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Outline

» Limitations of encodings for white-box implementations
» Presentation of our encoding solution that avoids these limitations
» Review of the white-box encodability of the NIST LWC finalists

» Presentation of our solution applied to GIFT
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Limitations of encodings for
white-box implementations
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Quick overview of white-box cryptography

» A white-box adversary has full access to a software implementation
and its execution platform and wants to extract key information

» A method first proposed by Chow et al. to protect a constant key is to
tabularize the operations with encodings
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We cannot always encode all the
output bits together
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In order to recover
the bit a from this 4-
bit encoding, we need

all its output bits.
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Small encoding are weak to brute-force

and dif

‘erential attacks

» Brute-force attack : If we extend the previous
example, an attacker has 229 possibilities

» Differential attack: If out, or out, have been
modified, an attacker knows that only the first
two output bits of the Sbox has been modified
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Presentation of our encoding solution
that avoids these limitations
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Our solution resolves these weaknesses

» Our solution involves random bits, that - --}FF+4--44HH----
are represented in dashed lines
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Our solution is resistant to brute-force

and differential attacks

» In this example, there exists
5
((29)!1)” x 22 = 2223 possible Thoxes

» Modifying any input bit will have an
overall impact on the output bits
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Review of the encodability of the LWC finalists
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The key must be spread throughout
the algorithm

» The dispersion of the key throughout an algorithm forces a white-box
attacker to study more parts of it

» The disclosure of the state allows an attacker to compute all following
operations that are not key-dependant

» For these reasons, we eliminated the following algorithms:

* |sap * Photon-Beetle e Xoodyak
* Ascon * Sparkle * Grain128-AEAD
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Some algorithms are duplicating some
state bits during computation
| [

4-bit
» If we encode an output being used opera:cion
more than once, it will imply that its 1
corresponding decoding will be

applied multiple times ///

» This can give complementary 4-bit 4-bit
information on this decoding operation operstion
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To avoid that, we can merge the operations
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Merging operations is very heavy

» If a round operation needs to be merged, the
state size will increase exponentially with the
number of rounds.

» S0, we want to avoid algorithms that are
dependent on merging
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TinyJambu needs to merge operations

» The 128-bit state of TinyJambu is regarded as a 128-bit LFSR

» Each state bit can be used 5 times, so we need to merge the
operations to avoid re-using the same encoding

» Because the LFSR is clocked up to 1024 times, merging operation
would be too heavy
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Romulus uses a too large XOR

~ Romulus uses Skinny, » Therefore, we need to split the output
that has 8-bit Sboxes, of the Sboxes onto two 4-bit groups, to
followed by 8-bit XORs. __ have a following 8-bit input XOR

» It would be too heavy to » To avoid encoding duplication, we
encode the XOR, as it has need to merge round operations,
a 16-bit input B which is too heavy
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There are restrictions for an Elephant
white-box implementation

» Elephant uses a function mask,‘}’b which ] We must restrict
extends the key K, depending on block message and
indexes of the message and associated data — associated data length
» We want to precompute it to reduce the in order to perform
key manipulation B the precomputation

» However, if Elephant uses Spongent-mr (and not Keccak), our solution can
be applied in the same fashion as GIFT
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Presentation of our solution applied to GIFT
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Overview of GIFT-128
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An encoded GIFT Sbox with our solution
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Comparison between our light white-box
version of GIFT and a regular implementation

Nature of the tests GIFTEmbedded| GIFTEncoded
Execution time (4000 runs) 15.34 ms 94.68 ms
Size of binary 132.2 kB 1.2 MB

On an 11% gen Intel Core i7-1185G7, using gcc
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Thank you for our attention !

Questions ?

Nm Alex Charles:  alex.charles205@gmail.com

KUDELSKI Chloé Gravouil: chloe.gravouil@nagra.com
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