Romulus as NIST LWC Finalist

C. Guo, T. Iwata, M. Khairallah, K. Minematsu and T. Peyrin

NIST LWC 2022
Virtual - May 11, 2022

Romulus versions

Version	Mode	Primitive	Comment
Romulus-N	Romulus-N1		BBB nonce-respecting AEAD
Romulus-M	Romulus-M1		SKINNY-128/384+
Romulus-T	TEDT		Leakage res. AEAD (CIML2 + CCAmL2)
Romulus-H	MDPH		Hash function

All our versions provide \sim 128-bit security - time and data (in contrary to many remaining candidates)

Romulus-N/Romulus-M security proofs are in the standard model (in contrary to all remaining candidates except GIFT-COFB)

Romulus- N : BBB nonce-respecting AEAD

Provides BBB 128-bit security - data and time (in contrary to many remaining candidates)

New : Provides nonce-misuse resilience

Romulus-M : BBB nonce-misuse resistant AEAD

Provides nonce-misuse resistance (strong MRAE notion) (in contrary to all remaining candidates)

Provides Release of Unverified Plaintext security (INT-RUP + PA1) (in contrary to all remaining candidates except ELEPHANT)

Romulus-T : Leakage resilient AEAD

Provides CIML2 (best for integrity) + CCAmL2 (best for privacy) (in contrary to all remaining candidates except ISAP)

Provides nonce-misuse resilience

Romulus-H : rate 1 Hash function

Romulus-H : rate 1 Hash function

Indifferentiability up to $n-\log _{2} n$

Can easily/efficiently provide XOF functionality

Security

Security proofs review by third-party

> Confidence in a security proof correctness is very important. Our Romulus-N/Romulus-M proofs have been reviewed and published in ToSC NIST LWC and we continue verifying them, but we also adopted an approach of proof verification through a third-party review.

> Third-party analysis of the Romulus-N/Romulus-M operating modes conducted by Prof. Jooyoung Lee (KAIST, Korea). The report confirms the correctness of the provable security result by presenting an independent proof with a different proof strategy. Full report here :
> https://romulusae.github.io/romulus/docs/Security_evaluation_Romulus_Jooyoung_Lee.pdf

> Conclusion. In this evaluation, we proved the security of Romulus- N and Romulus-M; the best attack on any of these modes implies a chosen-plaintext attack (CPA) in the single-key setting against the underlying tweakable block cipher. So unless the tweakable block cipher is broken by CPA adversaries in the single-key setting, Romulus indeed maintains the claimed n-bit security. To evaluate the security of Romulus, with the standard model proof, we can focus on the security evaluation of the underlying primitive. The provable security of Romulus-N and Romulus-M is a clear advantage over any scheme with security proofs in non-standard models.

New Romulus-H proof

Romulus-H is based on the Naito's MDPH construction (basically Hirose DBL compression function construction [FSE06] inside a Merkle-Damgård with Permutation (MDP) mode [JoC12]).

New MDPH and Romulus-H security proof
Previous analysis from Naito's contained a gap (in the definition of the simulator simulating the decryption of the underlying block cipher). We proposed a new MDPH and Romulus-H security proof, same bounds up to constants - published at IET Info Sec journal (2022) : https://eprint.iacr.org/2021/1469.pdf

New nonce-misuse resilience proof for Romulus- N

New nonce-misuse resilience proof for Romulus-N (ongoing work) : perfect for privacy, birthday for authenticity with graceful degradation (wrt nonce repetition).

Why Romulus-M is very well suited for lightweight

For a constrained device, it is difficult :

\triangleright to ensure the non-repetition of a nonce (counter requires synchronization, storing nonces requires a lot of memory, generating them randomly requires a good/non-buggy randomness source)
\triangleright to retain the result of decryption in secure memory until the verification result (large secure memory is difficult)

RUP security of Romulus-M
integrity : Romulus-M is INT-RUP secure (both nonce-respecting/misuse) privacy : Romulus-M is PA1 secure (Plaintext Awarness)

Nonce-misuse resistance of Romulus-M
integrity/privacy : Romulus-M is MRAE secure (up to birthday bound, with graceful degradation with number of nonce repeats).

Romulus-M is the ONLY remaining design to have RUP (except ELEPHANT) and MRAE, for a cost that is slightly more than Romulus- N and almost the same design

SKINNY:

\triangleright an ultra lightweight Tweakable Block Cipher (TBC) family
\triangleright SKINNY is with ASCON probably the most analysed primitive used in the competition (except Keccak, already standard)
\triangleright Published as ISO/IEC standard : ISO/IEC 18033-7:2022
\triangleright already used in practical applications
C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T. Peyrin, Y. Sasaki, P. Sasdrich and S.M. Sim CRYPTO 2016

— $+\quad$ -

https://sites.google.com/site/skinnycipher/

Hadipour et al. (ePrint 2020:1317 and FSE 2022) [HBS20] :
\triangleright related-key rectangle attacks up to 30 rounds (2^{361} time, 2^{125} data)
\triangleright with one TK word fixed (TK2), up to 24 rounds (2^{209} time, 2^{125} data)
\triangleright distinguisher on 25 rounds with prob. $2^{-116.6}$ (TK2 : 21 rounds 2^{-114})
Qin et al. (ePrint 2021:656 and FSE 2022) [QDW+21] :
\triangleright related-key rectangle attacks up to 30 rounds (2^{341} time, 2^{122} data)
\triangleright with one TK word fixed (TK2), up to 25 rounds (2^{226} time, 2^{124} data)
\triangleright distinguisher on 22 rounds with prob. $2^{-101.5}$ (TK2 : 19 rounds 2^{-117})
Delaune et al. (FSE 2022 best paper) [DDV22] :
\triangleright related-key boomerang distinguisher on 24 rounds (2^{86} time/data)
\triangleright with one TK word fixed (TK2) up to 20 rounds (2^{86} time/data)
In contrary to many candidates, our internal primitive still have no distinguisher (by far).

A large security margin for SKINNY-128/384+
SKINNY-128/384+ has 40 rounds, proposed by the SKINNY team
\triangleright For time/data limited to 2^{128}, current best attack reaches 25 rounds : we maintain a 37% worst case security margin
$\triangleright \ldots$ and even more if we :

- restrict to 2^{64} data (probably 1 less round)
- exclude related-key attacks (probably 4 less rounds)
- consider the entire Romulus constructions
- don't allow nonce to repeat
- actual security margin $\gtrsim 50 \%$

Performances and Implementations

Software performances of Romulus

Cipher	Uno avg. time [$\mu \mathrm{s}]$
schwaemm256128v2	$\underline{1999.740}$
giftcofb128v1	$\underline{2250.020}$
$\underline{\text { xoodyakround3 }}$	$\underline{2371.040}$
$\underline{\text { tinyjambu128v2 }}$	$\underline{2386.180}$
$\underline{\text { ascon128v12 }}$	$\underline{2472.060}$
$\underline{\text { romulusn1+ }}$	$\underline{2870.170}$
photonbeetleaead128rate128v1	$\underline{4821.260}$
elephant160v1	$\underline{12477.300}$
$\underline{\text { isapa128av20 }}$	$\underline{22486.000}$
grain128aead	$\underline{22596.600}$
ges128k96n	

Cipher	F1² avg. time [$\mu \mathrm{s}]$
$\underline{\text { xoodyakround3 }}$	$\underline{64.277}$
$\underline{\text { schwaemm256128v2 }}$	$\underline{80.914}$
$\underline{\text { ascon128v12 }}$	$\underline{81.091}$
tinyjambu128v2	$\underline{110.295}$
giftcofb128v1	$\underline{131.551}$
romulusn1+	$\underline{225.008}$
grain128aeadv2	$\underline{241.014}$
ges128k96n	$\underline{337.203}$
photonbeetleaead128rate128v1	$\underline{590.958}$
isapa128av20	$\underline{600.055}$
elephant160v2	$\underline{4430.300}$

Software performance rankings

 on AVR (8-bit - left) and ARM Cortex M3 (32-bit - right) from OTH (Germany) : lwc.las3.de/table.php
Hardware performances of Romulus : FPGA

FPGA performance from GMU, USA

Hardware performances of Romulus : ASIC

ASIC performance ranking from https://github.com/mustafam001/lwc-aead-rtl/

Threshold implementation for TBCs

As shown in [Spook,NaitoSS-EC20], TBC are great primitives for thres. impl. compared to BCs or sponges (only n-bit state to be protected)

Enc. of 1600 bytes of A and M using Romulus- N in different implementations.

- stands for unprotected, P for probing, NI, SNI, and C for coupling resistance

Implementation	Cycles	Critical Path(ns)	Throughput $($ Gbps $)$	Area (GE)	Goal
Unmasked, 4 rounds/cycle	2318	2	5.52	10124.24	-
Unmasked, 1 round/cycle	6048	1.11	3.81	7348.61	-
Masked, 1 cycle/round	8636	0.65	4.56	33131.25	P
Masked, 2 cycles/round	12088	0.6	2.35	20716.25	P
Masked, 3 cycles/round	18128	0.5	2.82	13276.52	P
Masked, 5 cycles/round	30208	0.5	1.69	14441.25	SNI
Masked, 7 cycles/round	42288	0.5	1.21	16266.52	PINI
Masked, 14 cycles/round	84568	0.5	0.6	15029.7	C

Features

Romulus features :

\triangleright provably secure in standard model (unlike most LWC candidates)
\triangleright full 128-bit security time/data (unlike some LWC candidates) Romulus-N priv. bound is 0 , auth is $q_{d} / 2^{\tau}$, doesn't depend on \#enc queries (unlike most LWC candidates)
\triangleright SKINNY is a stable and well studied primitive, large security margin, no distinguisher (unlike many LWC sponge-based candidates), ISO
\triangleright easy nonce-misuse resistance mode (unlike all LWC candidates) birthday with graceful degradation so \sim full security in practice
\triangleright no or low overhead for small messages (unlike all LWC sponge-based candidates)
1 AD and $1 \mathrm{M} n$-bit blocks need 2 TBC calls with Romulus
\triangleright excellent hardware profile, good software profile (good for 4 or 8-bit)
\triangleright side-channel protection : efficient masking (small protected state) + Romulus-T mode protection

No TBC currently appears in NIST cryptography standards yet.

NIST Lightweight cryptography competition

The 10 finalists of the ongoing NIST competition

Thank you!

