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Ascon design rationale

- Authenticated encryption: confidentiality/authenticity/integrity
all-in-one in a single primitive

- Two main parts of the design:
- The choice of a mode of operation: abstract construction with
generic functions

- The choice of an instantiation of the mode with carefully-chosen
primitives

- In the case of Ascon [DEMS19]:
- Duplex Sponge mode [BDPA11]
- A carefully-chosen permutation p : F320

2 → F320
2 .

▶ Ascon is permutation-based.
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The permutation

A confusion/diffusion structure. . . . . . studied algebraically

y0 = x4x1 + x3 + x2x1 + x2 + x1x0 + x1 + x0
y1 = x4 + x3x2 + x3x1 + x3 + x2x1 + x2 + x1 + x0
y2 = x4x3 + x4 + x2 + x1 + 1

y3 = x4x0 + x4 + x3x0 + x3 + x2 + x1 + x0
y4 = x4x1 + x4 + x3 + x1x0 + x1

Algebraic Normal Form (ANF) of the S-box

X0 = X0 ⊕ (X0 ≫ 19) ⊕ (X0 ≫ 28)

X1 = X1 ⊕ (X1 ≫ 61) ⊕ (X1 ≫ 39)

X2 = X2 ⊕ (X2 ≫ 1) ⊕ (X2 ≫ 6)

X3 = X3 ⊕ (X3 ≫ 10) ⊕ (X3 ≫ 17)

X4 = X4 ⊕ (X4 ≫ 7) ⊕ (X4 ≫ 41)

ANF of the linear layer pL

The state

X4

X3

X2

X1

X0

p = pL ◦ pS ◦ pC

The constant addition pC

X4

X3

X2

X1

X0

The substitution layer pS
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The nonce-misuse scenario

Simplified setting for Ascon -128

v0, · · · , v63

a0, · · · ,a63
b0, · · · ,b63
c0, · · · ,c63
d0, · · · ,d63

Unknown internal state

Chosen external state

⋆After initialization

IV∥k∥N

Initialization

P0 C0

p6

⋆
Encryption

0∗ C1

- Many reuse of the same (k,N) pair
- Chosen-plaintexts attack
- If the whole state is recovered, confidentiality is compromised,
but not integrity nor authenticity in the case of Ascon
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Cube attack principle

fj : jth output coordinate. Instead of fj ∈ F2[v0, · · · , v63,a0, · · · ,d63],
we separate public variables from secret variables:

fj ∈ F2[a0, · · · ,d63][v0, · · · , v63] fj =
∑

(u0,··· ,u63)∈F642

αu, j

( 63∏
i=0

vi
ui
)

where αu, j ∈ F2[a0, · · · ,d63].

Polynomial expression of αu, j + value of αu, j =
equation in the unknown variables ≃

recovery of some information

0. Select a monomial (cube) in fj and target its coefficient: αu, j

1. Offline phase: recovery of the algebraic expression of αu, j

2. Online phase: recovery of the value of αu, j :
αu, j =

∑
v≼u

fj(v) (chosen queries).
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Recovery of the polynomial: main problems

Problem 0: impossible access to the full ANF
p ◦ · · · ◦ p: 6 iterations, 256 unknown variables.
S-box layer squares the number of terms. Linear layer triples it. Impossible.

Pb. 1: impossible access to a given αu, j expression
Finding αu, j for fixed u and j. Too many combinatorial possibilities to
track!

Pb. 2: Finding exploitable αu, j
We need to be able to solve the system!
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Recovery of the polynomial: main problems

Problem 0: impossible access to the full ANF
p ◦ · · · ◦ p: 6 iterations, 256 unknown variables.
S-box layer squares the number of terms. Linear layer triples it. Impossible.

Pb. 1: impossible access to a given αu, j expression
Finding αu, j for fixed u and j. Too many combinatorial possibilities to
track!
v0v1 = v0 × v1 = (v0v1)× 1 = (v0v1)× v0 = (v0v1)× v1 = (v0v1)× (v0v1)

Pb. 2: Finding exploitable αu, j
We need to be able to solve the system!

▶ Highest-degree terms (2t−1 at round t) are easier to study.
Strong constraint: products of two former highest-degree terms.
v0v1 = v0 × v1 =����

(v0v1)× 1 =((((((v0v1)× v0 =((((((v0v1)× v1 =((((((
(v0v1)× (v0v1)
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- Fewer combinatorial choices
- Known structure of αu: sum of products of former coefficients
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Highest-degree terms in practice

For r = 6

- Still costly to recover the polynomial expressions:
computations have to be done round after round.

- The polynomials look horrible!

▶ Need for a cheaper and easier recovery:
conditional cubes [HWX+17, LDW17]
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Conditional cubes

- We look for αu with a simple divisor: β0.
- Without the full knowledge of αu, we can still deduce that:
αu = 1 =⇒ β0 = 1.

- If β0 is linear, the system will be linear.
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Choice of the cube: forcing some linear divisors

Study of the first rounds: Column C0 after the first S-box layer

v0
a0
b0
c0
d0

(a0 + 1)v0 + · · ·
v0 + · · ·

· · ·
(c0 + d0 + 1)v0 + · · ·

a0v0+ · · ·
γ0 := c0 + d0 + 1

β0 := a0 + 1

S1

- After the second round, the coefficient of any v0vi , i ̸= 0 can be
decomposed as: β0P + 1Q + γ0R + (β0 + 1)S.

- It is possible to select the remaining 31 indices i such that all
coefficients of v0vi at round 2 look like either β0P or γ0R instead.

- This ensures that: αu, j = β0(. . . ) + γ0(. . . ) for all output coordinates after
6 rounds (j ∈ J0, 63K).

- (αu,0, · · · , αu,63) ̸= (0, · · · , 0) =⇒ β0 = 1 or γ0 = 1

- In practice, reciprocal also true! ∀ j, αu, j = 0 =⇒ β0 = 0 and γ0 = 0
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The internal-state recovery

First step, non-adaptative: 32-degree conditional cubes
Recovery of all the bits ci + di + 1, and about 32/64 ai .

Second step, adaptative: 32-degree cubes
- 32-degree coefficients depend only on ci + di + 1 and ai .
- Inputting the recovered values drastically simplifies the expressions of
some coefficients, and thus the computations.

- Simple-enough expressions to be effectively-solved.
▶ Recovery of the remaining ai .

Third step, adaptative: 31-degree cubes
- Cubes of lower size are needed to recover bi and ci .
- Same principle as second step
▶ Recovery of all bi and ci .
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Conclusion

- Full-state recovery on the full 6-round encryption: 240 online time and
data.

- Harder to study the complexity of the adaptative offline choices. The
attack is however effective.

- Does not threaten Ascon directly.
- Good reminder that a nonce is not a constant!

Main questions/openings
▶ Misused-ciphers studies: academically interesting, is it “real-life”

interesting ?
▶ Changing the input wire during encryption: a possible free

counter-measure ?
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Conclusion

- Full-state recovery on the full 6-round encryption: 240 online time and
data.

- Harder to study the complexity of the adaptative offline choices. The
attack is however effective.

- Does not threaten Ascon directly.
- Good reminder that a nonce is not a constant!

Main questions/openings
▶ Misused-ciphers studies: academically interesting, is it “real-life”

interesting ?
▶ Changing the input wire during encryption: a possible free

counter-measure ?

Thank you for
your attention!
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The whole Ascon AEAD mode
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Justifying the “in practice” reciprocal

αu, j = (a0 + 1)pj,1 + (c0 + d0 + 1)pj,2 ∀ j ∈ J0, · · · , 63K.

When (a0 + 1,c0 + d0 + 1) ̸= (0, 0), αu, j are not expected to be all canceled at
the same time.

Whenever we observe that αu, j = 0 ∀ j, we guess that (a0,c0 + d0) = (1, 1).
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More details on the last two steps

Second step, adaptative: 32-degree cubes
- 32-degree coefficients depend only on ci + di + 1 and ai .
- After step 1, all the ci + di + 1 are recovered and about half of the ai as well.
- We choose our 32 indices i in order to minimize the number of unknowns.
- Each αu is a sum of products, each product being of the form:

∏
i,ui=1

ℓi where

ℓi ∈ {ai , 1,ci + di + 1,ai + 1}. Such a product is very often equal to 0 !
- Minimizing the number of unknowns = Minimizing the degree and the density of
the expressions.

- Simple-enough expressions to be effectively-computed round after round, then
effectively-solved (over-determined, small degree, sparse systems).
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More details on the last two steps

Third step, adaptative: 31-degree cubes: wt(u) = 31
Each αu is a sum of products. Each product is either:

- the product of 32 coefficients of degree-1 terms after S1, or
- the product of one constant term and 31 coefficients of degree-1 terms.

Each coefficient of degree-1 term is known (because all ci +di +1 and all ai are
known).
So αu can be expressed as a sum of constant terms, that is, a quadratic polyno-
mial in the remaining unknowns bi ,ci . (di = ci + 1+ εi with known εi )
Again, the computations and the solving of the systems are practical.
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