
Review of the White-Box Encodability of
NIST Lightweight Finalists

Alex Charlès1 and Chloé Gravouil2

1. Université de Rennes 1
2. EDSI - KUDELSKI Group

NIST Lightweight Cryptography Workshop 2022

Outline

Limitations of encodings for white-box implementations

Presentation of our encoding solution that avoids these limitations

Review of the white-box encodability of the NIST LWC finalists

Presentation of our solution applied to GIFT

2

Limitations of encodings for
white-box implementations

3

Quick overview of white-box cryptography

A white-box adversary has full access to a software implementation
and its execution platform and wants to extract key information

A method first proposed by Chow et al. to protect a constant key is to
tabularize the operations with encodings

4

Protecting key bits XORed with encoding

4-bit
Sbox

4-bit
Sbox

4-bit
decoding

4-bit
encoding

4-bit
Sbox

4-bit
decoding

4-bit
encoding

4-bit
encoded

lookup table

2 bits of the key being XORed

5

We cannot always encode all the
output bits together

6

4-bit
Sbox

4-bit
Sbox

4-bit
Sbox

In order to recover
the bit 𝑎 from this 4-

bit encoding, we need
all its output bits.

4-bit
encoding

𝑎 𝑏 𝑐 𝑑

4-bit
Sbox

4-bit
Sbox

4-bit
Sbox

Enc Enc

DecDec

Small encoding are weak to brute-force
and differential attacks

Brute-force attack : If we extend the previous
example, an attacker has 220 possibilities

Differential attack: If 𝑜𝑢𝑡1 or 𝑜𝑢𝑡2 have been
modified, an attacker knows that only the first
two output bits of the Sbox has been modified

7

Known
Sbox

Enc Enc

Dec

ⅈ𝑛1 ⅈ𝑛2

Dec

ⅈ𝑛3 ⅈ𝑛4

𝑜𝑢𝑡1 𝑜𝑢𝑡2 𝑜𝑢𝑡3𝑜𝑢𝑡4

Presentation of our encoding solution
that avoids these limitations

8

Our solution resolves these weaknesses

Our solution involves random bits, that
are represented in dashed lines

These bits are used to encode the
output

They are updated with an arbitrary-
chosen intern lookup table

The resulting encoded table is called a
Tbox

9

Known
Sbox

decoding

Intern
Lookup
Table

decoding

encodingencoding

Our solution is resistant to brute-force
and differential attacks

In this example, there exists

24 !
5
× 22 ≈ 2223 possible Tboxes

Modifying any input bit will have an
overall impact on the output bits

10

Known
Sbox

decoding

Intern
Lookup
Table

decoding

encodingencoding

Modified bit

Review of the encodability of the LWC finalists

11

The key must be spread throughout
the algorithm

The dispersion of the key throughout an algorithm forces a white-box
attacker to study more parts of it

The disclosure of the state allows an attacker to compute all following
operations that are not key-dependant

For these reasons, we eliminated the following algorithms:

12

• Isap

• Ascon

• Photon-Beetle

• Sparkle

• Xoodyak

• Grain128-AEAD

Some algorithms are duplicating some
state bits during computation

If we encode an output being used
more than once, it will imply that its
corresponding decoding will be
applied multiple times

This can give complementary
information on this decoding

13

4-bit
operation

1

4-bit
operation

3

4-bit
operation

2

Some algorithms are duplicating some
state bits during computation

If we encode an output being used
more than once, it will imply that its
corresponding decoding will be
applied multiple times

This can give complementary
information on this decoding

14

4-bit
operation

2

decoding 2

4-bit
operation

3

decoding 2

encoding 2

decoding 1

4-bit
operation

1

To avoid that, we can merge the operations

15

4-bit
operation

1

4-bit
operation

3

4-bit
operation

2

4-bit
operation

1

4-bit
operation

2

4-bit
operation

1

4-bit
operation

3

4-bit
operation

1

4-bit
operation

2

4-bit
operation

1

4-bit
operation

3

decoding 1 decoding 1

encoding 2

decoding 2

encoding 2

decoding 2

Merging operations is very heavy

If a round operation needs to be merged, the
state size will increase exponentially with the
number of rounds.

So, we want to avoid algorithms that are
dependent on merging

16

4-bit
operation

1

4-bit
operation

2

4-bit
operation

1

4-bit
operation

3

decoding 1 decoding 1

TinyJambu needs to merge operations

The 128-bit state of TinyJambu is regarded as a 128-bit LFSR

Each state bit can be used 5 times, so we need to merge the
operations to avoid re-using the same encoding

Because the LFSR is clocked up to 1024 times, merging operation
would be too heavy

17

Romulus uses a too large XOR

Romulus uses Skinny,
that has 8-bit Sboxes,
followed by 8-bit XORs.

It would be too heavy to
encode the XOR, as it has
a 16-bit input

18

Therefore, we need to split the output
of the Sboxes onto two 4-bit groups, to
have a following 8-bit input XOR

To avoid encoding duplication, we
need to merge round operations,
which is too heavy

There are restrictions for an Elephant
white-box implementation

Elephant uses a function 𝑚𝑎𝑠𝑘𝐾
𝑎,𝑏 which

extends the key 𝐾, depending on block
indexes of the message and associated data

We want to precompute it to reduce the
key manipulation

19

We must restrict
message and
associated data length
in order to perform
the precomputation

However, if Elephant uses Spongent-𝜋 (and not Keccak), our solution can
be applied in the same fashion as GIFT

Presentation of our solution applied to GIFT

20

Overview of GIFT-128

21

2 rounds of GIFT128, taken from GIFT-COFB specification

An encoded GIFT Sbox with our solution

Has 375 bits of security

Weighs 1.28 KB

We can also use only one pseudo-
random bit per encoding, for 80
bits of security, and a weight of
2048 bits

22

GIFT
Sbox

Intern
Lookup
Table

decoding decoding decdec

encoding encoding encenc

Comparison between our light white-box
version of GIFT and a regular implementation

23

On an 11th gen Intel Core i7-1185G7, using gcc

Thank you for our attention !

Questions ?

24

Alex Charles: alex.charles205@gmail.com
Chloé Gravouil: chloe.gravouil@nagra.com

