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Overview of GIFT-COFB
GIFT-COFB is a lightweight block cipher based AEAD with the GIFT block cipher. Eachround of GIFT consists of 3 steps:

SubCells, PermBits and AddRoundKey

Figure: GIFT-64 Round Function

• GIFT-64, 28-rounds with 64-bit blocksize, and 128-bit key size.
• GIFT-128, 40-rounds with 128-bit blocksize, and 128-bit key size.
• The underlying algebraic structure isthe field F264 with the irreduciblepolynomial

p64(x) = x64 + x4 + x3 + x + 1.



Correlation Power Analysis (CPA)

Iterated Block Cipher. A block cipher obtained by iterating r times a round function
R : Fn

2 → Fn
2, each time with a different key Ki ∈ K.

Xi = RKi

(
X(i−1)

) for 1 ≤ i ≤ r

Correlation Power Analysis (CPA). Given a set of power traces and the corresponding setsof intermediate values, Correlation Power Analysis (CPA) aims at recovering the secretsubkey using a correlation factor between the measured power samples and the powermodel of the computed sensitive values.
• Hamming Weight (HW) Model
• Hamming Distance (HD) Model



Correlation Power Analysis (CPA): Success Rate

Let g =
[
g1, g2, . . . , g2|k|

] be a vector of guessed values for the subkey k with the possible
candidates sorted in descending order. The success rate of order o ≤ 2|k| of aside-channel key recovery attack is

SRo (k∗, g) =

{
1, if k∗ ∈ [g1, g2, . . . , go]

0, otherwise
The SR quantifies the amount of effort required to recover the correct subkey k∗ from theguess vector and it serves as an indicator of how efficient an attack is.



Correlation Power Analysis: Execution Environment
Hardware

• ChipWhisperer Lite as a control boardand oscilloscope.
• ATXMEGA128D4 8-bit RISCmicro-controller on a Chip WhispererCW308 UFO target board.
• C-language implementation of GIFT-64using 8-bit data types into the “simpleserial” firmware provided with theChipWhisperer.
• The CPA attack and the data analysiswas performed using Python. Figure: Hardware environment - Left:ChipWhisperer Lite -Right: XMEGA on CW308 UFO Board



Implementation of CPA: Execution Environment

• A threshold cap of 150 iterations and apool of plaintext/voltage array pairscontaining 2,000 entries.
• The Success Rate (SR) metric is used inorder to quantify the amount of effortrequired to recover the correct key.
• We consider a trial to be a collectionof 100 experiments in which the trialresults output has ordered pairssimilar to the output of theexperiment, but the ’y’ values hold themean success rate of the 100executions of the experiments.



Implementation of CPA Using Hamming Weight Model

Point of Interest (POI): S-Box output in rounds 2, 3, 4, and 5 of the GIFT-64 algorithm.

Figure: Sample voltage capture for execution of a portionof GIFT-64 on the XMEGA

Pearson’s Correlation Coefficient

∑
(Ri − Ravg) · (Gi − Gavg)√∑
(Ri − Ravg)2 ·

∑
(Gi − Gavg)2

• A correlation is computed for eachpossible value of the targeted sub-keyused in the round, and the sub-keywith the highest correlation becomesthe predicted value for that sub-key.



Non-Linearity and Transparency Order

Walsh-Hadamard Transform

WF(u) =
∑

x∈Fn
2
(−1)F(x)⊕x·u, where u ∈ Fn

2 and x · u is an inner product.
Non-Linearity (NL) 1

NL(F) = 2n−1 − 1
2 max

u∈Fn
2,v∈F

n∗
2

|WF(u, v)|

1M. Matsui. Linear Cryptanalysis Method for DES Cipher. In Advances in Cryptology EUROCRYPT’93,386-397. Springer,1994.



Transparency Order and Revisited Transparency Order

Transparency Order (TO) 2

max
β∈Fn

2

(
|n − 2H(β)| − 1

22n − 2n

∑
a∈Fn∗

2

|
∑

v∈Fn
2,H(v)=1

(−1)v·βWDaF(0, v)|

)

where DaF represents the discrete derivative of a function F with input a.
Revisited Transparency Order (RTO)3.

max
β∈Fm

2

(m − 1
22n − 2n

∑
a∈Fn∗

2

|
m∑

j=1

m∑
i=1

(−1)βi⊕βjCFi , Fj(a)|)

where CFi,Fj(a) is a cross correlation of functions Fi and Fj with input a.
2E. Prouff. DPA Attacks and S-boxes. In Fast Software Encryption, 424-441.Springer, 2005.3K. Chakraborty et al. Redefining the Transparency Order. In Designs, Codes and Cryptography Vol. 82, 95–115 (2017)



Signal to Noise Ratio (SNR) and DPA-SNR

Signal to Noise Ratio (SNR)Probabilistic measurement (commonly expressed in decibels as 20 log(SNR)) of thequotient of the signal and noise in a cryptographic implementation
SNR =

Var(Signal)
Var(Noise)

4 (1)

Differential Power Analysis SNR (DPA-SNR)5

n2n

(∑
a∈Fn

2

(
n−1∑
i=0

(∑
x∈Fn

2

(−1)Fi(x)+x·a

)))
4Rodger E. Ziemer, W. H. Tranter. Principles of Communications: Systems, Modulation, and Noise. Wiley (2002).5Guilley, S. et al. Smart Card Research and Advanced Applications VI (2004). vol 153. Springer, Boston, MA.



SCA Resistance Metric Scores of the Analyzed Ciphers
S-Box Non-Linearity SNR DPA-SNR TO RTO

GIFT 4 39.348 2.399 3.466 3.066PICCOLO 4 39.401 3.108 3.666 3.333PRESENT 4 34.665 2.129 3.533 3.266
S1 2 39.968 2.946 3.4 3.266
S2 0 39.252 2.484 2.933 2.933
S3 0 34.148 2.484 2.933 2.933

Biryukov, Dinu, and Großschädl (2016)• AES, Fantomas, LBlock, Piccolo, PRINCE, RC5, Simon, and Speck on an 8-bit AVRprocessor.• Non-Linearity (NL), Transparency Order (TO) and Improved Transparency Order(RTO).



Mean Success Rate Comparison of The Analyzed Ciphers

Figure: A Comparison of Mean Success Rate of the S-Boxes



SCA Resistance Metric Scores: Comparison of GIFT,
PICCOLO and PRESENT

S-Box Non-Linearity SNR DPA-SNR TO RTO

PICCOLO 4 39.401 3.108 3.666 3.333GIFT 4 39.348 2.399 3.466 3.066PRESENT 4 34.665 2.129 3.533 3.266
Table: GIFT, PICCOLO and PRESENT: Side Channel Leakage Metric Scores

In the case of equal non-linearity (e.g. NL=4 or NL=0) the values of SNR and DPA-SNR havea similar behavior as the value of NL among the S-boxes with different NL values.



GIFT, PICCOLO and PRESENT: Mean Success Rate
Comparison

Figure: GIFT, PICCOLO and PRESENT: Mean Success Rate of the S-Boxes



Test Vector Leakage Assessment of LWC and CAESAR
Hardware Implementation of GIFT-COFB 7

TVLA identifies differences between two sets of side channel measurements, such aspower and traces, by computing Welch’s t-test for the two sets of measurements.
t =

(
TA − TB

)√(
S2

A/NA
)
+
(

S2
B/NB

) ,
where TA and TB are the two trace sets, TA,TB, SA, SB,NA, and NB are the means,variances, and size of TA and TB, respectively 6.

6Flexible Open-source workBench fOr Side-channel analysis (FOBOS)7SAL: NIST Lightweight Cryptography Implementations (https:// github.com/vtsal)



TVLA: Experimental Setup
FOBOS Hardware Setup: Digilent Basys3 control board, Digilent Nexys A7 DUT board andPicoscope 5000 series (5244D) respectively.

Figure: FOBOS experimental setup

• CAESAR and LWC hardwareimplementation of GIFT-COFB 8
• DUT board: jumper on the power line(core FPGA voltage) was added andseveral capacitors on the voltage railwere removed.
• Generated the input fixed-vs-randomtest vector by using the same key,nonce and associated data.

8SAL: NIST Lightweight Cryptography Implementations (https:// github.com/vtsal)



GIFT-COFB TVLA: Experimental Results
• The DUT clock was set to 10 MHz and the oscilloscope sampling rate was set at12000 samples/sec.• A collection of 2000 traces were made using fixed-vs-random test vectors.

Figure: TVLA results on LWC hardware implementation ofGIFT-COFB. Figure: TVLA results of CAESAR hardware implementationof GIFT-COFB.



Non-Profiled Deep Learning Based CPA on GIFT-64:
Preliminary Results

• 2016: Deep Learning Based SCA Techniques (Profiled Attacks) 9
• 2019: Deep Learning-based Side-Channel Attacks (Non-Profiled Attacks) 10

Preliminary Results: 11
CPA, Multi Layer Perceptron Based CPA(CPA-MLP), and onvolutional NeuralNetworks Based CPA (CPA-CNN) on 10datasets of 345 power traces of GIFT-64,each with 1250 time samples.

Attack Accuracy
CPA 100%CPA-CNN 100%CPA-MLP 60%

9H. Maghrebi, T. Portigliatti, and E. Prouff. Breaking cryptographic implementations using deep learning techniques. In Security, Privacy, and AppliedCryptography Engineering, Vol.10076, 3-26 (2016).10Timon, B. Non-Profiled Deep Learning-based Side-Channel attacks with Sensitivity Analysis. IACR Transactions on Cryptographic Hardware and EmbeddedSystems, 2019(2), 107–131.11L. Babinkostova, A. Benjamin, J. Herzoff, E. Serra, Deep Learning Based Side Channel Attacks on Lightweight Cryptography, 36th AAAI Conference on ArtificialIntelligence, February 22 – March 1, 2022



Non-Profiled Deep Learning Based CPA on GIFT-64:
De-synchronization

The traces were de-synchronized through shifting each trace left or right by randomvalues chosen in the interval [-25, 25].
Attack Accuracy

CPA 0%CPA-CNN 100%CPA-MLP 0%
Table: Attacks performed on 10 different de-synchronizedatasets, each with a different fixed key and 345 traces

Figure: CPA conducted on de-synchronized traces. Thecorrect key does not produce a singular spike in correlationor the highest correlation
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