

Towards a New Lightweight Cryptography Standard

Meltem Sonmez Turan

Agenda

- Overview of the standardization process
- Evaluation of the finalists
- Next steps

Lightweight Cryptography

CONSTRAINED DEVICES

e.g., RFID tags, sensors, IoT devices

NEW APPLICATIONS

e.g., home automation, healthcare, smart city

PRIVATE INFORMATION

e.g., location, health data, usage patterns

LACK OF CRYPTOGRAPHY STANDARDS

NIST crypto standards are optimized for general-purpose computers

NIST Lightweight Cryptography Standardization Process

Public competition-like process with multiple rounds like AES, SHA3 and PQC standardization.

Develop new guidelines, recommendations and standards optimized for constrained devices.

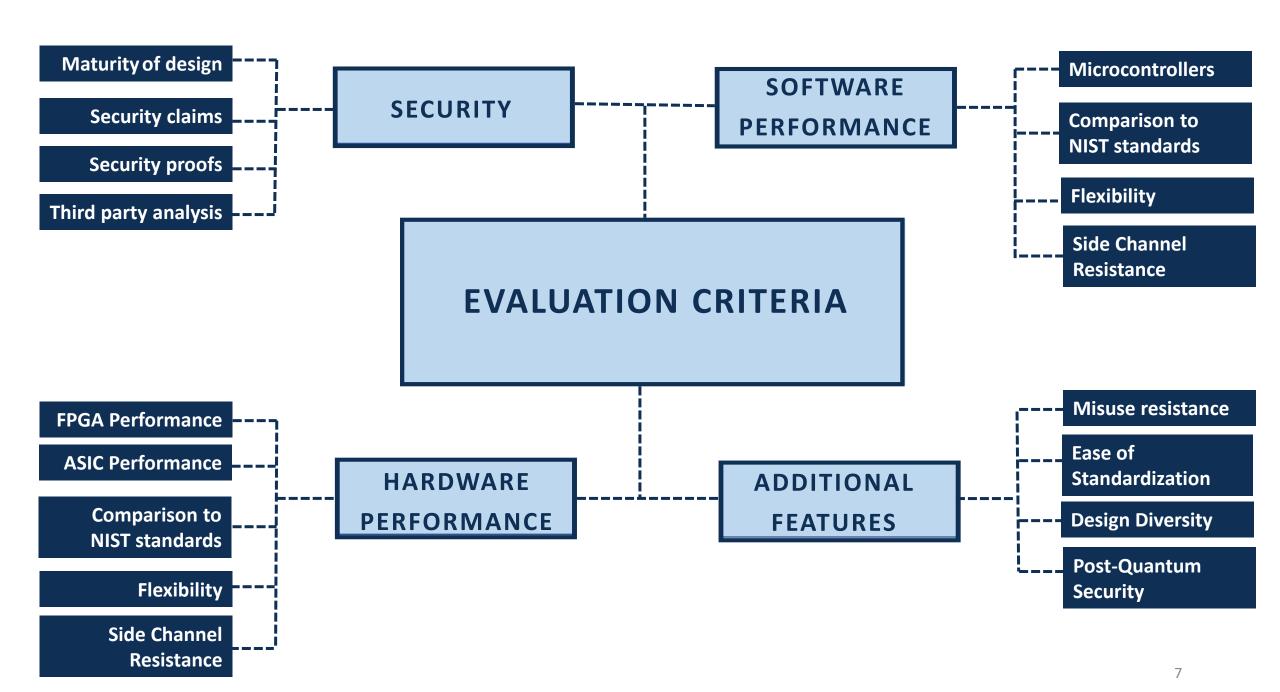
Authenticated Encryption and (optional) hashing for constrained software and hardware environments.

In August 2018, NIST published the 'Submission Requirements and Evaluation Criteria for the Lightweight Cryptography Standardization Process'.

Submission deadline: February 2019

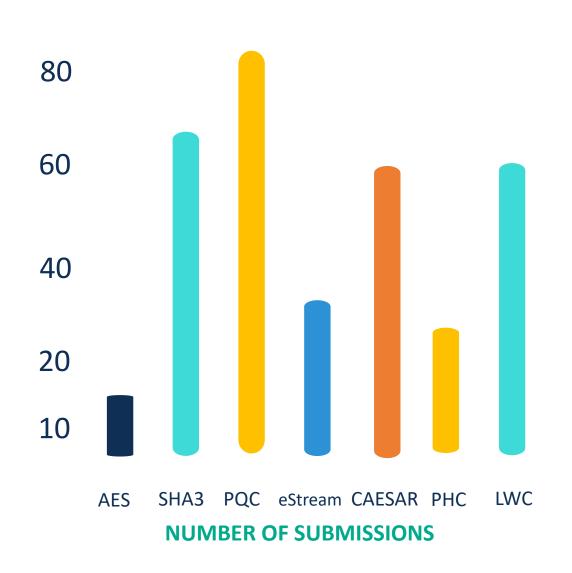
Requirements

AEAD

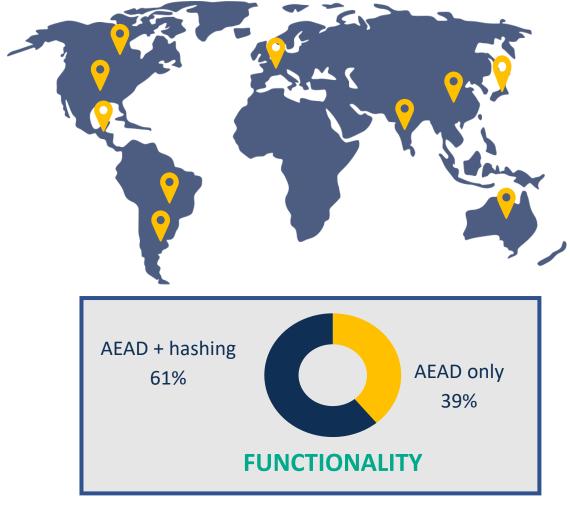

- Confidentiality of the plaintexts (under adaptive chosenplaintext attacks) + Integrity of the ciphertexts (under adaptive forgery attempts)
- At least 128-bit key, at least 2¹¹² computation for attacks (nonce is assumed to be unique under the same key)
- Family of (at most 10) algorithms
 - One primary member with key ≥ 128 bits, nonce ≥ 96 bits and tag ≥ 64 bits
 - Limits on the input sizes for the primary member at least 2⁵⁰-1 bytes

Hash

- Computationally infeasible to find a collision or a (second) preimage. Resistance to length extension attacks. (Attacks requiring at least 2¹¹² computations)
- Digest size at least 256 bits
- Family of (at most 10) algorithms
 - One **primary member** has a hash size of 256 bits.
 - Limits on the input sizes for the primary member at least 250-1 bytes
- Common design components with the AEAD


Design and implementation

• Perform significantly better in constrained environments (HW and SW platforms) compared to NIST standards, efficient for short messages, implementations that are easy to protect against side channel attacks, and fault attacks



Submissions

FROM 25 COUNTRIES

Round 1

Time period: April – August 2019

Evaluation criteria: Security

• e.g., distinguishing attacks, practical tag forgeries, domain separation issues, new designs with no third-party analysis etc.

NISTIR 8268

Status Report on the First Round of the NIST Lightweight Cryptography Standardization Process

Meltem Sönmez Turan Kerry A. McKay Çağdaş Çalık Donghoon Chang Larry Bassham

This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8268

Second Round Candidates

Oribatida ACE Gimli **SPIX** Grain128aead **ASCON Photon-Beetle** SpoC **HyENA Pyjamask** Spook COMET Subterranean | **ISAP** Romulus DryGascon **Elephant KNOT SAEAES Sundae-GIFT** LOTUS-LOCUS **ESTATE** Saturnin TinyJambu **Skinny-AEAD ForkAE** Wage mixFeed **GIFT-COFB** Sparkle Xoodyak **ORANGE**

Software Benchmarking

Microcontroller benchmarking by NIST LWC Team

Devices:

- 8-bit AVR
- 32-bit ARM Cortex M0+, M4
- MIPS32 M4K
- Tensilica L106

Metrics:

- Code size
- Speed

Microcontroller benchmarking by Renner et al.

Devices:

- 8-bit AVR
- 32-bit ARM Cortex M3, M7
- Tensilica Xtensa LX6
- RISC-V

Metrics:

- Size
- RAM usage

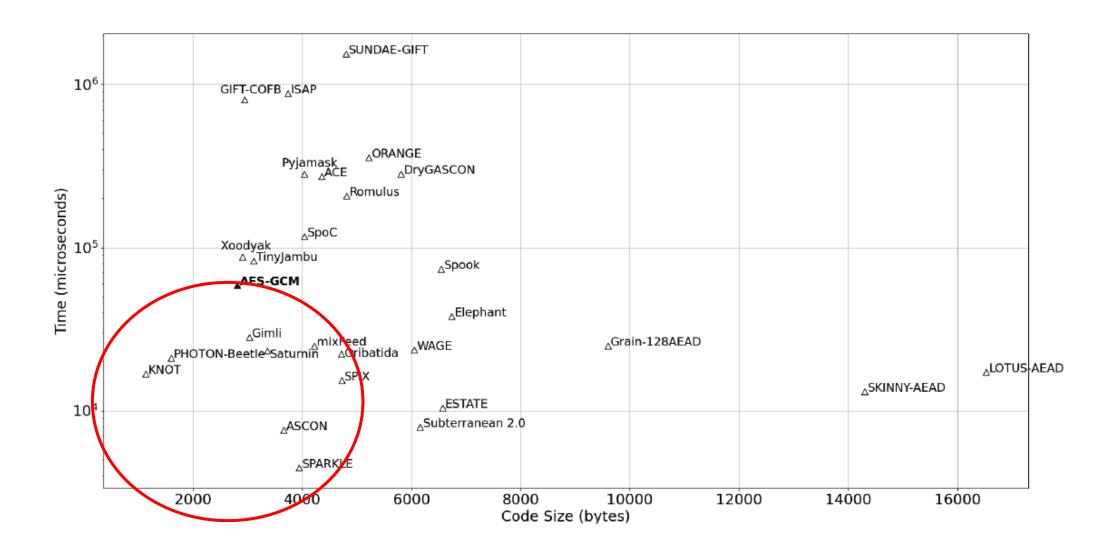
Microcontroller benchmarking by Weatherly

Devices:

- AVR
- ARM Cortex-M3
- Tensilica Xtensa LX6

Metrics:

Speed


eBACS (ECRYPT
Benchmarking of
Cryptographic Systems)
by Lange and Bernstein

Devices:

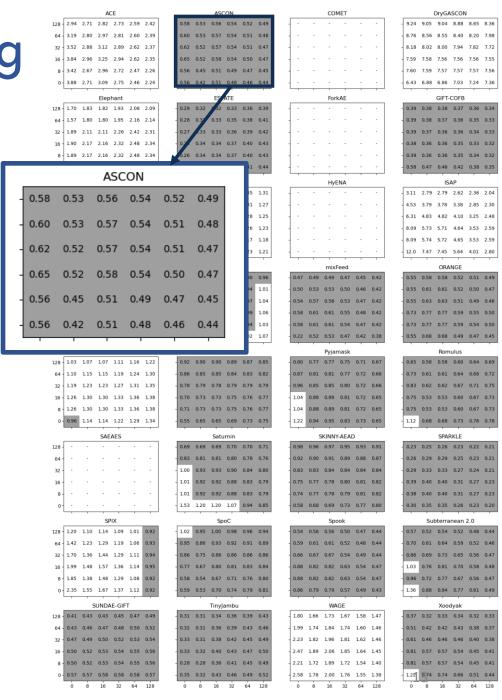
 Many systems covering ARM, AMD, Intel, PPC, RISC V, and MIPS architectures

Metrics:

Speed

Code size vs. speed results of the smallest primary AEAD variants - 16-byte message and 16-byte AD on ATmega328P

Software Benchmarking

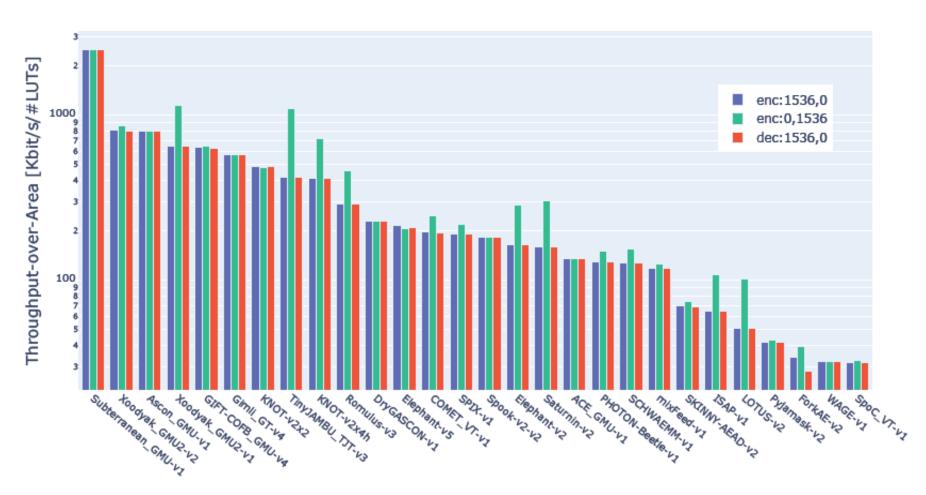

Relative timings for each candidate are shown by a matrix of values, where

- rows = message lengths (0 bytes 128 bytes),
- columns = AD lengths (0 bytes 128 bytes).

Metric = $\frac{\text{Execution time of the candidate}}{\text{Execution time of AES-GCM}}$

Result:

Ascon, Estate, Gimli, Knot, Lotus-AEAD, mixFeed, Orange, Photon-Beetle, Pyjamask, Romulus, Saturnin, Skinny-AEAD, Sparkle, Spoc, Spook, Subterranean, SUNDAE-GIFT, TinyJambu, Xoodyak perform better than AES-GCM on ATmega328P.


Round 2 Hardware Benchmarking

Initiative	Platforms	Metrics	
	W	Resource utilization (LUT or LE, flip-flops)	
GMU CERG group	Xilinx Artix-7 Intel Cyclone 10 LP Lattice Semiconductor ECP5	Maximum clock frequency (MHz)	
OWIO CERO group		Throughput (Mbits/s)	
		Energy per bit (nJ/bit)	
		Area (μm^2 and GE)	
Khairallah et al.	TSMC 65nm FDSOI 28nm	Clock period (ns)	
Kilalialiali et al.		Power (mW)	
		Energy (mJ)	
	ST Micro 65nm	Throughput (bits per cycle)	
	TSMC 65nm	Area (GE)	
Aagaard and Zidarič	ST Micro 90nm	Energy (nJ)	
	TSMC 90nm	Area×Energy (GE×nJ)	
	ARM/IBM 130nm	Clock Speed (GHz)	

Round 2 Hardware Benchmarking

Throughput-over-Area for Authenticated Encryption and Decryption of 1536-byte messages at 75MHz by GMU

Round 2

Time period: Aug. 2019 – March 2021

Evaluation criteria: security analysis, performance benchmarks

Two workshops

- Nov. 2019 Third LWC Workshop
- Oct. 2020 Fourth LWC Workshop (virtual)

March 2021, NIST announced ten finalists.

ASCON Elephant GIFT-COFB Grain-128aead ISAP

Photon-Beetle Romulus Sparkle TinyJambu Xoodyak

NISTIR 8369

Status Report on the Second Round of the NIST Lightweight Cryptography Standardization Process

Meltem Sönmez Turan Kerry McKay Donghoon Chang Çağdaş Çalık Lawrence Bassham Jinkeon Kang John Kelsey

This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8369

Round 3

Time period: March 2021 – December 2022 (tentative)

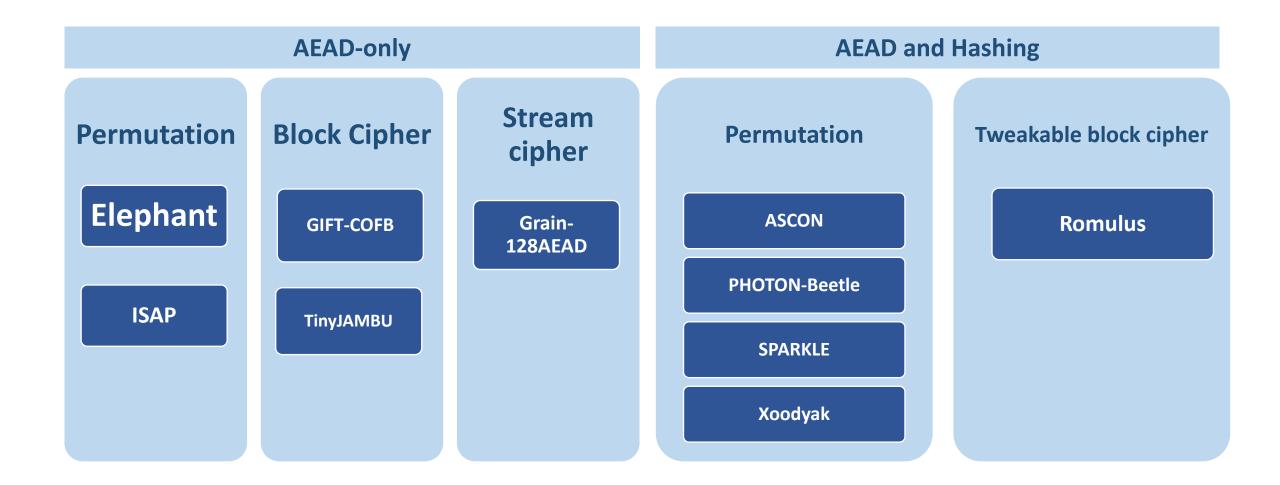
Evaluation criteria: Security, performance benchmark, side channel analysis, and additional features.

Decision relies on publicly available analysis and benchmarking results. Use of **lwc-forum** is highly encouraged.

Workshop

May 2022 – Fifth LWC Workshop (virtual)

Challenges:


- Assigning weights for different criteria: Different security claims, different functionality, attacks with different complexities
- Fair evaluation: Not all algorithms get the same public attention.

Variants

Finalist	# Variants	Key size (bits)	Nonce size (bits)	Tag size (bits)	Digest size (bits)
Ascon	2 aead 2 hash	128 	128 	128 	 256
Elephant	3 aead	128	28 96		
GIFT-COFB	1 aead	128	128	128	
Grain-128aead	1 aead	128	96	64	
ISAP	4 aead	128	128	128	
PHOTON-Beetle	2 aead 1 hash	128 	128 	128 	 256
Romulus	3 aead 1 hash	128 	128 	128 	 256
Sparkle	4 aead 2 hash	128-256 	128-256 	128-256 	 256-384
TinyJambu	3 aead	128-256	96	64	
Xoodyak	1 aead 1 hash	128 	128 	128 	 256

Underlying Components - Finalists

Modes of Operation - Finalists

Sequential

Classical/modified Sponge with Public Permutation ASCON, Xoodyak, PHOTON-Beetle, SPARKLE

(T)BC-based Feedback with Rate 1
GIFT-COFB, Romulus

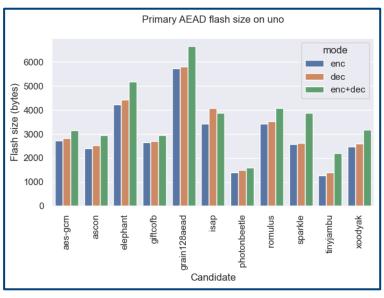
Classical Sponge with Secret Permutation
TinyJAMBU

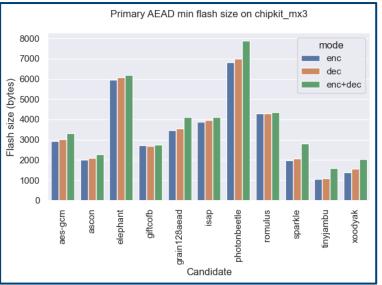
Enc-then-Mac ISAP

Stream Cipher Based
Grain-128AEAD

Parallel

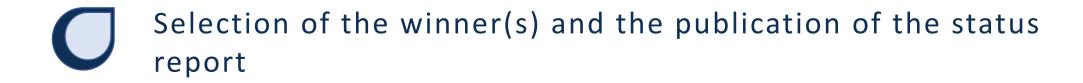
Enc-then-Mac Elephant


^{*} For primary variants


Software Benchmarking - Finalists

Ongoing software benchmarking by NIST team, partial results are on project GitHub page.

	Finalists	Submission Package						Total	
No		Total	#AEAD	#Hash	#(AEAD+Hash)	#AEAD Primary	#Hash Primary	Additional	incl. Additional
1	ASCON	85	31	36	18	11	9	61	146
2	Elephant	3	3			1			3
3	GIFT-COFB	1	1			1		6	7
4	Grain-128AEAD	5	5			5			5
5	ISAP	22	18		4	5		4	26
6	PHOTON-beetle	40	16	8	16	8	8	6	46
7	Romulus	21	11	4	6	5	4	34	55
8	SPARKLE	32	21	11		6	6	6	38
9	TinyJambu	6	6			2			6
10	Xoodyak	4	2	2		2	2		4
	Total	219	114	61	44	46	29	117	336



Timeline

	Early stage 2015-2018	2019	2020 – 2022	Late 2022
	First workshop	Submissions due	Fourth workshop	Announcement of the
2	Second workshop	Beginning of Round 1	Announcement of the	winner(s)
	NISTIR 8114	NISTIR 8268 Beginning of Round 2	finalists Beginning of Round 3	Beginning of
-	Profiles	Third workshop	NISTIR 8369	standardization
	Call			
			Fifth workshop	

Next Steps

Standardization is expected to start in 2023.

Thanks!

CONTACT NIST TEAM

lightweight-crypto@nist.gov

PUBLIC FORUM

lwc-forum@list.nist.gov

GITHUB

https://github.com/usnistgov/Lightweight-Cryptography-Benchmarking

WEBSITE

https://csrc.nist.gov/Projects/lightweight-cryptography