Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

Ascon design rationale

The permutation

The nonce-misuse scenario

Cube attack principle

Recovery of the polynomial: main problems

Highest-degree terms in theory

Highest-degree terms in practice

Conditional cubes

Choice of the cube: forcing some linear divisors

The internal-state recovery

Conclusion

Practical cube-attack against <u>nonce-misused</u> Ascon

NIST Lightweight Cryptography Workshop 2022

Jules Baudrin joint work with Anne Canteaut & Léo Perrin (Inria, Paris, France)

May 2022

Contact: jules.baudrin@inria.fr

In this talk

Practical cube-attack against <u>nonce-misused</u> Ascon

Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

Ascon design rationale

The permutatior

The nonce-misuse scenario

Cube attack principle

Recovery of the polynomial: main problems

Highest-degree terms in theory

Highest-degree terms in practice

Conditional cubes

Choice of the cube: forcing some linear divisors

The internal-state recovery

Conclusion

Ascon design rationale The permutation The nonce-misuse scenario Cube attack principle Recovery of the polynomial: main problems Highest-degree terms in theory Highest-degree terms in practice Conditional cubes Choice of the cube: forcing some linear divisors The internal-state recovery Conclusion

Ascon specs. and attack setting

From theory to practice

Main steps of the attack

Ascon design rationale

Practical cube-attack against <u>nonce-misused</u> Ascon

Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

Ascon design rationale

The permutation

- The nonce-misuse scenario
- Cube attack principle
- Recovery of the polynomial: main problems
- Highest-degree terms in theory
- Highest-degree terms in practice
- Conditional cubes

Choice of the cube: forcing some linear divisors

The internal-state recovery

Conclusion

- Authenticated encryption: confidentiality/authenticity/integrity all-in-one in a single primitive
- Two main parts of the design:
 - The choice of a **mode of operation**: abstract construction with generic functions
 - The choice of an **instantiation** of the mode with carefully-chosen primitives
- In the case of Ascon [DEMS19]:
 - Duplex Sponge mode [BDPA11]
 - A carefully-chosen **permutation** $p \colon \mathbb{F}_2^{320} \to \mathbb{F}_2^{320}$.
 - Ascon is permutation-based.

The permutation

Ínría

Practical cube-attack against <u>nonce-misused</u> Ascon

Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

Ascon design rationale

The permutation

The nonce-misuse scenario

Cube attack principle

- Recovery of the polynomial: main problems
- Highest-degree terms in theory
- Highest-degree terms in practice
- Conditional cubes
- Choice of the cube: forcing some linear divisors
- The internal-state recovery
- Conclusion

A confusion/diffusion structure...

The state

 $p = p_L \circ p_S \circ p_C$

... studied algebraically

$$y_0 = x_4 x_1 + x_3 + x_2 x_1 + x_2 + x_1 x_0 + x_1 + x_0$$

$$y_1 = x_4 + x_3 x_2 + x_3 x_1 + x_3 + x_2 x_1 + x_2 + x_1 + x_0$$

$$y_2 = x_4 x_3 + x_4 + x_2 + x_1 + 1$$

$$y_3 = x_4 x_0 + x_4 + x_3 x_0 + x_3 + x_2 + x_1 + x_0$$

$$y_4 = x_4 x_1 + x_4 + x_3 + x_1 x_0 + x_1$$

Algebraic Normal Form (ANF) of the S-box

 $\begin{array}{l} X_0 = X_0 \oplus (X_0 \gg 19) \oplus (X_0 \gg 28) \\ X_1 = X_1 \oplus (X_1 \gg 61) \oplus (X_1 \gg 39) \\ X_2 = X_2 \oplus (X_2 \gg 1) \oplus (X_2 \gg 6) \\ X_3 = X_3 \oplus (X_3 \gg 10) \oplus (X_3 \gg 17) \\ X_4 = X_4 \oplus (X_4 \gg 7) \oplus (X_4 \gg 41) \end{array}$

ANF of the linear layer pl

The nonce-misuse scenario

Practical cube-attack against <u>nonce-misused</u> Ascon

Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

Ascon design rationale

The permutatior

The nonce-misuse scenario

Cube attack principle

Recovery of the polynomial: main problems

Highest-degree terms in theory

Highest-degree terms in practice

Conditional cubes

Choice of the cube: forcing some linear divisors

The internal-state recover

Conclusion

Simplified setting for Ascon -128

v ₀ ,		, V ₆₃
<i>a</i> ₀ ,	• • •	, a ₆₃
b_0 ,	• • •	, b ₆₃
<i>C</i> ₀ ,	• • •	, C ₆₃
$d_0,$		$, d_{63}$

Chosen external state

Unknown internal state

*After initialization

- Many reuse of the same (k, N) pair
- Chosen-plaintexts attack
- If the whole state is recovered, confidentiality is compromised, but not integrity nor authenticity in the case of Ascon

Cube attack principle

Practical cube-attack against <u>nonce-misused</u> Ascon

Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

Ascon design rationale

The permutation

The nonce-misuse scenario

Cube attack principle

Recovery of the polynomial: main problems

Highest-degree terms in theory

Highest-degree terms in practice

Conditional cubes

Choice of the cube: forcing some linear divisors

The internal-state recovery

Conclusion

 f_j : *j*th output coordinate. Instead of $f_j \in \mathbb{F}_2[v_0, \dots, v_{63}, a_0, \dots, a_{63}]$, we separate public variables from secret variables:

1 10

$$f_{j} \in \mathbb{F}_{2}[\boldsymbol{a}_{0}, \cdots, \boldsymbol{d}_{63}][\boldsymbol{v}_{0}, \cdots, \boldsymbol{v}_{63}] \quad f_{j} = \sum_{(\boldsymbol{u}_{0}, \cdots, \boldsymbol{u}_{63}) \in \mathbb{F}_{2}^{64}} \boldsymbol{\alpha}_{\boldsymbol{u}, j} \left(\prod_{i=0}^{63} \boldsymbol{v}_{i}^{\boldsymbol{u}_{i}} \right)$$

where $\boldsymbol{\alpha}_{\boldsymbol{u}, j} \in \mathbb{F}_{2}[\boldsymbol{a}_{0}, \cdots, \boldsymbol{d}_{63}].$

Cube attack principle

Practical cube-attack against <u>nonce-misused</u> Ascon

Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

Ascon design rationale

The permutation

The nonce-misuse scenario

Cube attack principle

Recovery of the polynomial: main problems

Highest-degree terms in theory

Highest-degree terms in practice

Conditional cubes

Choice of the cube: forcing some linear divisors

The internal-state recovery

Conclusion

 f_j : *j*th output coordinate. Instead of $f_j \in \mathbb{F}_2[v_0, \dots, v_{63}, a_0, \dots, d_{63}]$, we separate public variables from secret variables:

$$\begin{split} f_{j} \in \mathbb{F}_{2}[\textbf{a}_{0}, \cdots, \textbf{d}_{63}][\textbf{v}_{0}, \cdots, \textbf{v}_{63}] \quad f_{j} = \sum_{(u_{0}, \cdots, u_{63}) \in \mathbb{F}_{2}^{64}} \alpha_{u, j} \left(\prod_{i=0}^{63} \textbf{v}_{i}^{u_{i}} \right) \\ \text{where } \alpha_{u, j} \in \mathbb{F}_{2}[\textbf{a}_{0}, \cdots, \textbf{d}_{63}]. \end{split}$$

Polynomial **expression** of $\alpha_{u, j}$ + **value** of $\alpha_{u, j}$ = equation in the unknown variables \simeq recovery of some information

0. Select a monomial (**cube**) in f_j and target its coefficient: $\alpha_{u,j}$

- 1. Offline phase: recovery of the algebraic expression of $\alpha_{u,j}$
- 2. **Online phase**: recovery of the value of $\alpha_{u, j}$:

 $\alpha_{u,j} = \sum_{v \preccurlyeq u} f_j(v)$ (chosen queries).

Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

Ascon design rationale

The permutation

The nonce-misuse scenario

Cube attack principle

Recovery of the polynomial: main problems

Highest-degree terms in theory

Highest-degree terms in practice

Conditional cubes

Choice of the cube: forcing some linear divisors

The internal-state recovery

Conclusion

Recovery of the polynomial: main problems

Problem 0: impossible access to the full ANF

 $p \circ \cdots \circ p$: 6 iterations, 256 unknown variables. S-box layer squares the number of terms. Linear layer triples it. **Impossible**.

Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

Ascon design rationale

The permutation

The nonce-misuse scenario

Cube attack principle

Recovery of the polynomial: main problems

Highest-degree terms in theory

Highest-degree terms in practice

Conditional cubes

Choice of the cube: forcing some linear divisors

The internal-state recover

Conclusion

Recovery of the polynomial: main problems

Problem 0: impossible access to the full ANF

 $p \circ \cdots \circ p$: 6 iterations, 256 unknown variables. S-box layer squares the number of terms. Linear layer triples it. **Impossible**.

Pb. 1: impossible access to a given $\alpha_{u,j}$ expression

Finding $\alpha_{u, j}$ for fixed u and j. Too many combinatorial possibilities to track!

Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

Ascon design rationale

The permutatior

The nonce-misuse scenario

Cube attack principle

Recovery of the polynomial: main problems

Highest-degree terms in theory

Highest-degree terms in practice

Conditional cubes

Choice of the cube: forcing some linear divisors

The internal-state recover

Conclusion

Recovery of the polynomial: main problems

Problem 0: impossible access to the full ANF

 $p \circ \cdots \circ p$: 6 iterations, 256 unknown variables. S-box layer squares the number of terms. Linear layer triples it. **Impossible**.

Pb. 1: impossible access to a given $\alpha_{u,j}$ expression

Finding $\alpha_{u, j}$ for fixed u and j. Too many combinatorial possibilities to track!

 $v_0v_1 = v_0 \times v_1 = (v_0v_1) \times 1 = (v_0v_1) \times v_0 = (v_0v_1) \times v_1 = (v_0v_1) \times (v_0v_1)$

Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

Ascon design rationale

The permutatior

The nonce-misuse scenaric

Cube attack principle

Recovery of the polynomial: main problems

Highest-degree terms in theory

Highest-degree terms in practice

Conditional cubes

Choice of the cube: forcing some linear divisors

The internal-state recovery

Conclusion

Problem 0: impossible access to the full ANF

 $p \circ \cdots \circ p$: 6 iterations, 256 unknown variables. S-box layer squares the number of terms. Linear layer triples it. **Impossible**.

Pb. 1: impossible access to a given $\alpha_{u, j}$ expression

Finding $\alpha_{u, j}$ for fixed u and j. Too many combinatorial possibilities to track!

 $v_0v_1 = v_0 \times v_1 = (v_0v_1) \times 1 = (v_0v_1) \times v_0 = (v_0v_1) \times v_1 = (v_0v_1) \times (v_0v_1)$

Pb. 2: Finding exploitable $\alpha_{u, j}$ We need to be able to solve the system!

Recovery of the polynomial: main problems

Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

Ascon design rationale

The permutation

The nonce-misuse scenario

Cube attack principle

Recovery of the polynomial: main problems

Highest-degree terms in theory

Highest-degree terms in practice

Conditional cubes

Choice of the cube: forcing some linear divisors

The internal-state recovery

Conclusion

Recovery of the polynomial: main problems

Problem 0: impossible access to the full ANF

 $p \circ \cdots \circ p$: 6 iterations, 256 unknown variables. S-box layer squares the number of terms. Linear layer triples it. **Impossible**.

Pb. 1: impossible access to a given $\alpha_{u,j}$ expression

Finding $\alpha_{u, j}$ for fixed u and j. Too many combinatorial possibilities to track!

 $v_0v_1 = v_0 \times v_1 = (v_0v_1) \times 1 = (v_0v_1) \times v_0 = (v_0v_1) \times v_1 = (v_0v_1) \times (v_0v_1)$

Pb. 2: Finding exploitable $\alpha_{u,i}$

We need to be able to solve the system!

► Highest-degree terms $(2^{t-1} \text{ at round } t)$ are easier to study. **Strong constraint**: products of two former highest-degree terms. $v_0v_1 = v_0 \times v_1 = (v_0v_1) \times T = (v_0v_1) \times v_0 = (v_0v_1) \times v_1 = (v_0v_1) \times (v_0v_1)$

Practical cube-attack against <u>nonce-misused</u> Ascon

Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

Ascon design rationale

The permutatior

The nonce-misuse scenario

Cube attack principle

Recovery of the polynomial: main problems

Highest-degree terms in theory

Highest-degree terms in practice

Conditional cubes

Choice of the cube: forcing some linear divisors

The internal-state recovery

Conclusion

Strong constraint: products of two former highest-degree terms. $v_0v_1 = v_0 \times v_1 = (v_0v_1) \times T = (v_0v_1) \times v_0 = (v_0v_1) \times v_1 = (v_0v_1) \times (v_0v_1)$

Practical cube-attack against <u>nonce-misused</u> Ascon

Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

- Ascon design rationale
- The permutation
- The nonce-misuse scenario
- Cube attack principle
- Recovery of the polynomial: main problems
- Highest-degree terms in theory
- Highest-degree terms in practice
- Conditional cubes
- Choice of the cube: forcing some linear divisors
- The internal-state recovery
- Conclusion

Strong constraint: products of two former highest-degree terms. $v_0v_1 = v_0 \times v_1 = (v_0v_1) \times T = (v_0v_1) \times v_0 = (v_0v_1) \times v_1 = (v_0v_1) \times (v_0v_1)$

Practical cube-attack against <u>nonce-misused</u> Ascon

Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

- Ascon design rationale
- The permutation
- The nonce-misuse scenaric
- Cube attack principle
- Recovery of the polynomial: main problems
- Highest-degree terms in theory
- Highest-degree terms in practice
- Conditional cubes
- Choice of the cube: forcing some linear divisors
- The internal-state recovery
- Conclusion

Strong constraint: products of two former highest-degree terms. $v_0v_1 = v_0 \times v_1 = (v_0v_4) \times T = (v_0v_4) \times v_0 = (v_0v_4) \times v_1 = (v_0v_4) \times (v_0v_1)$

Practical cube-attack against <u>nonce-misused</u> Ascon

Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

- Ascon design rationale
- The permutation
- The nonce-misuse scenario
- Cube attack principle
- Recovery of the polynomial: main problems
- Highest-degree terms in theory
- Highest-degree terms in practice
- Conditional cubes
- Choice of the cube: forcing some linear divisors
- The internal-state recovery
- Conclusion

Strong constraint: products of two former highest-degree terms. $v_0v_1 = v_0 \times v_1 = (v_0v_1) \times T = (v_0v_1) \times v_0 = (v_0v_1) \times v_1 = (v_0v_1) \times (v_0v_1)$

Practical cube-attack against <u>nonce-misused</u> Ascon

Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

- Ascon design rationale
- The permutation
- The nonce-misuse scenario
- Cube attack principle
- Recovery of the polynomial: main problems
- Highest-degree terms in theory
- Highest-degree terms in practice
- Conditional cubes
- Choice of the cube: forcing some linear divisors
- The internal-state recovery
- Conclusion

Strong constraint: products of two former highest-degree terms. $v_0v_1 = v_0 \times v_1 = (v_0v_1) \times T = (v_0v_1) \times v_0 = (v_0v_1) \times v_1 = (v_0v_1) \times (v_0v_1)$

Practical cube-attack against <u>nonce-misused</u> Ascon

Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

- Ascon design rationale
- The permutation
- The nonce-misuse scenario
- Cube attack principle
- Recovery of the polynomial: main problems
- Highest-degree terms in theory
- Highest-degree terms in practice
- Conditional cubes
- Choice of the cube: forcing some linear divisors
- The internal-state recovery
- Conclusion

Strong constraint: products of two former highest-degree terms.

$$V_0V_1 = V_0 \times V_1 = (V_0V_1) \times T = (V_0V_1) \times V_0 = (V_0V_1) \times V_1 = (V_0V_1) \times (V_0V_1)$$

- Fewer combinatorial choices
- Known structure of α_u : sum of products of former coefficients

Highest-degree terms in practice

Practical cube-attack against <u>nonce-misused</u> Ascon

Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

Ascon design rationale

The permutatior

The nonce-misuse scenario

Cube attack principle

Recovery of the polynomial: main problems

Highest-degree terms in theory

Highest-degree terms in practice

Conditional cubes

Choice of the cube: forcing some linear divisors

The internal-state recovery

Conclusion

For r = 6

- Still costly to recover the polynomial expressions: computations have to be done round after round.

- The polynomials look horrible!

 Need for a cheaper and easier recovery: conditional cubes [HWX⁺17, LDW17]

Conditional cubes

Practical cube-attack against <u>nonce-misused</u> Ascon

Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

Ascon design rationale

The permutation

The nonce-misuse scenario

Cube attack principle

Recovery of the polynomial: main problems

Highest-degree terms in theory

Highest-degree terms in practice

Conditional cubes

Choice of the cube: forcing some linear divisors

The internal-state recovery

Conclusion

- We look for α_u with a simple divisor: β_0 .
- Without the full knowledge of α_u , we can still deduce that: $\alpha_u = 1 \implies \beta_0 = 1.$
- If β_0 is linear, the **system** will be **linear**.

Conditional cubes

Practical cube-attack against <u>nonce-misused</u> Ascon

Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

- Ascon design rationale
- The permutation
- The nonce-misuse scenario
- Cube attack principle
- Recovery of the polynomial: main problems
- Highest-degree terms in theory
- Highest-degree terms in practice

Conditional cubes

- Choice of the cube: forcing some linear divisors
- The internal-state recovery
- Conclusion

- We look for α_u with a simple divisor: β_0 .
- Without the full knowledge of α_u , we can still deduce that: $\alpha_u = 1 \implies \beta_0 = 1.$
- If β_0 is linear, the **system** will be **linear**.

Conditional cubes

Practical cube-attack against <u>nonce-misused</u> Ascon

Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

Ascon design rationale

- The permutation
- The nonce-misuse scenario
- Cube attack principle
- Recovery of the polynomial: main problems
- Highest-degree terms in theory
- Highest-degree terms in practice

Conditional cubes

- Choice of the cube: forcing some linear divisors
- The internal-state recovery
- Conclusion

- We look for α_u with a simple divisor: β_0 .
- Without the full knowledge of α_u , we can still deduce that: $\alpha_u = 1 \implies \beta_0 = 1.$
- If β_0 is linear, the **system** will be **linear**.

Ínría_

Practical cube-attack against <u>nonce-misused</u> Ascon

Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

Ascon design rationale

The permutation

The nonce-misuse scenaric

Cube attack principle

Recovery of the polynomial: main problems

Highest-degree terms in theory

Highest-degree terms in practice

Conditional cubes

Choice of the cube: forcing some linear divisors

The internal-state recovery

Conclusion

Study of the first rounds: Column C_0 after the first S-box layer

- After the second round, the coefficient of any v_0v_i , $i \neq 0$ can be decomposed as: $\beta_0P + 1Q + \gamma_0R + (\beta_0 + 1)S$.

Ínría_

Practical cube-attack against <u>nonce-misused</u> Ascon

Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

- Ascon design rationale
- The permutation
- The nonce-misuse scenario
- Cube attack principle
- Recovery of the polynomial: main problems
- Highest-degree terms in theory
- Highest-degree terms in practice

Conditional cubes

Choice of the cube: forcing some linear divisors

The internal-state recovery

Conclusion

Study of the first rounds: Column C_0 after the first S-box layer

- After the second round, the coefficient of any v_0v_1 , $i \neq 0$ can be decomposed as: $\beta_0P + 1Q + \gamma_0R + (\beta_0 + 1)S$.
- It is possible to **select** the remaining 31 indices *i* such that all coefficients of v_0v_i at round 2 look like **either** β_0P or γ_0R instead.
- This ensures that: $\alpha_{u, j} = \beta_0(...) + \gamma_0(...)$ for all output coordinates after 6 rounds ($j \in [0, 63]$).

Ínría_

Practical cube-attack against <u>nonce-misused</u> Ascon

Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

- Ascon design rationale
- The permutation
- The nonce-misuse scenario
- Cube attack principle
- Recovery of the polynomial: main problems
- Highest-degree terms in theory
- Highest-degree terms in practice

Conditional cubes

Choice of the cube: forcing some linear divisors

The internal-state recovery

Conclusion

Study of the first rounds: Column C_0 after the first S-box layer

- After the second round, the coefficient of any v_0v_1 , $i \neq 0$ can be decomposed as: $\beta_0P + 1Q + \gamma_0R + (\beta_0 + 1)S$.
- It is possible to **select** the remaining 31 indices *i* such that all coefficients of v_0v_i at round 2 look like **either** β_0P or γ_0R instead.
- This ensures that: $\alpha_{u, j} = \beta_0(...) + \gamma_0(...)$ for all output coordinates after 6 rounds ($j \in [0, 63]$).

-
$$(\alpha_{u,0}, \cdots, \alpha_{u,63}) \neq (0, \cdots, 0) \implies \beta_0 = 1 \text{ or } \gamma_0 = 1$$

Ínría_

Practical cube-attack against <u>nonce-misused</u> Ascon

Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

- Ascon design rationale
- The permutation
- The nonce-misuse scenario
- Cube attack principle
- Recovery of the polynomial: main problems
- Highest-degree terms in theory
- Highest-degree terms in practice

Conditional cubes

Choice of the cube: forcing some linear divisors

The internal-state recovery

Conclusion

Study of the first rounds: Column C_0 after the first S-box layer

- After the second round, the coefficient of any v_0v_1 , $i \neq 0$ can be decomposed as: $\beta_0P + 1Q + \gamma_0R + (\beta_0 + 1)S$.
- It is possible to **select** the remaining 31 indices *i* such that all coefficients of v_0v_i at round 2 look like **either** β_0P or γ_0R instead.
- This ensures that: $\alpha_{u, j} = \beta_0(...) + \gamma_0(...)$ for all output coordinates after 6 rounds ($j \in [0, 63]$).
- $(\alpha_{u,0},\cdots,\alpha_{u,63}) \neq (0,\cdots,0) \implies \beta_0 = 1 \text{ or } \gamma_0 = 1$
- In practice, reciprocal also true! $\forall j, \alpha_{u,j} = 0 \implies \beta_0 = 0$ and $\gamma_0 = 0$

The internal-state recovery

Practical cube-attack against nonce-misused Ascon

Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

Ascon design rationale

The permutation

The nonce-misuse scenario

Cube attack principle

Recovery of the polynomial: main problems

Highest-degree terms in theory

Highest-degree terms in practice

Conditional cubes

Choice of the cube: forcing some linear divisors

The internal-state recovery

Conclusion

First step, non-adaptative: 32-degree conditional cubes Recovery of all the bits $c_i + d_i + 1$, and about 32/64 a_i .

The internal-state recovery

Practical cube-attack against <u>nonce-misused</u> Ascon

Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

Ascon design rationale

- The permutation
- The nonce-misuse scenario
- Cube attack principle
- Recovery of the polynomial: main problems
- Highest-degree terms in theory
- Highest-degree terms in practice
- Conditional cubes

Choice of the cube: forcing some linear divisors

The internal-state recovery

Conclusion

First step, non-adaptative: 32-degree conditional cubes Recovery of all the bits $c_i + d_i + 1$, and about 32/64 a_i .

Second step, adaptative: 32-degree cubes

- 32-degree coefficients depend only on $c_i + d_i + 1$ and a_i .
- Inputting the recovered values **drastically simplifies** the expressions of some coefficients, and thus the computations.
- Simple-enough expressions to be effectively-solved.
- Recovery of the remaining a_i .

The internal-state recovery

Practical cube-attack against <u>nonce-misused</u> Ascon

Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

Ascon design rationale

- The permutation
- The nonce-misuse scenario
- Cube attack principle
- Recovery of the polynomial: main problems
- Highest-degree terms in theory
- Highest-degree terms in practice
- Conditional cubes

Choice of the cube: forcing some linear divisors

The internal-state recovery

Conclusion

First step, non-adaptative: 32-degree conditional cubes Recovery of all the bits $c_i + d_i + 1$, and about 32/64 a_i .

Second step, adaptative: 32-degree cubes

- 32-degree coefficients depend only on $c_i + d_i + 1$ and a_i .
- Inputting the recovered values **drastically simplifies** the expressions of some coefficients, and thus the computations.
- Simple-enough expressions to be effectively-solved.
- \triangleright Recovery of the remaining a_i .

Third step, adaptative: 31-degree cubes

- Cubes of lower size are needed to recover b_i and c_i .
- Same principle as second step
- $\blacktriangleright \text{ Recovery of all } b_i \text{ and } c_i.$

Conclusion

Practical cube-attack against <u>nonce-misused</u> Ascon

Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

Ascon design rationale

- The permutation
- The nonce-misuse scenario
- Cube attack principle
- Recovery of the polynomial: main problems
- Highest-degree terms in theory
- Highest-degree terms in practice
- Conditional cubes
- Choice of the cube: forcing some linear divisors

The internal-state recovery

Conclusion

- Full-state recovery on the full 6-round encryption: 2⁴⁰ online time and data.
- Harder to study the complexity of the adaptative offline choices. The attack is however **effective**.
- Does not threaten Ascon directly.
- Good reminder that a nonce is not a constant!

Main questions/openings

- Misused-ciphers studies: academically interesting, is it "real-life" interesting ?
- Changing the input wire during encryption: a possible free counter-measure ?

Conclusion

Practical cube-attack against <u>nonce-misused</u> Ascon

Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

Ascon design rationale

- The permutation
- The nonce-misuse scenario
- Cube attack principle
- Recovery of the polynomial: main problems
- Highest-degree terms in theory
- Highest-degree terms in practice
- Conditional cubes
- Choice of the cube: forcing some linear divisors

The internal-state recovery

Conclusion

- Full-state recovery on the full 6-round encryption: 2⁴⁰ online time and data.
- Harder to study the complexity of the adaptative offline choices. The attack is however **effective**.
- Does not threaten Ascon directly.
- Good reminder that a nonce is not a constant!

Main questions/openings

- Misused-ciphers studies: academically interesting, is it "real-life" interesting ?
- Changing the input wire during encryption: a possible free counter-measure ?

Thank you for your attention!

The whole Ascon AEAD mode

Practical cube-attack against nonce-misused Ascon

Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

The whole Ascon AEAD mode

Justifying the "in practice" reciprocal More details on the last two steps Bibliography

[DEMS, Jea16]

Justifying the "in practice" reciprocal

Practical cube-attack against <u>nonce-misused</u> Ascon

Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

The whole Ascon AEAD mode Justifying the "in practice" reciprocal More details on the last two steps $\alpha_{u, j} = (a_0 + 1)p_{j, 1} + (c_0 + d_0 + 1)p_{j, 2} \forall j \in [[0, \cdots, 63]].$

When $(a_0 + 1, c_0 + d_0 + 1) \neq (0, 0)$, $\alpha_{u, j}$ are not expected to be **all** canceled at the same time.

Whenever we observe that $\alpha_{u, j} = 0 \forall j$, we guess that $(a_0, c_0 + d_0) = (1, 1)$.

More details on the last two steps

Practical cube-attack against <u>nonce-misused</u> Ascon

Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

The whole Ascon AEAD mode Justifying the "in practice" reciproca More details on the last two steps Second step, adaptative: 32-degree cubes

- 32-degree coefficients depend only on $c_i + d_i + 1$ and a_i .
- After step 1, all the $c_i + d_i + 1$ are recovered and about half of the a_i as well.
- We choose our 32 indices *i* in order to **minimize the number of unknowns**.
- Each α_u is a sum of products, each product being of the form: $\prod_{i,u_i=1} \ell_i$ where

 $\ell_l \in \{a_l, 1, c_l + d_l + 1, a_l + 1\}$. Such a product is very often equal to 0 !

- Minimizing the number of unknowns = Minimizing the degree and the density of the expressions.
- Simple-enough expressions to be **effectively-computed** round after round, then **effectively-solved** (over-determined, small degree, sparse systems).

More details on the last two steps

Practical cube-attack against <u>nonce-misused</u> Ascon

Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

The whole Ascon AEAD mode Justifying the "in practice" reciproca More details on the last two steps Third step, adaptative: **31-degree cubes**: wt(u) = 31

Each α_{u} is a sum of products. Each product is either:

- the product of 32 coefficients of degree-1 terms after S_1 , or
- the product of one constant term and 31 coefficients of degree-1 terms.

Each coefficient of degree-1 term is known (because all $c_l + d_l + 1$ and all a_l are known).

So α_{ij} can be expressed as a sum of constant terms, that is, a quadratic polynomial in the remaining unknowns b_{l}, c_{l} . $(d_{l} = c_{l} + 1 + \varepsilon_{l}$ with known $\varepsilon_{l})$

Again, the computations and the solving of the systems are practical.

Bibliography

Practical cube-attack against <u>nonce-misused</u> Ascon

Jules Baudrin, Anne Canteaut & Léo Perrin (Inria, Paris, France)

The whole Ascon AEAD mode Justifying the "in practice" reciproca More details on the last two steps

Bibliography

Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Cryptographic sponge functions, 2011. https://keccak.team/sponge_duplex.html.

Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.

Ascon TikZ figures.

https://ascon.iaik.tugraz.at/resources.html.

Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.

Ascon v1.2.

Technical report, National Institute of Standards and Technology, 2019. https://csrc.nist.gov/Projects/lightweight-cryptography/finalists.

Senyang Huang, Xiaoyun Wang, Guangwu Xu, Meiqin Wang, and Jingyuan Zhao.

Conditional cube attack on reduced-round Keccak sponge function.

In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, *EUROCRYPT 2017, Part II*, volume 10211 of *LNCS*, pages 259–288, Paris, France, April 30 – May 4, 2017. Springer, Heidelberg, Germany.

TikZ for Cryptographers.

https://www.iacr.org/authors/tikz/,2016.

Zheng Li, Xiaoyang Dong, and Xiaoyun Wang. Conditional cube attack on round-reduced ASCON. IACR Trans. Symm. Cryptol., 2017(1):175–202, 2017.