Probabilistic Hash-and-Sign with Retry in the Quantum Random Oracle Model

Haruhisa Kosuge ¹ Keita Xagawa ²

¹Japan Ministry of Defense

²NTT Social Informatics Laboratories

November 30, 2022

Background

NIST PQC Standardization for Digital Signature

- In new call for signatures, NIST is interested in schemes not based on structured lattices.
 - Multivariate quadratic-based (MQ-based)
 - Code-based
 - · Isogeny-based
 - Hash-based/Symmetric-based
- Hash-and-sign is adopted in many past/future candidates.

Post-quantum signatures with NIST security level I and more

	MQ	Code	Isogeny	Hash/Symmetric
Hash-and-sign	UOV, Rainbow, GeMSS, QR-UOV, Mayo	CFS, Wave	-	-
Fiat-shamir	MQDSS	LESS-FM, Durandal	CSI-FISH, SQISign	Picnic
Other	_	_	_	SPHINCS+

Without provable security of hash-and-sign, some candidates are not ready for standardization.

Probabilistic Hash-and-sign with Retry

Key generation

F: hard-to-invert function=verification key

$$(F,I) \leftarrow Gen(1^{\lambda})$$
 I: trapdoor of F=secret key $\rightarrow I(F(x)) = x$

Signature generation

Variations of Hash-and-sign.

- Deterministic : *r* is null.
- Probabilistic : *r* is randomly chosen.
- Probabilistic with retry: retries r until obtaining x.
 (F is not surjective.)

Signature verification

Probabilistic hash-and-sign with retry has the largest coverage.

Security Definition

EUF-CMA

$$\epsilon_{\rm cma} = \Pr \left[\mathsf{Vrfy}(m^*, \sigma^*) = \top \right]$$
 (EUF-NMA: no signing query)

Non-invertibility (INV)

$$\epsilon_{\text{inv}} = \Pr \left[\mathsf{F}(x^*) = y \right]$$

(One-wayness: $y = \mathsf{F}(x)$ for $x \leftarrow_{\$} \mathcal{X}$)

INV⇒EUF-CMA (or CR⇒EUF-CMA)

(CR: Collision Resistance)

(Quantum) Random Oracle Model

- INV ⇒ EUF-CMA or CR ⇒ EUF-CMA is proven in (Q)ROM.
- · QROM models adversary implementing hash function in quantum computer.

- → For PQC, provable security in QROM is necessary.
- Secure signature in ROM is not always secure in QROM [YZ22].

Security of Hash-and-sign in QROM

Secure in ROM \Rightarrow Secure in QROM? Not yet known \cong

Review on provable security of hash-and-sign signatures

Schemes	Paradigm	Assumtion	Reduction (ROM)	Reduction (QROM)
Falcon, ModFalcon, Mitaka	deterministic	collision-resistance	tight [GPVo8]	tight [BDH+13]
Wave	probabilistic	non-invertibility	poly loss [CD20]	-
UOV, Rainbow, GeMSS, QR-UOV, Mayo, CFS	probabilistic with retry	non-invertibility	poly loss [SSH11][Beu21][Dal07]	-

[GPVo8] Gentry, Peikert, Vaikuntanathan (STOC2008)

[BDH+13] Boneh, Dagdelen, Fischlin, Lehmann, Schaffner, Zandry (ASIACRYPT2011)

[CD20] Chailloux, Debris-Alazard (PKC 2020)

[SSH11] Sakumoto, Shirai, Hiwatari (PQCRYPTO2011)

[Beu21] Beullens (SAC2021)

[Dalo7] Dallot (WEWoRC 2007)

Existing Proofs for Hash-and-sign

Preimage Sampleable Function (PSF) [GPVo8]

- Trapdoor function that x is simulatable without trapdoor in (Q)ROM.
- With domain sampling function SampDom(F), PSF satisfies:
 - 1. F(x) is uniform over \mathcal{Y} for $x \leftarrow \text{SampDom}(F)$.
 - 2. $x \leftarrow I(y)$ and $x \leftarrow SampDom(F)$ follow the same dist.
 - 3. F is surjective.
- PSF is hard to build in MQ-based and code-based crypto.
 - \rightarrow probabilistic hash-and-sign with retry

Existing Proofs of EUF-CMA in QROM

	Work	Assumption	PSF?	Bound
-	[BDH+13]	CR	PSF	$O(\epsilon_{ m cr})$
	[Zha12]	INV	PSF	$O(q^2\sqrt{\epsilon_{inv}})$
	Ext. of [YZ21]	INV	PSF	$O(q^4\epsilon_{inv})$
	[CD20]	EUF-NMA	non-PSF	$O(\epsilon_{nma})$

No INV ⇒ EUF-CMA not assuming PSF →Probabilistic hash-and-sign with retry is not covered. (hash-and-sign not assuming PSF is not covered)

[Zha12] Zhandry (ePrint Archive, 2012/076)

[YZ21] Yamakawa, Zhandry (EUROCRYPT2021)

[CD20] Chailloux, Debris-Alazard (PKC 2020)

[[]BDH+13] Boneh, Dagdelen, Fischlin, Lehmann, Schaffner, Zandry (ASIACRYPT2011)

Q: INV ⇒ EUF-CMA for probabilistic hash-and-sign with retry can be proven in QROM?

Yes! 6, with poly loss.

New Security Proof

Overview of New Security Proof

EUF-NMA⇒EUF-CMA

$$\epsilon_{\rm cma} \leq \epsilon_{\rm nma} + \epsilon_{\rm ps} + 3q'_{\rm sign} \sqrt{\frac{q'_{\rm sign} + q_{\rm qro} + 1}{|\mathcal{R}|}}$$
(tight adaptive reprogramming technique [GHHM21].)

INV⇒EUF-NMA

$$\epsilon_{
m nma} \leq (2q_{
m qro}+1)^2 \epsilon_{
m inv}$$
 (measure-and-reprogram technique [DFM20])

INV⇒EUF-CMA

$$\begin{split} \epsilon_{\mathsf{cma}} & \leq (2q_{\mathsf{qro}} + 1)^2 \epsilon_{\mathsf{inv}} + \epsilon_{\mathsf{ps}} + 3q'_{\mathsf{sign}} \sqrt{\frac{q'_{\mathsf{sign}} + q_{\mathsf{qro}} + 1}{|\mathcal{R}|}} \\ & \to \mathsf{tighter} \; \mathsf{than} \; \mathsf{existing} \; \mathsf{proofs} \; [\mathsf{Zha12}, \mathsf{YZ21}]. \end{split}$$

 $q_{\rm qro}$: # quantum random oracle queries.

 q'_{sign} : # trapdoor computations.

 $\epsilon_{\rm ps}$: distinguishing advantage of honestly-generated and simulated preimages.

→ PSF is not necessary.

 \mathcal{R} : space for r.

[GHHM21] Grilo, Hövelmanns, Hülsing, Majenz (ASIACRYPT2021) [DFM20] Don, Fehr, Majenz (CRYPT02020) [Zha12] Zhandry (ePrint Archive, 2012/076) [YZ21] Yamanaka, Zhandry (EUROCRYPT02021)

$EUF-NMA \Rightarrow EUF-CMA$

Signature Simulation by Reprogramming

- Tight adaptive reprogramming technique [GHHM21] enables reprogramming of H'.
- Distinguishing advantage $\epsilon_{\rm ps}$ of the following should be negligible.
 - 1. $x \leftarrow I(y)$ for $y \leftarrow_{\$} \mathcal{Y}$ after retries on y.
 - 2. $x \leftarrow \text{SampDom}(F)$.
- PSF is not necessary.
 - \rightarrow Probabilistic hash-and-sign with retry

[GHHM21] Grilo, Hövelmanns, Hülsing, Majenz (ASIACRYPT2021)

$INV \Rightarrow EUF-NMA$

Inversion by Measure and Reprogram

- Measure-and-reprogram technique [DFM20] enables reprogramming $H(r_i, m_i) := y$ for measured (r_i, m_i) .
- \mathcal{A}_{inv} obtains a preimage of y with $(2q_{\text{qro}} + 1)^2 \epsilon_{\text{nma}}$.

[DFM20] Don, Fehr, Majenz (CRYPTO2020)

Applications

Applications of New Security Proof

Scheme	Paradigm	Assumption	Primitive	Reduction (ROM)	Reduction (QROM)
Falcon		collision-resistance	lattice	tight [GPVo8]	tight [BDH+13]
ModFalcon	deterministic				
Mitaka					
Wave	probabilistic	non-invertibility	code	poly loss [CD20]	poly loss
UOV	probabilistic with retry	non-invertibility		MQ poly loss [SSH11]	poly loss
Rainbow					poly loss
QR-UOV			MQ		poly loss
GeMSS					poly loss
Mayo				poly loss [Beu21]	poly loss
CFS			code	poly loss [Dalo7]	poly loss

Same assumptions both in ROM and QROM.

Summary

New Security Proof for Hash-and-sign

Proved INV ⇒ EUF-CMA for probabilistic hash-and-sign with retry.

Applications to MQ-based and Code-based Schemes

Proved INV ⇒ EUF-CMA for existing MQ-based/code-based signatures.

Extension to Multi-key Security

Proved M-INV \Rightarrow M-EUF-CMA (M stands for Multi).