Review of the White-Box Encodability of
NIST Lightweight Finalists

Alex Charles! and Chloé Gravouil?

1. Université de Rennes 1
2. EDSI - KUDELSKI Group

NIST Lightweight Cryptography Workshop 2022

RENNEST KUubpELsSKI

Outline

» Limitations of encodings for white-box implementations
» Presentation of our encoding solution that avoids these limitations
» Review of the white-box encodability of the NIST LWC finalists

» Presentation of our solution applied to GIFT

UNIVERSITE DE%

RENNES 1

KUDELSKI

Limitations of encodings for
white-box implementations

UNIVERSITE DE%

RENNES 1

KUDELSKI

Quick overview of white-box cryptography

» A white-box adversary has full access to a software implementation
and its execution platform and wants to extract key information

» A method first proposed by Chow et al. to protect a constant key is to
tabularize the operations with encodings

UNIVERSITE DE%

RENNES 1

KUDELSKI

4-bit
decoding

4-bit
Sbox

2 bits of the key being XORed

'§SNAGRA

KUDELSKI

UNIVERSITE D

RENN

4-bit
Sbox

D P

4-bit
encoding

R

FEF

4-bit
decoding

4-bit
Sbox

P P

4-bit
encoding

J91F-

Protecting key bits XORed with encoding

SEENN G

4-bit
encoded

I lookup table |

nilis

We cannot always encode all the
output bits together

4-bit
Sbox

€

D €

J

4-bit
Sbox

UNIVERSITE DE%

RENNES 1

4-bit
Sbox

K33

KUDELSKI

a b c d
| 1 [|
4-bit
encoding

In order to recover
the bit a from this 4-
bit encoding, we need

all its output bits.

4-bit
Sbox

Enc Enc

—

I

Dec

4-bit
Sbox

11

Dec

4-bit
Sbox

11

Small encoding are weak to brute-force

and dif

‘erential attacks

» Brute-force attack : If we extend the previous
example, an attacker has 229 possibilities

» Differential attack: If out, or out, have been
modified, an attacker knows that only the first
two output bits of the Sbox has been modified

UNIVERSITE DE%

RENNES 1

KUDELSKI

in1 i”l’lz in3 1n4
I__L_‘} i _;_—__II
I Dec Dec I
| L 11 | l
I I
. Known I
l
: Sbox !
I l
I D P 1
| Enc Enc I
___:I.___l___l
0ut1 Outz Out3 Out4

Presentation of our encoding solution
that avoids these limitations

UNIVERSITE DE%

RENNES 1

KUDELSKI

Our solution resolves these weaknesses

» Our solution involves random bits, that - --}FF+4--44HH----
are represented in dashed lines

decoding decoding
|

» These bits are used to encode the

l
I l
I l
I I
| I
output | P Intern |
l
» They are updated with an arbitrary- | Shox Lookup |
chosen intern lookup table | I IE1S :
. A |
: : | rr- 1 |
» The resulting encoded table is calleda | ootz | encedine !
I
Thox O

UNIVERSITE DE & “m
RENNES“ KUDELSK|I

Our solution is resistant to brute-force

and differential attacks

» In this example, there exists
5
((29)!1)” x 22 = 2223 possible Thoxes

» Modifying any input bit will have an
overall impact on the output bits

UNIVERSITE DE%

RENNES 1

KUDELSKI

Modified bit

/

decoding

decoding
| |

Intern
Lookup

Table

F——————————— - —— =

encoding

encoding

- TEE---

M TECTEEE SELS

Review of the encodability of the LWC finalists

KUDELSKI

UNIVERSITE DE &

RENNES 1

11

The key must be spread throughout
the algorithm

» The dispersion of the key throughout an algorithm forces a white-box
attacker to study more parts of it

» The disclosure of the state allows an attacker to compute all following
operations that are not key-dependant

» For these reasons, we eliminated the following algorithms:

* |sap * Photon-Beetle e Xoodyak
* Ascon * Sparkle * Grain128-AEAD

UNIVERSITE DE%

RENNES 1

KUDELSKI

Some algorithms are duplicating some
state bits during computation
| [

4-bit
» If we encode an output being used opera:cion
more than once, it will imply that its 1
corresponding decoding will be

applied multiple times ///

» This can give complementary 4-bit 4-bit
information on this decoding operation operstion

UNIVERSITE DE%

RENNES 1

KUDELSKI

Some algorithms are duplicating some

state bits during computation D1

decoding 1
1 1 1

» If we encode an output being used 4-bit
operation

more than once, it will imply that its .
corresponding decoding will be 1T
applied multiple times encoding 2

» This can give complementary ///

information on this decoding decoding 2 decoding 2
4-bit 4-bit
operation operation
2

3
umvmsném% | | | | | | |

RENNES 1

KUDELSKI

14

To avoid that, we can merge the operations

4-bit
operation
1

4-bit
operation
2

74

decoding 1

decoding 1

4-bit
operation
1

4-bit
operation
1

4-bit
operation
1

4-bit
operation
1

4-bit
operation
3

4-bit
operation
2

4-bit
operation
3

engoding 2

encoding 2

decodin

decodin

KUDELSKI

4-bit
operation

4-bit
operation

15

Merging operations is very heavy

» If a round operation needs to be merged, the
state size will increase exponentially with the
number of rounds.

» S0, we want to avoid algorithms that are
dependent on merging

UNIVERSITE DE%

RENNES 1

KUDELSKI

74

decoding 1

decoding 1

4-bit
operation
1

4-bit
operation
1

4-bit
operation

4-bit
operation

2
|11

3
1]

16

TinyJambu needs to merge operations

» The 128-bit state of TinyJambu is regarded as a 128-bit LFSR

» Each state bit can be used 5 times, so we need to merge the
operations to avoid re-using the same encoding

» Because the LFSR is clocked up to 1024 times, merging operation
would be too heavy

UNIVERSITE DE%

RENNES 1

KUDELSKI

Romulus uses a too large XOR

~ Romulus uses Skinny, » Therefore, we need to split the output
that has 8-bit Sboxes, of the Sboxes onto two 4-bit groups, to
followed by 8-bit XORs. __ have a following 8-bit input XOR

» It would be too heavy to » To avoid encoding duplication, we
encode the XOR, as it has need to merge round operations,
a 16-bit input B which is too heavy

UNIVERSITE DE%

RENNES 1

KUDELSKI

There are restrictions for an Elephant
white-box implementation

» Elephant uses a function mask,‘}’b which] We must restrict
extends the key K, depending on block message and
indexes of the message and associated data — associated data length
» We want to precompute it to reduce the in order to perform
key manipulation B the precomputation

» However, if Elephant uses Spongent-mr (and not Keccak), our solution can
be applied in the same fashion as GIFT

UNIVERSITE DE & Nm
RENNES“ KUDELSK.]I

Presentation of our solution applied to GIFT

UNIVERSITE DE%

RENNES 1

KUDELSKI

20

21

Overview of GIFT-128

&

NEANNEANERRRRRRRNNN

28 24 x

az

iig i1z 10& 104 1] a6 il a8 84 Y T T [Gd G0 56 52 48 44 40 3G

iz20

13

|GS GS || GS || GS

o
a7 3
= o« ‘1 ’/..s 2
B, :
T =1 o QW ..@«& *
7 e
— = *‘»’z‘ddmw G
— — AR S
SOV
o - »;XJ v b_,&\..
=k 8 Mﬂ A
—H o B ’
-1© SR
B —y
12 - ,v_
=k 2 HN
e =
38 3 R
< SNV LI
- 0 0 ?ﬁ;.év@.@%’/&%.g&
93 3 s \.&v ___ﬁaf“mw_ ! -
1°] = Ui %&/// o
1% © a
=k 2 >
- = ¢
»
—© & w
< = LU
= >0

An encoded GIFT Sbox with our solution

-] || — == —-—} -
» Has 375 blts Of secu nty dec decoding decoding dec
I 1 1 I
. \\\ \\\\ N //
» Weighs 1.28 KB) ~\%
N N \ 4
Ty vt

Intern

random bit per encoding, for 80
bits of security, and a weight of
2048 bits

l
l
l
l
l
l
l
l
» We can also use only one pseudo- |
I
l
l
l
l
l
l
|

enc encoding encoding enc

ST - T TFF--FFF--FF-

UNIVERSITE DE%

RENNES 1

KUDELSKI

Comparison between our light white-box
version of GIFT and a regular implementation

Nature of the tests GIFTEmbedded| GIFTEncoded
Execution time (4000 runs) 15.34 ms 94.68 ms
Size of binary 132.2 kB 1.2 MB

On an 11% gen Intel Core i7-1185G7, using gcc

UNIVERSITE DE%

RENNES 1

KUDELSKI

23

UNIVERSITE DE%

RENNES 1

Thank you for our attention !

Questions ?

Nm Alex Charles: alex.charles205@gmail.com

KUDELSKI Chloé Gravouil: chloe.gravouil@nagra.com

24

