Revisiting Higher-Order Differential(-Linear) Attacks from an Algebraic Perspective Applications to ASCON

Kai Hu and Thomas Peyrin

SPMS, Nanyang Technological University, Singapore

Virtual NIST Lightweight Cryptography Workshop May 10, 2022

Results in This Work

Introduction to HD/HDL

Algebraic Perspective on HD/HDL

HD Cryptanalysis on ASCON Permutation

HDL Cryptanalysis on ASCON Initialization and Encryption

Practical HDL Distinguishers Based on Cube Testers

Results in This Work

Introduction to HD/HDL

Algebraic Perspective on HD/HDL

HD Cryptanalysis on ASCON Permutation

HDL Cryptanalysis on ASCON Initialization and Encryption

Practical HDL Distinguishers Based on Cube Testers

Results in This Work for ASCON

Permutation (black-box model) Initialization AEncryption (Nonce-Misuse Scenario)

Type	Round	Data (log)	Time (log)	Method	Reference
	4	3	3	HD 🔴	Ours
Distinguisher		2	2	HDL 🔺 🗖	Ours
	5	13	13	HDL	Ours
		6	6	$_{ m HD}$ $ightarrow$	Ours
	6	12	12	HD 🔴	Ours
		7	7	Zero-Sum 🔷	Ours
	7	23	23	HD 🔴	Ours
	8	46	46	HD 🔴	Ours
		13	13	Zero-Sum 🔷	Ours
	11	48	48	Zero-Sum 🔷	Ours
	12	55	55	Zero-Sum 🔷	Ours
Kar Dagaran	5	23	23	Cond. HDL	Ours
Key-Recovery	6	74	74	Cond. HDL	Ours
					<u> </u>

Results in This Work

Introduction to HD/HDL

Algebraic Perspective on HD/HDL

HD Cryptanalysis on ASCON Permutation

HDL Cryptanalysis on ASCON Initialization and Encryption

Practical HDL Distinguishers Based on Cube Testers

Higher-Order Differential-Linear Analysis

- ▶ Higher-Order differential (HD) was Proposed by Lai in 1994
 - Given *l* linearly independent values $\Delta_I = (\Delta_0, \Delta_1, \dots, \Delta_{l-1})$, the *l*-th order HD of *E* is

$$p = \Pr\left[\bigoplus_{x \in X \oplus \mathcal{L}(\boldsymbol{\Delta}_I)} E(x) = \Delta_O\right]$$

- ▶ Higher-Order Differential-Linear (HDL) cryptanalysis was proposed by Biham, Dunkelman and Keller in 2005
 - A generalization of differential-linear attack
 - The bias of an HDL approximation is ε as follows,

$$\Pr\left[\lambda_O \cdot \left(\bigoplus_{x \in X \oplus \mathcal{L}(\Delta_I)} E(x)\right) = 0\right] = \frac{1}{2} + \varepsilon.$$

<□ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 6/28

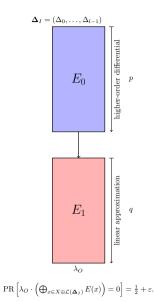
Higher-Order Differential-Linear Analysis

- ▶ Higher-Order differential (HD) was Proposed by Lai in 1994
 - Given *l* linearly independent values $\Delta_I = (\Delta_0, \Delta_1, \dots, \Delta_{l-1})$, the *l*-th order HD of *E* is

$$p = \Pr\left[\bigoplus_{x \in X \oplus \mathcal{L}(\mathbf{\Delta}_I)} E(x) = \Delta_O\right]$$

- ▶ Higher-Order Differential-Linear (HDL) cryptanalysis was proposed by Biham, Dunkelman and Keller in 2005
 - A generalization of differential-linear attack
 - The bias of an HDL approximation is ε as follows,

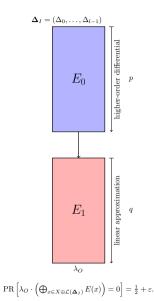
$$\Pr\left[\lambda_O \cdot \left(\bigoplus_{x \in X \oplus \mathcal{L}(\mathbf{\Delta}_I)} E(x)\right) = 0\right] = \frac{1}{2} + \varepsilon.$$



- Find an *l*-th order HD with probability p for E_0
- Find a linear approximation (LA) with bias q for E_1
- The bias of the corresponding HDL approximation for *E* is estimated as

$$\varepsilon = 2^{2^l - 1} p q^{2^l}$$

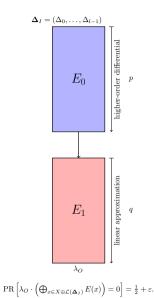
- \blacktriangleright In practice, l is usually large, so ε is exponentially small when $q\neq \frac{1}{2}$
- IDEA has a weak-key LA with bias ¹/₂, so vulnerable to HDL attack: the only application thus far
- ▶ Generally speaking, applications of HDL were limited



- Find an *l*-th order HD with probability p for E_0
- Find a linear approximation (LA) with bias q for E_1
- The bias of the corresponding HDL approximation for *E* is estimated as

$$\varepsilon = 2^{2^l - 1} p q^{2^l}$$

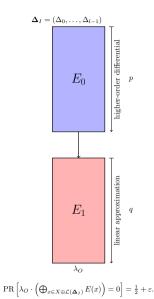
- ▶ In practice, l is usually large, so ε is exponentially small when $q \neq \frac{1}{2}$
- IDEA has a weak-key LA with bias ¹/₂, so vulnerable to HDL attack: the only application thus far
- ▶ Generally speaking, applications of HDL were limited



- Find an *l*-th order HD with probability p for E_0
- Find a linear approximation (LA) with bias q for E_1
- The bias of the corresponding HDL approximation for E is estimated as

$$\varepsilon = 2^{2^l - 1} p q^{2^l}$$

- ▶ In practice, l is usually large, so ε is exponentially small when $q \neq \frac{1}{2}$
- IDEA has a weak-key LA with bias ¹/₂, so vulnerable to HDL attack: the only application thus far
- ▶ Generally speaking, applications of HDL were limited



- Find an *l*-th order HD with probability p for E_0
- Find a linear approximation (LA) with bias q for E_1
- The bias of the corresponding HDL approximation for *E* is estimated as

$$\varepsilon = 2^{2^l - 1} p q^{2^l}$$

- ▶ In practice, l is usually large, so ε is exponentially small when $q \neq \frac{1}{2}$
- IDEA has a weak-key LA with bias ¹/₂, so vulnerable to HDL attack: the only application thus far
- ▶ Generally speaking, applications of HDL were limited

Algebraic Perspective on Differential

- ▶ Proposed by Liu, Lu, and Lin at CRYPTO 2021 [LLL21]
- ► A new method to evaluate the bias of the differential-linear approximation (Δ_I, λ_O) from an algebraic viewpoint

Example

Let $f(x_1, x_2, x_3) = x_1 \oplus x_2 x_3 \oplus x_3$ and $\Delta = (1, 1, 0)$. On one hand, the derivation of f with respect to Δ is

$$\mathcal{D}_{\Delta}(f) = f(X) \oplus f(X \oplus \Delta) = f(x_1, x_2, x_3) \oplus f(x_1 \oplus 1, x_2 \oplus 1, x_3)$$
$$= (x_1 \oplus x_2 x_3 \oplus x_3) \oplus ((x_1 \oplus 1) x_3 \oplus x_3) = \mathbf{x_3} \oplus \mathbf{1}$$

We introduce an auxiliary Boolean function with an auxiliary variable x,

$$f_{\Delta} = f([x_1, x_2, x_3] \oplus x[1, 1, 0]) = (x_1 \oplus x) \oplus (x_2 \oplus x)x_3 \oplus x_3$$
$$= (x_3 \oplus 1)x \oplus x_1 \oplus x_2x_3 \oplus x_3$$

Results in This Work

Introduction to HD/HDL

Algebraic Perspective on HD/HDL

HD Cryptanalysis on ASCON Permutation

HDL Cryptanalysis on ASCON Initialization and Encryption

Practical HDL Distinguishers Based on Cube Testers

Example

Let $f(x_1, x_2, x_3) = x_1 x_2 x_3 \oplus x_1 \oplus x_2 x_3 \oplus x_3$, $\Delta_1 = (1, 1, 0)$, $\Delta_2 = (0, 1, 1)$. On one hand, the 2nd higher-order derivation of f with respect to (Δ_1, Δ_2) is

$$\mathcal{D}_{\Delta}(f) = f(X) \oplus f(X \oplus \Delta_1) \oplus f(X \oplus \Delta_2) \oplus f(X \oplus \Delta_1 \oplus \Delta_1)$$

= $f(x_1, x_2, x_3) \oplus f(x_1 \oplus 1, x_2 \oplus 1, x_3) \oplus f(x_1, x_2 \oplus 1, x_3 \oplus 1) \oplus f(x_1 \oplus 1, x_2 \oplus, x_3 \oplus 1)$
= $x_1 \oplus x_2 \oplus x_3 \oplus 1$

We introduce an auxiliary Boolean function with 2 auxiliary variables u, v,

 $f_{\Delta} = f([x_1, x_2, x_3] \oplus u\Delta_0 \oplus v\Delta_2)$ = $(x_1 \oplus x_2 \oplus x_3 \oplus 1)uv \oplus (x_1x_3 \oplus x_2x_3 \oplus 1)u$ $\oplus (x_1x_2 \oplus x_1x_3 \oplus x_1 \oplus x_2 \oplus x_3)v \oplus x_1 \oplus x_2 \oplus x_3 \oplus 1$

◆□ ▶ ◆■ ▶ ◆ ■ ▶ ◆ ■ ● の へ 0 /28

 $u\Delta_0=u[1,1,0]=[u,u,0], v\Delta_1=v[0,1,1]=[0,v,v]$

▶ With an *l*-th order difference $\mathbf{\Delta} = (\Delta_0, \Delta_1, \dots, \Delta_{l-1})$, the *l*-th order differential of *f* is

$$\mathcal{D}_{\Delta}f(X) = \bigoplus_{a \in X \oplus \mathcal{L}(\Delta)} f(a), \ \mathcal{L}(\Delta)$$
 is the linear span of Δ

• We are operating a *l*-dimensional affine space $\mathbb{A}^l = X \oplus \mathcal{L}(\Delta)$. Find a bijective mapping:

$$\mathcal{M}^{l}: \mathbb{F}_{2}^{l} \to \mathbb{A}^{l}$$
$$(x_{0}, x_{1}, \dots, x_{l-1}) \mapsto X \oplus x_{0} \Delta_{0} \oplus x_{1} \Delta_{1} \oplus \dots \oplus x_{n-1} \Delta_{l-1} = X \oplus \boldsymbol{x} \boldsymbol{\Delta}^{T}$$

 \mathbb{A}^l and \mathbb{F}_2^l are transformed mutually. $\bigoplus_{a \in X \oplus \mathcal{L}(\Delta)} f(a) = \bigoplus_{x \in \mathbb{F}_2^n} f(\mathcal{M}^l(x))$

Proposition (Algebraic-Perspective on HD/HDL)

Given f and an l-th order difference Δ , $\mathcal{D}_{\Delta}f = D_{x}f_{\Delta} = \operatorname{Coe}\left(x, f(X \oplus x\Delta^{T})\right)$ We call $f(X \oplus x\Delta^{T})$ Differential Supporting Function (DSF), denoted by $\operatorname{DSF}_{f,X,\Delta}$

▶ With an *l*-th order difference $\mathbf{\Delta} = (\Delta_0, \Delta_1, \dots, \Delta_{l-1})$, the *l*-th order differential of *f* is

$$\mathcal{D}_{\Delta}f(X) = \bigoplus_{a \in X \oplus \mathcal{L}(\Delta)} f(a), \ \mathcal{L}(\Delta)$$
 is the linear span of Δ

• We are operating a *l*-dimensional affine space $\mathbb{A}^l = X \oplus \mathcal{L}(\Delta)$. Find a bijective mapping:

$$\mathcal{M}^{l}: \mathbb{F}_{2}^{l} \to \mathbb{A}^{l}$$

$$(x_{0}, x_{1}, \dots, x_{l-1}) \mapsto X \oplus x_{0}\Delta_{0} \oplus x_{1}\Delta_{1} \oplus \dots \oplus x_{n-1}\Delta_{l-1} = X \oplus \boldsymbol{x}\boldsymbol{\Delta}^{T}$$

$$\mathbb{A}^{l} \text{ and } \mathbb{F}_{2}^{l} \text{ are transformed mutually.} \bigoplus_{a \in X \oplus \mathcal{L}(\boldsymbol{\Delta})} f(a) = \bigoplus_{\boldsymbol{x} \in \mathbb{F}_{2}^{n}} f(\mathcal{M}^{l}(\boldsymbol{x}))$$

Proposition (Algebraic-Perspective on HD/HDL) Given f and an l-th order difference Δ , $\mathcal{D}_{\Delta}f = D_{x}f_{\Delta} = \operatorname{Coe}(x, f(X \oplus x\Delta^{T}))$ We call $f(X \oplus x\Delta^{T})$ Differential Supporting Function (DSF), denoted by $\operatorname{DSF}_{f,X,\Delta}$

▶ With an *l*-th order difference $\mathbf{\Delta} = (\Delta_0, \Delta_1, \dots, \Delta_{l-1})$, the *l*-th order differential of *f* is

$$\mathcal{D}_{\Delta}f(X) = \bigoplus_{a \in X \oplus \mathcal{L}(\Delta)} f(a), \ \mathcal{L}(\Delta)$$
 is the linear span of Δ

• We are operating a *l*-dimensional affine space $\mathbb{A}^l = X \oplus \mathcal{L}(\Delta)$. Find a bijective mapping:

$$\mathcal{M}^{l}: \mathbb{F}_{2}^{l} \to \mathbb{A}^{l}$$

$$(x_{0}, x_{1}, \dots, x_{l-1}) \mapsto X \oplus x_{0} \Delta_{0} \oplus x_{1} \Delta_{1} \oplus \dots \oplus x_{n-1} \Delta_{l-1} = X \oplus \boldsymbol{x} \boldsymbol{\Delta}^{T}$$

$$\mathbb{A}^{l} \text{ and } \mathbb{F}_{2}^{l} \text{ are transformed mutually.} \qquad \bigoplus_{\boldsymbol{a} \in X \oplus \mathcal{L}(\boldsymbol{\Delta})} f(\boldsymbol{a}) = \bigoplus_{\boldsymbol{x} \in \mathbb{F}_{2}^{n}} f(\mathcal{M}^{l}(\boldsymbol{x}))$$

Proposition (Algebraic-Perspective on HD/HDL) Given f and an l-th order difference Δ , $\mathcal{D}_{\Delta}f = D_{\boldsymbol{x}}f_{\Delta} = \operatorname{Coe}(\boldsymbol{x}, f(X \oplus \boldsymbol{x}\Delta^T))$ We call $f(X \oplus \boldsymbol{x}\Delta^T)$ Differential Supporting Function (DSF), denoted by $\operatorname{DSF}_{f,X,\Delta}$

▶ With an *l*-th order difference $\mathbf{\Delta} = (\Delta_0, \Delta_1, \dots, \Delta_{l-1})$, the *l*-th order differential of *f* is

$$\mathcal{D}_{\Delta}f(X) = \bigoplus_{a \in X \oplus \mathcal{L}(\Delta)} f(a), \ \mathcal{L}(\Delta)$$
 is the linear span of Δ

• We are operating a *l*-dimensional affine space $\mathbb{A}^l = X \oplus \mathcal{L}(\Delta)$. Find a bijective mapping:

$$\mathcal{M}^{l}: \mathbb{F}_{2}^{l} \to \mathbb{A}^{l}$$

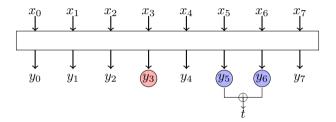
$$(x_{0}, x_{1}, \dots, x_{l-1}) \mapsto X \oplus x_{0} \Delta_{0} \oplus x_{1} \Delta_{1} \oplus \dots \oplus x_{n-1} \Delta_{l-1} = X \oplus \boldsymbol{x} \boldsymbol{\Delta}^{T}$$

$$\mathbb{A}^{l} \text{ and } \mathbb{F}_{2}^{l} \text{ are transformed mutually.} \qquad \bigoplus_{\boldsymbol{a} \in \boldsymbol{X} \oplus \mathcal{L}(\boldsymbol{\Delta})} f(\boldsymbol{a}) = \bigoplus_{\boldsymbol{x} \in \mathbb{F}_{2}^{n}} f(\mathcal{M}^{l}(\boldsymbol{x}))$$

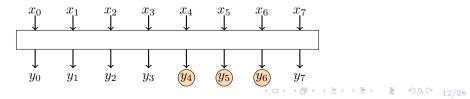
Proposition (Algebraic-Perspective on HD/HDL) Given f and an l-th order difference Δ , $\mathcal{D}_{\Delta}f = D_{\boldsymbol{x}}f_{\Delta} = \operatorname{Coe}(\boldsymbol{x}, f(X \oplus \boldsymbol{x}\Delta^T))$ We call $f(X \oplus \boldsymbol{x}\Delta^T)$ Differential Supporting Function (DSF), denoted by $\operatorname{DSF}_{f,X,\Delta}$

Difference between HD and HDL

HDL: we study one output Boolean function or a linear combination of several output bits



HD: we study several (greater than 1) output Boolean functions simultaneously



Results in This Work

Introduction to HD/HDL

Algebraic Perspective on HD/HDL

HD Cryptanalysis on ASCON Permutation

HDL Cryptanalysis on ASCON Initialization and Encryption

Practical HDL Distinguishers Based on Cube Testers

Notations for ASCON permutation

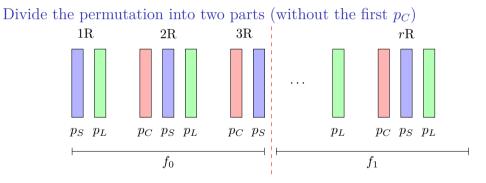
 S^r : the output state after r rounds. S^0 is the input of the whole permutation. $S^{r.5}$ is the output of r + 1 rounds without the last diffusion layer

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○ 14/28</p>

- $S^{r}[i]$: the *i*-th word(row) of S^{r}
- $S^{r}[i][j]$: the *j*-th bit of $S^{r}[i]$
 - $p_{C}\,$: the operation of addition of constants
 - $p_{S}\,$: the operation of $substitution \ layer$
 - $p_L\,$: the operation of $\mathit{diffusion}\,\,layer$

Idea

Find a proper combination (X, Δ) to simplify the DSF $(f(\mathbf{X} \oplus \mathbf{x} \Delta^T))$ s.t., $\deg(\text{DSF}_{f,X,\Delta}) < \dim(\Delta)$



- f_0 : calculate the exact ANFs (symbolical computation)
- f_1 : estimate the upper bound on the degrees of outputs

Degree Matrix Transition of the ASCON Permutation

Definition (Degree Matrix of S^r)

The algebraic degrees of the bits in the state S^r are called a degree matrix of S^r , denoted by

$$DM(S^r) = (\deg(S^r[i][j]), 0 \le i < 5, 0 \le j < 64).$$

Degree Matrix Transition over p_S

$$y_0 = x_4 x_1 + x_3 + x_2 x_1 + x_2 + x_1 x_0 + x_1 + x_0$$

$$y_1 = x_4 + x_3 x_2 + x_3 x_1 + \cdots$$

$$y_2 = x_4 x_3 + x_4 + x_2 + x_1 + 1$$

$$y_3 = x_4 x_0 + x_4 + x_3 x_0 + x_3 + x_2 + x_1 + x_0$$

$$y_4 = x_4 x_1 + x_4 + x_3 + x_1 x_0 + x_1$$

$$d'_{0} = \max(d_{4} + d_{1}, d_{3}, d_{2} + d_{1}, d_{2}, d_{2} + d_{0}, d_{1}, d_{0})$$

$$d'_{1} = \max(d_{4}, d_{3} + d_{2}, d_{3} + d_{1}, \ldots)$$

$$d'_{2} = \max(d_{4} + d_{3}, d_{4}, d_{2}, d_{1}, 0)$$

$$d'_{3} = \max(d_{4} + d_{0}, d_{4}, d_{3} + d_{0}, d_{3}, d_{2}, d_{1}, d_{0})$$

$$d'_{4} = \max(d_{4} + d_{1}, d_{4}, d_{3}, d_{1} + d_{0}, d_{1})$$

Degree Matrix Transition of the ASCON Permutation

Degree Matrix Transition over p_L

 $y_0 \leftarrow \Sigma_0(x_0) = x_0 + (x_0 \gg 19) + (x_0 \gg 28)$ $y_1 \leftarrow \Sigma_1(x_1) = x_1 + (x_1 \gg 61) + (x_1 \gg 39)$ $y_2 \leftarrow \Sigma_2(x_2) = x_2 + (x_2 \gg 1) + (x_2 \gg 6)$ $y_3 \leftarrow \Sigma_3(x_3) = x_3 + (x_3 \gg 10) + (x_3 \gg 17)$ $y_4 \leftarrow \Sigma_4(x_4) = x_4 + (x_4 \gg 7) + (x_4 \gg 41)$

$$\begin{aligned} d'_{0,j} &= \max(d_{0,j+0}, d_{0,j-19 \mod 64}, d_{0,j-28 \mod 64}) \\ d'_{1,j} &= \max(d_{1,j+0}, d_{1,j-61 \mod 64}, d_{1,j-39 \mod 64}) \\ d'_{2,j} &= \max(d_{2,j+0}, d_{2,j-1 \mod 64}, d_{2,j-6 \mod 64}) \\ d'_{3,j} &= \max(d_{3,j+0}, d_{3,j-10 \mod 64}, d_{3,j-17 \mod 64}) \\ d'_{4,j} &= \max(d_{4,j+0}, d_{4,j-7 \mod 64}, d_{4,j-41 \mod 64}) \end{aligned}$$

◆□ ▶ < @ ▶ < E ▶ < E ▶ ○ 2 の Q · 17/28</p>

Method to choose X and Δ

- Exhausting all X and Δ is impossible
- ▶ Note that the first operation of f_0 is p_S . We inject 1st order difference into each Sbox, totally 64-th order HD

 $p_S(X \oplus \boldsymbol{x} \boldsymbol{\Delta}^T) = \mathcal{S}(\bar{X} \oplus x_0 \bar{\Delta}) || \mathcal{S}(\bar{X} \oplus x_1 \bar{\Delta}) || \cdots || \mathcal{S}(X \oplus x_{63} \bar{\Delta}),$



 $ar{X} \oplus oldsymbol{x}_i ar{\Delta}^T$

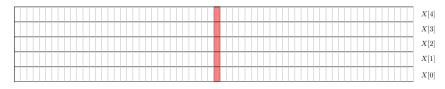
• Since $\overline{X} \in \mathbb{F}_2^5$, $\overline{\Delta} \in \mathbb{F}_2^5 \setminus \{0\}$, we have $32 \times 31 = 992$ choices

Method to choose X and Δ

- Exhausting all X and Δ is impossible
- ▶ Note that the first operation of f_0 is p_S . We inject 1st order difference into each Sbox, totally 64-th order HD

$$p_{S}(X \oplus \boldsymbol{x} \boldsymbol{\Delta}^{T}) = \mathcal{S}(\bar{X} \oplus x_{0}\bar{\Delta}) || \mathcal{S}(\bar{X} \oplus x_{1}\bar{\Delta}) || \cdots || \mathcal{S}(X \oplus x_{63}\bar{\Delta}),$$

 $ar{X} \oplus oldsymbol{x}_i ar{\Delta}^T$



• Since $\overline{X} \in \mathbb{F}_2^5$, $\overline{\Delta} \in \mathbb{F}_2^5 \setminus \{0\}$, we have $32 \times 31 = 992$ choices

Method to choose X and Δ

- Exhausting all X and Δ is impossible
- ▶ Note that the first operation of f_0 is p_S . We inject 1st order difference into each Sbox, totally 64-th order HD

$$p_{S}(X \oplus \boldsymbol{x} \boldsymbol{\Delta}^{T}) = \mathcal{S}(\bar{X} \oplus x_{0}\bar{\Delta}) || \mathcal{S}(\bar{X} \oplus x_{1}\bar{\Delta}) || \cdots || \mathcal{S}(X \oplus x_{63}\bar{\Delta}),$$

 $ar{X} \oplus oldsymbol{x}_i ar{\Delta}^T$



• Since $\bar{X} \in \mathbb{F}_2^5$, $\bar{\Delta} \in \mathbb{F}_2^5 \setminus \{0\}$, we have $32 \times 31 = 992$ choices

HD Distinguishers for ASCON Permutation

With an exhaustive search, we find 8 optimal combinations:

$$(\bar{X}, \bar{\Delta}) \in \begin{cases} (\texttt{0x6}, \texttt{0x13}), (\texttt{0xa}, \texttt{0x13}), (\texttt{0xc}, \texttt{0x17}), (\texttt{0xf}, \texttt{0x18}), \\ (\texttt{0x15}, \texttt{0x13}), (\texttt{0x17}, \texttt{0x18}), (\texttt{0x19}, \texttt{0x13}), (\texttt{0x1b}, \texttt{0x17}) \end{cases} \\ [0, 0, 1, 1, 0]^{\mathrm{T}} \oplus x[1, 0, 0, 1, 1]^{\mathrm{T}} = [x, 0, 1, 1 \oplus x, x]^{\mathrm{T}} \end{cases}$$

Round r	Upper bounds on the algebraic degree					
ito and i	$S^r[0]$	$S^r[1]$	$S^r[2]$	$S^r[3]$	$S^r[4]$	
4	3	3	2	2	3	
5	6	5	5	6	6	
6	11	11	12	12	11	
7	23	24	23	23	22	
8	47	47	45	46	47	

Zero-Sum Distinguisher for Full ASCON Permutation

• Apply a similar method to inverse ASCON permutation (including an extra p_C), we obtain 2 optimal combinations:

 $(\bar{X}, \bar{\mathbf{\Delta}}) \in \{(\texttt{0xf}, \texttt{0x18}), (\texttt{0x17}, \texttt{0x18})\}$

Round r	Upper bounds on the algebraic degree				
	S[0]	S[1]	S[2]	S[3]	S[4]
1	2	1	2	0	2
2	4	6	6	6	6
3	18	16	18	18	18
4	54	54	54	54	54

Since (0xf, 0x18), (0x17, 0x18) are also optimal for the forward ASCON permutation, we obtain zero-sum distinguishers:
12 R: 2⁵⁵ calls, 11 R: 2⁴⁸ calls, 8 R: 2¹³ calls, 6 R: 2⁷ calls

Impact of these Zero-Sum Distinguishers

- Zero-sum distinguishers represent some non-ideal property of the target permutation
- ► Although these zero-sum distinguishers require low complexities, their actual impact on the security of the ASCON AEAD and Hash are very likely non-existent or at best not clear
- ► Advantage of the zero-sum distinguisher for ASCON permutation and a perfect permutation is very small, usually falling under a factor of 2

Results in This Work

Introduction to HD/HDL

Algebraic Perspective on HD/HDL

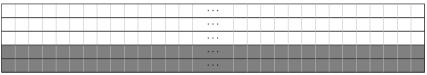
HD Cryptanalysis on ASCON Permutation

HDL Cryptanalysis on ASCON Initialization and Encryption

Practical HDL Distinguishers Based on Cube Testers

HDL Cryptanalysis on ASCON Initialization

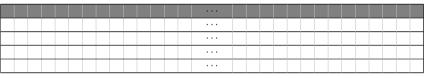
• For initialization, we can only access $S^0[3]$ and $S^0[4]$, thus $\bar{X} \in \{0, 1, 2, 3\}$ and $\bar{\Delta} \in \{1, 2, 3\}$



- Focus on the 2nd order HDL. We choose 2 different positions (i₀, i₁) to impose differences, IV are set as specification, other positions are filled with free variables
- ▶ When $(i_0, i_1) = (0, 60), (\bar{X}, \bar{\Delta}) = (0x0, 0x3)$, we have deg $(S^{3.5}[50]) \le 1$
- ▶ 1 sample (4 texts) is enough to distinguish the 4 rounds of ASCON initialization

HDL Cryptanalysis on ASCON Encryption

▶ For encryption, we can only access $S^0[0]$, thus $\bar{X} \in \{0, 0x10\}$ and $\bar{\Delta} \in \{0x10\}$



- ▶ Focus on the 2nd order HDL. We choose 2 different positions (i_0, i_1) to impose differences, other positions are filled with free variables
- ▶ When $(i_0, i_1) = (0, 22), (\bar{X}, \bar{\Delta}) = (0x0, 0x10)$, we have deg $(S^{3.5}[50]) \le 1$
- ▶ 1 sample (4 texts) is enough to distinguish the 4 rounds of ASCON encryption under the nonce-misuse scenario

Results in This Work

Introduction to HD/HDL

Algebraic Perspective on HD/HDL

HD Cryptanalysis on ASCON Permutation

HDL Cryptanalysis on ASCON Initialization and Encryption

Practical HDL Distinguishers Based on Cube Testers

Practical Distinguishers for ASCON Initialization

Observation

HD attacks on a Boolean function is equivalent to cube attacks on its DSF. We can apply cube testers to DSF, then convert it back to a HD distinguisher. Input of each sbox: $[0, 0, 0, 0, 0] \oplus x[0, 0, 0, 1, 1]^T$

Order	Input/Output Mask	$\mathbf{Bias}(-\log)$	Con. Bias $(-\log)$
3	(0,24,33)/51	6.52	3.56
4	(0,9,15,41)/27	6.44	2.14
5	(0,9,24,51,55)/18	5.31	2.02
6	(1,12,18,22,21,52)/49	4.88	1.89
7	(10,13,21,31,49,55,61)/28	4.03	1
8	(0,3,10,11,26,28,31,55)/60	2.46	1
9	(8,13,14,16,21,25,39,42,46)/12	1.76	1
10	(4,14,23,27,35,39,41,49,51,55)/0	1.09	1
11	(19,24,33,35,36,48,54,57,59,62,63)/27	1.04	

Table: Practical HDL Distinguishers for 5-Round Ascon Initialization

- ▶ Algebraic perspective on the HDL cryptanalysis
- ▶ Efficient HD or zero-sum distinguishers on ASCON permutation, initialization and encryption
- ▶ Practical HDL distinguishers for Ascon
- ▶ The key-recovery attack based on the conditional HDL is given in our paper

- ▶ Algebraic perspective on the HDL cryptanalysis
- ▶ Efficient HD or zero-sum distinguishers on ASCON permutation, initialization and encryption
- ▶ Practical HDL distinguishers for Ascon
- ▶ The key-recovery attack based on the conditional HDL is given in our paper

Thanks for your attention!

Reference

[LLL21] Meicheng Liu, Xiaojuan Lu, and Dongdai Lin. Differential-Linear Cryptanalysis from an Algebraic Perspective. CRYPTO 2021

[RHSS21] Raghvendra Rohit, Kai Hu, Sumanta Sarkar, and Siwei Sun. Misuse-Free Key-Recovery and Distinguishing Attacks on 7-Round Ascon. FSE 2021

[DEMS15] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. Cryptanalysis of Ascon. CT-RSA 2015

[LDW17] Zheng Li, Xiaoyang Dong, and Xiaoyun Wang. Conditional Cube Attack on Round-Reduced ASCON. IACR Trans. Symmetric Cryptol., 2017(1)