/800/1600 evaluated in duplex mode with fixed capacity c = 256

KECCAK-400: Can encrypt 144 bits of data every 20 rounds Unrolled 20 rounds:

- Area: 60.128 KGE
- Delay: 8.90 ns , Max Freq: 112.36 MHz
- Throughput: 16.180 Gbps
- Tput/Area = 269.09 Mbps/KGE

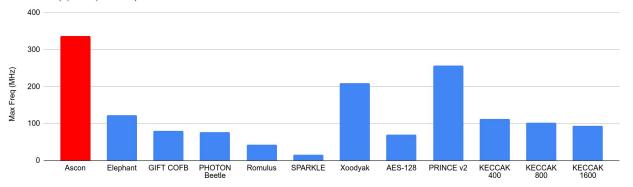

KECCAK-800: Can encrypt 544 bits of data every 22 rounds Unrolled 22 rounds:

- Area: 132.74 KGE
- Delay: 9.72 ns , Max Freq: 102.88 MHz
- Throughput: 55.967 Gbps
- Tput/Area = 421.64 Mbps/KGE

KECCAK-1600: Can encrypt 1344 bits of data every 24 rounds *Unrolled 24 rounds:*

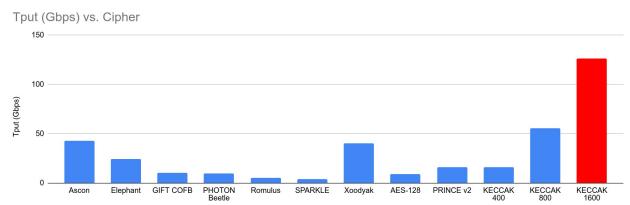
- Area: 289.92 KGE
- Delay: 10.65 ns , Max Freq: 93.897 MHz
- Throughput: 126.20 Gbps
- Tput/Area = 435.28 Mbps/KGE

	Compactness												
	Ascon	Elephant	GIFT COFB	PHOTON Beetle	Romulus	SPARKLE	Xoodyak	AES-128	PRINCE v2	KECCAK 400	KECCAK 800	KECCAK 1600	
Area (KGE)	24.437	28.350	28.709	343.55	43.392	128.51	34.148	83.581	7.9813	60.128	132.74	289.92	



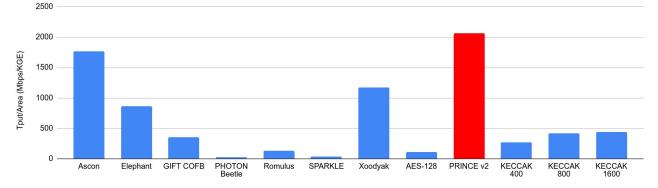
Google

Cipher


	High Frequency												
	Ascon	Elephant	GIFT COFB	PHOTON Beetle	Romulus	SPARKLE	Xoodyak	AES-128	PRINCE v2	KECCAK 400	KECCAK 800	KECCAK 1600	
Max Fre (MHz)	^q 336.7	122.55	79.81	77.700	43.535	16.736	209.21	69.735	257.07	112.36	102.88	93.897	

Max Freq (MHz) vs. Cipher

	High Throughput												
	Ascon	Elephant	GIFT COFB	PHOTON Beetle	Romulus	SPARKLE	Xoodyak	AES-128	PRINCE v2	KECCAK 400	KECCAK 800	KECCAK 1600	
Tput (Gbps)	43.098	24.510	10.215	9.945	5.572	4.2845	40.167	8.9261	16.452	16.180	55.967	126.20	



Cipher

	Throughput per Area												
	Ascon	Elephant	GIFT COFB	PHOTON Beetle	Romulus	SPARKLE	Xoodyak	AES-128	PRINCE v2	KECCAK 400	KECCAK 800	KECCAK 1600	
Tput/Area (Mbps/KGE)	1763	864.54	355.82	28.949	128.42	33.339	1176	106.80	2061	269.09	421.64	435.28	

Tput/Area (Mbps/KGE) vs. Cipher

Cipher

Conclusion

- Memory encryption not a design target in LWC competition none of the finalists offer high throughput in a compact area
- ASCON is the best option in terms of max frequency x3 area of PRINCE
 - Initialization requires additional cycles
- PRINCE can be used for memory encryption efficiently Not a NIST standard
 - Any NIST plans to add an optional mode for memory encryption?
- Very high throughputs possible by using variants of KECCAK in duplex mode -Not a NIST standard
 - Any NIST plans to support KECCAK in duplex mode?

THANK YOU