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A generalized sponge construction [Bertoni et al., 2007]
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• M1‖ · · · ‖Mk is the message padded into r -bit blocks

• Variable-length digest, if n bits required, the digest is the first n bits of Z1‖ · · · ‖Z`

• The first message block can be larger, can squeeze at a larger rate

[Guo et al., 2011, PHOTON]
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Classical security requirements
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• Insufficient for certain applications (e.g., MAC (k ,m) = H(k‖m) with H = plain

Merkle-Damg̊ard)

• Hash function should behave like a random oracle
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Indifferentiability [Maurer et al., 2004, Coron et al., 2005]

real world simulated world

H P SRO

D

• (HP ,P) for a random primitive P should behave like a random oracle RO paired

with a simulator S that maintains construction-primitive consistency

• H is indifferentiable from RO for some simulator S whenever any D can

distinguish the two worlds only with a negligible probability

• Indifferentiability =⇒ Pre/SecPre/Col security [Andreeva et al., 2010]
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Indifferentiability of the sponge construction

• The (generalized) sponge construction was proven indifferentiable with a bound

O
(

q
2c/2

)
, [Bertoni et al., 2008, Naito and Ohta, 2014] 1

=⇒ The sponge is unlikely differentiable from a RO with less than q ≈ 2c/2 queries

• This implies the following security bounds:

Security property Security bound

Indifferentiability O
(

q
2c/2

)
Col O

(
q

2c/2 + q2

2n

)
SecPre O

(
q

2c/2 + q
2n

)
Pre O

(
q

2c/2 + q
2n

)
indifferentiability

(q is number of primitive queries)

classical attacks against RO
(q is number of oracle queries)

• There is a gap in the first preimage security =⇒ we fill it

1As long as the first message block and squeezing rate are not too large
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Collision attack with q ≈ 2c/2 queries [Bertoni et al., 2011]
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• Query P(m1‖0c) for 2c/2 different m′1s, store them in a list L

• With high probability, there exists Y 6= Y ′ ∈ L s.t., innerc(Y ) = innerc(Y ′)

=⇒ take m2 = outerr (Y ),m′2 = outerr (Y ′)

=⇒ It gives H(unpad(m1‖m2)) = H(unpad(m′1‖m′2))
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Second preimage attack with q ≈ 2c/2 queries [Bertoni et al., 2011]
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• Let M be the first preimage, M1‖ . . . ‖Mk := pad(M)

• Compute the state before the first squeeze, call it Y

• Reach Y with an inner forward/backward collision, compensate the outer part

with m2 = outerr (Yinv)⊕ outerr (Yfwd)

=⇒ It gives H(unpad(m1‖m2‖m3)) = H(M)
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First preimage attack [Bertoni et al., 2011]
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• Let Z = Z1‖ · · · ‖Z` be the image

• Here, there is no intermediate state Y : we need to find it before applying the

same attack

• More precisely, we need Y s.t. ∀i = 1, . . . , `, outerr ′(P
i (Y )) = Zi

• One attempt succeeds with probability ≈ 1
2n−r′ =⇒ this attack succeeds after

≈ 2n−r
′

+ 2c/2 queries
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Improved first preimage resistance

• This first preimage attack succeeds after ≈ min{2n−r ′ + 2c/2, 2n} queries,

while the bound from indifferentiability guarantees preimage security up to

≈ min
{

2c/2, 2n
}

queries

=⇒ It does not match the attack when c/2 ≤ n − r ′

• Our contribution: we prove the preimage resistance with bound

O
(

q

2n
+ min

{
q

2n−r ′
,
q2

2c

})
=⇒ It shows optimality of the attack
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Improved first preimage resistance

Ascon

(b, c, r , r ′, n) = (320, 256, 64, 64, 256)

Spongent largest mode

(b, c, r , r ′, n) = (272, 256, 16, 16, 256)

Adversarial advantage upperbound according to number of queries
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Proof idea
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• To find a preimage, the adversary must find a cascade of `− 1 permutation

evaluations giving Z1, . . .Z`

• But this is not enough, this cascade must be reached from 0b

• Depending on the direction of the query X1 → Y1, there are two scenarios:

• Forward direction: the cascade is extended by one

• Inverse direction: an inner collision must have been found
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Proof idea - probability computation
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• Probability of inner collision upper bounded by q(q+1)
2c

• Probability of finding a cascade:

• Forward direction: adversary must guess a “good” X1 =⇒ O
( q

2n

)
• Inverse direction: more involved, since the queries can appear in any order,

any direction within the cascade =⇒ O
(

q

2n−r′

)
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Impact on the generic security of a few schemes

Scheme
Parameters Security bound

Note
b c r r ′ n ` Old New

Spongent 272 256 16 16 256 16 2128 2240 ISO/IEC standard

PHOTON 288 256 32 32 256 8 2128 2224 ISO/IEC standard

ACE-Hash 320 256 64 64 256 4 2128 2192 NIST LWC round 2

KNOT Hash 256 224 32 128 256 2 2112 2128 NIST LWC round 2

384 336 48 192 384 2 2168 2192

512 448 64 256 512 2 2224 2256

SKINNY-tk2-Hash 256 224 32 128 256 2 2112 2128 NIST LWC round 2

Subterranean 2.0 257 248 9 32 256 8 2124 2224 NIST LWC round 2

Ascon-Hash 320 256 64 64 256 4 2128 2192 NIST LWC finalist

PHOTON-Beetle-Hash 256 224 32 128 256 2 2112 2128 NIST LWC finalist
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Conclusion

• We derived a tight security bound for the first preimage of the sponge construction

• This bound has direct implications on the security of lightweight cryptographic

sponges

Thank you for your attention!
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