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Results in This Work for Ascon
Permutation (black-box model) Permutation (non-black-box model)
Initialization Encryption (Nonce-Misuse Scenario)

Type Round Data (log) Time (log) Method Reference

Distinguisher

4 3 3 HD Ours
2 2 HDL Ours

5 13 13 HDL Ours
6 6 HD Ours

6 12 12 HD Ours
7 7 Zero-Sum Ours

7 23 23 HD Ours

8 46 46 HD Ours
13 13 Zero-Sum Ours

11 48 48 Zero-Sum Ours
12 55 55 Zero-Sum Ours

Key-Recovery 5 23 23 Cond. HDL Ours
6 74 74 Cond. HDL Ours

Comparisons with previous work can be found in our paper
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Higher-Order Differential-Linear Analysis

▶ Higher-Order differential (HD) was Proposed by Lai in 1994
• Given l linearly independent values ∆I = (∆0,∆1, . . . ,∆l−1), the l-th order HD

of E is

p = Pr

 ⊕
x∈X⊕L(∆I)

E(x) = ∆O


▶ Higher-Order Differential-Linear (HDL) cryptanalysis was proposed by

Biham, Dunkelman and Keller in 2005
• A generalization of differential-linear attack
• The bias of an HDL approximation is ε as follows,

Pr

λO ·

 ⊕
x∈X⊕L(∆I)

E(x)

 = 0

 =
1

2
+ ε.
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Two Sub-Ciphers Strategy for HDL

E0

∆I = (∆0, . . . ,∆l−1)

E1

p

q

hi
gh

er
-o

rd
er

di
ffe

re
nt

ia
l

lin
ea

r
ap

pr
ox

im
at

io
n

λO

PR
[
λO ·

(⊕
x∈X⊕L(∆I)

E(x)
)
= 0

]
= 1

2 + ε.

▶ Process:
• Find an l-th order HD with probability p for E0

• Find a linear approximation (LA) with bias q for E1

• The bias of the corresponding HDL approximation
for E is estimated as

ε = 22
l−1pq2

l

▶ In practice, l is usually large, so ε is exponentially
small when q ̸= 1

2

▶ IDEA has a weak-key LA with bias 1
2 , so vulnerable

to HDL attack: the only application thus far
▶ Generally speaking, applications of HDL were limited
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Algebraic Perspective on Differential
▶ Proposed by Liu, Lu, and Lin at CRYPTO 2021 [LLL21]
▶ A new method to evaluate the bias of the differential-linear approximation

(∆I , λO) from an algebraic viewpoint

Example
Let f(x1, x2, x3) = x1 ⊕ x2x3 ⊕ x3 and ∆ = (1, 1, 0). On one hand, the derivation
of f with respect to ∆ is

D∆(f) = f(X)⊕ f(X ⊕∆) = f(x1, x2, x3)⊕ f(x1 ⊕ 1, x2 ⊕ 1, x3)

= (x1 ⊕ x2x3 ⊕ x3)⊕ ((x1 ⊕ 1)x3 ⊕ x3) = x3 ⊕ 1

We introduce an auxiliary Boolean function with an auxiliary variable x,

f∆ = f([x1, x2, x3]⊕ x[1, 1, 0]) = (x1 ⊕ x)⊕ (x2 ⊕ x)x3 ⊕ x3

= (x3 ⊕ 1)x⊕ x1 ⊕ x2x3 ⊕ x3
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Algebraic Perspective on HDL
Example
Let f(x1, x2, x3) = x1x2x3 ⊕ x1 ⊕ x2x3 ⊕ x3, ∆1 = (1, 1, 0), ∆2 = (0, 1, 1). On one
hand, the 2nd higher-order derivation of f with respect to (∆1,∆2) is

D∆(f) = f(X)⊕ f(X ⊕∆1)⊕ f(X ⊕∆2)⊕ f(X ⊕∆1 ⊕∆1)

= f(x1, x2, x3)⊕ f(x1 ⊕ 1, x2 ⊕ 1, x3)⊕ f(x1, x2 ⊕ 1, x3 ⊕ 1)⊕ f(x1 ⊕ 1, x2⊕, x3 ⊕ 1)

= x1 ⊕ x2 ⊕ x3 ⊕ 1

We introduce an auxiliary Boolean function with 2 auxiliary variables u, v,

f∆ = f([x1, x2, x3]⊕ u∆0 ⊕ v∆2)

= (x1 ⊕ x2 ⊕ x3 ⊕ 1)uv ⊕ (x1x3 ⊕ x2x3 ⊕ 1)u

⊕ (x1x2 ⊕ x1x3 ⊕ x1 ⊕ x2 ⊕ x3)v ⊕ x1 ⊕ x2 ⊕ x3 ⊕ 1

u∆0 = u[1, 1, 0] = [u, u, 0], v∆1 = v[0, 1, 1] = [0, v, v]
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Algebraic Perspective on HD/HDL
▶ With an l-th order difference ∆ = (∆0,∆1, . . . ,∆l−1), the l-th order

differential of f is

D∆f(X) =
⊕

a∈X⊕L(∆)

f(a), L(∆) is the linear span of ∆

▶ We are operating a l-dimensional affine space Al = X ⊕ L(∆). Find a
bijective mapping:

Ml : Fl
2 → Al

(x0, x1, . . . , xl−1) 7→ X ⊕ x0∆0 ⊕ x1∆1 ⊕ · · · ⊕ xn−1∆l−1 = X ⊕ x∆T

Al and Fl
2 are transformed mutually.

⊕
a∈X⊕L(∆)

f(a) =
⊕

x∈Fn
2

f(Ml(x))

Proposition (Algebraic-Perspective on HD/HDL)
Given f and an l-th order difference ∆, D∆f = Dxf∆ = Coe

(
x, f(X ⊕ x∆T )

)
We call f(X ⊕ x∆T ) Differential Supporting Function (DSF), denoted by
DSFf,X,∆
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Difference between HD and HDL
HDL: we study one output Boolean function or a linear combination of several
output bits

x0 x1 x2 x3 x4 x5 x6 x7

y0 y1 y2 y3 y4 y5 y6 y7

⊕
t

HD: we study several (greater than 1) output Boolean functions simultaneously
x0 x1 x2 x3 x4 x5 x6 x7

y0 y1 y2 y3 y4 y5 y6 y7
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HD Cryptanalysis on Ascon Permutation

Notations for Ascon permutation

Sr : the output state after r rounds. S0 is the input of the whole permutation.
Sr.5 is the output of r + 1 rounds without the last diffusion layer

Sr[i] : the i-th word(row) of Sr

Sr[i][j] : the j-th bit of Sr[i]

pC : the operation of addition of constants
pS : the operation of substitution layer
pL : the operation of diffusion layer
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HD Cryptanalysis on Ascon Permutation
Idea
Find a proper combination (X,∆) to simplify the DSF (f(X ⊕ x∆T )) s.t.,
deg(DSFf,X,∆) < dim(∆)

Divide the permutation into two parts (without the first pC)

pS

1R

pL pC pS

2R

pL pC

3R

pS

f0

· · ·

pL pC pS

rR

pL

f1

f0 : calculate the exact ANFs (symbolical computation)
f1 : estimate the upper bound on the degrees of outputs
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Degree Matrix Transition of the Ascon Permutation

Definition (Degree Matrix of Sr)
The algebraic degrees of the bits in the state Sr are called a degree matrix of Sr,
denoted by

DM(Sr) = (deg(Sr[i][j]), 0 ≤ i < 5, 0 ≤ j < 64) .

Degree Matrix Transition over pS

y0 = x4x1 + x3 + x2x1 + x2 + x1x0 + x1 + x0

y1 = x4 + x3x2 + x3x1 + · · ·
y2 = x4x3 + x4 + x2 + x1 + 1

y3 = x4x0 + x4 + x3x0 + x3 + x2 + x1 + x0

y4 = x4x1 + x4 + x3 + x1x0 + x1

d′0 = max(d4 + d1, d3, d2 + d1, d2, d2 + d0, d1, d0)

d′1 = max(d4, d3 + d2, d3 + d1, . . .)

d′2 = max(d4 + d3, d4, d2, d1, 0)

d′3 = max(d4 + d0, d4, d3 + d0, d3, d2, d1, d0)

d′4 = max(d4 + d1, d4, d3, d1 + d0, d1)
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Degree Matrix Transition of the Ascon Permutation

Degree Matrix Transition over pL

y0 ← Σ0(x0) = x0 + (x0 ≫ 19) + (x0 ≫ 28)

y1 ← Σ1(x1) = x1 + (x1 ≫ 61) + (x1 ≫ 39)

y2 ← Σ2(x2) = x2 + (x2 ≫ 1) + (x2 ≫ 6)

y3 ← Σ3(x3) = x3 + (x3 ≫ 10) + (x3 ≫ 17)

y4 ← Σ4(x4) = x4 + (x4 ≫ 7) + (x4 ≫ 41)

d′0,j = max(d0,j+0, d0,j−19 mod 64, d0,j−28 mod 64)

d′1,j = max(d1,j+0, d1,j−61 mod 64, d1,j−39 mod 64)

d′2,j = max(d2,j+0, d2,j− 1 mod 64, d2,j− 6 mod 64)

d′3,j = max(d3,j+0, d3,j−10 mod 64, d3,j−17 mod 64)

d′4,j = max(d4,j+0, d4,j− 7 mod 64, d4,j−41 mod 64)
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HD Cryptanalysis on Ascon Permutation

Method to choose X and ∆

▶ Exhausting all X and ∆ is impossible
▶ Note that the first operation of f0 is pS . We inject 1st order difference into

each Sbox, totally 64-th order HD

pS(X ⊕ x∆T ) = S(X̄ ⊕ x0∆̄)||S(X̄ ⊕ x1∆̄)|| · · · ||S(X ⊕ x63∆̄),

X̄ ⊕ xi∆̄
T

X[0]

X[1]

X[2]

X[3]

X[4]

▶ Since X̄ ∈ F5
2, ∆̄ ∈ F5

2\{0}, we have 32× 31 = 992 choices
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HD Distinguishers for Ascon Permutation
With an exhaustive search, we find 8 optimal combinations:

(X̄, ∆̄) ∈

{
(0x6, 0x13), (0xa, 0x13), (0xc, 0x17), (0xf, 0x18),
(0x15, 0x13), (0x17, 0x18), (0x19, 0x13), (0x1b, 0x17)

}
[0, 0, 1, 1, 0]T ⊕ x[1, 0, 0, 1, 1]T = [x, 0, 1, 1⊕ x, x]T

Round r
Upper bounds on the algebraic degree

Sr[0] Sr[1] Sr[2] Sr[3] Sr[4]

4 3 3 2 2 3
5 6 5 5 6 6
6 11 11 12 12 11
7 23 24 23 23 22
8 47 47 45 46 47
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Zero-Sum Distinguisher for Full Ascon Permutation
• Apply a similar method to inverse Ascon permutation (including an extra pC),
we obtain 2 optimal combinations:

(X̄, ∆̄) ∈ {(0xf, 0x18), (0x17, 0x18)}

Round r
Upper bounds on the algebraic degree

S[0] S[1] S[2] S[3] S[4]

1 2 1 2 0 2
2 4 6 6 6 6
3 18 16 18 18 18
4 54 54 54 54 54

• Since (0xf, 0x18), (0x17, 0x18) are also optimal for the forward Ascon
permutation, we obtain zero-sum distinguishers:
• 12 R: 255 calls, 11 R: 248 calls, 8 R: 213 calls, 6 R: 27 calls
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Impact of these Zero-Sum Distinguishers

▶ Zero-sum distinguishers represent some non-ideal property of the target
permutation

▶ Although these zero-sum distinguishers require low complexities, their actual
impact on the security of the Ascon AEAD and Hash are very likely
non-existent or at best not clear

▶ Advantage of the zero-sum distinguisher for Ascon permutation and a perfect
permutation is very small, usually falling under a factor of 2
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Outline

Results in This Work

Introduction to HD/HDL

Algebraic Perspective on HD/HDL

HD Cryptanalysis on Ascon Permutation

HDL Cryptanalysis on Ascon Initialization and Encryption

Practical HDL Distinguishers Based on Cube Testers
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HDL Cryptanalysis on Ascon Initialization

▶ For initialization, we can only access S0[3] and S0[4], thus X̄ ∈ {0, 1, 2, 3} and
∆̄ ∈ {1, 2, 3}

· · ·
· · ·
· · ·
· · ·
· · ·

▶ Focus on the 2nd order HDL. We choose 2 different positions (i0, i1) to impose
differences, IV are set as specification, other positions are filled with free
variables

▶ When (i0, i1) = (0, 60), (X̄, ∆̄) = (0x0, 0x3), we have deg(S3.5[50]) ≤ 1

▶ 1 sample (4 texts) is enough to distinguish the 4 rounds of Ascon
initialization
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HDL Cryptanalysis on Ascon Encryption

▶ For encryption, we can only access S0[0], thus X̄ ∈ {0, 0x10} and ∆̄ ∈ {0x10}

· · ·
· · ·
· · ·
· · ·
· · ·

▶ Focus on the 2nd order HDL. We choose 2 different positions (i0, i1) to impose
differences, other positions are filled with free variables

▶ When (i0, i1) = (0, 22), (X̄, ∆̄) = (0x0, 0x10), we have deg(S3.5[50]) ≤ 1

▶ 1 sample (4 texts) is enough to distinguish the 4 rounds of Ascon encryption
under the nonce-misuse scenario
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Practical Distinguishers for Ascon Initialization
Observation
HD attacks on a Boolean function is equivalent to cube attacks on its DSF.
We can apply cube testers to DSF, then convert it back to a HD distinguisher.
Input of each sbox: [0, 0, 0, 0, 0]⊕ x[0, 0, 0, 1, 1]T

Table: Practical HDL Distinguishers for 5-Round Ascon Initialization

Order Input/Output Mask Bias(− log) Con. Bias(− log)

3 (0,24,33)/51 6.52 3.56
4 (0,9,15,41)/27 6.44 2.14
5 (0,9,24,51,55)/18 5.31 2.02
6 (1,12,18,22,21,52)/49 4.88 1.89
7 (10,13,21,31,49,55,61)/28 4.03 1
8 (0,3,10,11,26,28,31,55)/60 2.46 1
9 (8,13,14,16,21,25,39,42,46)/12 1.76 1
10 (4,14,23,27,35,39,41,49,51,55)/0 1.09 1
11 (19,24,33,35,36,48,54,57,59,62,63)/27 1.04 1
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Summary

▶ Algebraic perspective on the HDL cryptanalysis
▶ Efficient HD or zero-sum distinguishers on Ascon permutation, initialization

and encryption
▶ Practical HDL distinguishers for Ascon
▶ The key-recovery attack based on the conditional HDL is given in our paper

Thanks for your attention!
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