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Mode-level Properties
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m  Sponge/duplex-based authenticated encryption mode
= [nstantiation:

= ASCON-p
= KECCAK-p [400]

= Carefully selected capacities and rates:

m  Robustness against DPA
m  Hardening against fault attacks: DFA, SFA, SIFA
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Leakage Resilience of Isap Mode
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Summary of Conventional Security

Security of ISAP in nonce-respecting setting

m  Assumption: random permutation model, bounded leakage model

®  |SAPis a secure authenticated encryption scheme [DEM+20]



Summary of Conventional Security

Security of ISAP in nonce-respecting setting

m  Assumption: random permutation model, bounded leakage model

®  |SAPis a secure authenticated encryption scheme [DEM+20]
Exotic features
m  Security of nonce-reuse: leakage-resilient authenticity preserved!

= Release of unverified plaintext: security guaranteed due to EtM

= Key-committing security: usage of ISAPRK within ISAPMAC



Two New Leakage Resilience Results

EUROCRYPT 2021 [DM21] In submission [DMP20]
Leakage Resilient Value Comparison With Leakage and Tamper Resilient
Application to Message Authentication Permutation-Based Cryptography
Christoph Dobraunig and Bart Mennink Christoph Dobraunig and Bart Mennink and Robert Primas
= Solution to perform tag = More practical leakage
verification ... resilience model
® in aleakage resilient way m  closer fit to actual leakage

= without extra primitives m  also captures fault attacks
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Leakage Resilient Value Comparison (LRVC)

SukKS (Suffix Keyed Sponge):

EHA%
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®  SukKS (Suffix Keyed Sponge):
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= Naive Tag Verification on input of message/tag tuple (M, T*):

= Compute T = SUKS(K, M)
m |f T = Treturn 1, otherwise return 0
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Leakage Resilient Value Comparison (LRVC)

SukKS (Suffix Keyed Sponge):

EHA%

Naive Tag Verification on input of message/tag tuple (M, T*):

= Compute T = SUKS(K, M)
m |f T = Treturn 1, otherwise return 0

Verification might leak information about T!

This work: formal analysis of leakage resilient value comparison

/24



LRVC: (Tweakable) Permutation-Based Value Processing
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= PVP gives leakage resilient value comparison

m  Pis public or secret permutation
= Similar to earlier suggestion of designers of ISAP [DEM+20]



LRVC: (Tweakable) Permutation-Based Value Processing

S Sljo—

PVP TPVP

= PVP gives leakage resilient value comparison

m  Pis public or secret permutation
= Similar to earlier suggestion of designers of ISAP [DEM+20]

= TPVP gives leakage resilient value comparison

m  TPis public or secret tweakable permutation
= TPVP with secret tweakable permutation was used in Spook [BBB+20]
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LRVC: SuKS-then-PVP (STP)

ol et

SuKS PVP

= Natural combination of SUKS and PVP
= Salt taken from keyless computation of SUKS

= Leakage resilience of STP (and thus of IsAP)
follows from that of SUKS and of PVP

/24



Accumulated Interference

= Previous analysis in bounded leakage model

= Adversary can choose any polynomial-time computable leakage
function with bounded range [DP08]

= Each new primitive call leaks < A bits
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Accumulated Interference

Previous analysis in bounded leakage model

= Adversary can choose any polynomial-time computable leakage
function with bounded range [DP08]

= Each new primitive call leaks < A bits

This work: Accumulated Interference

= We do not have to bound leakage per primitive call a priori
= Rather, define it as the Accumulated Gain over time: AG(/)

m  Aprioriand a posteriori, accurate bound on AG(i) derived through
measurements

»  Additionally model effect of faults

10/24



Accumulated Interference: ASAKEY

We showcase the power of Accumulated Interference in ASAKEY
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ASAKEY = encryption part of ISAP
ASAKEY is a LR-PRF up to (simplified) bound }°7_ | 5%
Naive (a priori) bounding: AG(i) <i- A

More accurate bounding using simulations
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Implications on Physical Attacks



Mode-level Robustness Claims of Isap

= Protection against Differential Power Analyis (DPA)

m  DPA-based key recovery — Al
m  DPA-based plaintext recovery

=  Optional: DPA-based tag recovery — STP
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Mode-level Robustness Claims of Isap

Protection against Differential Power Analyis (DPA)

m  DPA-based key recovery — Al
m  DPA-based plaintext recovery

=  Optional: DPA-based tag recovery — STP
Protection against Statistical (Ineffective) Fault Analysis (SFA/SIFA) — Al
Hardening against Differenial Fault Analysis (DFA)

Hardening against Profiling/Simple Power Analysis (SPA)
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DPA-based Key Recovery

Attack:

®=  Query a keyed primitive using multiple different inputs

= Hypothesis tests with corresponding power traces and sub-key guesses

IsAP processes the main key only during ISAPRK

IsAPRK limits amount of different queries to primitive with same key to 2
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Accumulated Interference: Estimating AG.x(X, g, 1)
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Accumulated Interference: Estimating AG.x(X, g, 1)

Our analysis [DMP20]

/
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Accumulated Interference: Estimating AGapa(X, q, 1)

Advantage (bits)

128) ) -
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# Evaluations

Evaluation Setup: Chipwhisperer-Lite with XMEGA128D4 target [DMP20]

64
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DPA-based Plaintext Recovery

Attack:

m  Query the decryption with a constant nonce and varying ciphertexts
= Constant key stream is combined with varying ciphertext blocks

= Simple DPA-style attack can reveal the key stream

Such attacks do not require direct extraction of cryptographic keys
Firmware updates: Plaintext could carry cryptographic keys or IP
ISAP’s two-pass construction prevents this scenario

= Tag verification before start of decryption

16/24



DPA-based Tag Recovery

= Attack:

m  Given a correct ciphertext C, flip some bits leading to related C; . . . C,,,
that then correspond to related messages M; ... M,

m  These can then be used to forge valid tags for C; . .. C, due to leaks in
tag comparison [BBC+20]

= Tag comparison needs protection

= Algorithmic masking: 127 ANDs with mult. depth of 7 (128-bit tag)
= On mode-level: SUKS-then-PVP (STP)
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SuKS-then-PVP (STP)

SuKS PVP
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SuKS-then-PVP (STP)

SuKS PVP

= Qurinstantiation of StP at the end of ISAPMAC (of ISAP-A-128A):

m 14 additional permutation rounds for tag comparison
= No noteworthy increase in code-size/area
= No changes to Isap algorithm and cryptographic properties

18/24



SuKS-then-PVP (STP)

M M,

EI%L

SuKS PVP Forward Direction

= Qurinstantiation of StP at the end of ISAPMAC (of ISAP-A-128A):

m 14 additional permutation rounds for tag comparison
= No noteworthy increase in code-size/area
®m  No changes to Isap algorithm and cryptographic properties
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Statistical (Ineffective) Fault Analysis (SFA/SIFA)

= Attack:

m  Query a keyed primitive using multiple different inputs and inject a
faultin a certain location

= Only collect those inputs where the fault did not affect the computation

m  Evaluate distributions of certain state bits using the collected inputs
and partial key guesses

= [SAPRK limits amount of different queries to primitive with same key to 2

19/24



Accumulated Interference: Estimating AGsifa(X, q, 1)

16 X X

12+

Advantage (bits)

o2 8 16 24 2
# Evaluations

Evaluation Setup: Chipwhisperer-Lite with XMEGA128D4 target using clock glitches [DMP20]
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Differential Fault Analysis

= Attack:

= Query decryption with constant nonce
®  [Inject faults at different locations before plaintext extraction

m  Use differences in plaintext (or leakage thereof) to recover the state
= |n case of Isap one only learns Kz
= Adapted attack strategy for learning K exists [DMP20]

= Combinations of precise faults in ISAPRK and ISAPENC during one execution

®m  Quadratic amount of faulty executions
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Profiling/Simple Power Analysis (SPA)

= [SAP’s sponge-based mode gives SPA hardening

m  Leakage behaves similar to rate

= Cryptographic properties ensure bounded security loss for bounded leakage

= Concrete application in [SP20]

i p
L

C
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Profiling/Simple Power Analysis (SPA)

= SPA leakage on 32-bit platform using HW acceleration for Ascon-p [SP20]

m  Green values are public (or leak fully)
. values create some leakage in 32-bit chunks
m  Red values result in hard to exploit leakage

ISAPRK ISAPENC
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Applications of Isap Outside of LWC

= High performance AEAD in HW with protection/hardening against SCA/FI:

MAC (0+x) AEAD (x+0)
Algorithm Urol | Latency 64B 1536B long | Latency 64B 1536B long
ISAP-A-128A 1 217 5.1 1.9 1.8 378 85 3.0 2.8
IsAP-A-128A (StP) 1 230 5.1 1.9 1.8 392 85 3.0 2.8
ISAP-A-128A 2 116 2.8 1.0 1.0 199 46 1.8 16
ISAP-A-128A 4 66 1.6 0.7 0.6 109 2.7 11 11

Numbers represent cycles (for latency) or ¢/b (for throughput) of authentication decryption (x+0) or tag verification
(0+x). Urol indicates the number of permutation rounds that are executed within one clock cycle.
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Questions
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