Update on the Security Analysis of Ascon

Christoph Dobraunig <u>Maria Eichlseder</u> Johannes Erlacher Florian Mendel Martin Schläffer NIST LWC Workshop 2022 – 11 May 2022

> https://ascon.iaik.tugraz.at

The Ascon Family

Designed in 2014 [DEMS16]

- Published in Journal of Cryptology in 2021 [DEMS21c]
- **Q** Extensive published third-party cryptanalysis confirming its security margin
- ★ This talk: Overview of recent third-party cryptanalysis results & our own work on new security bounds [EME22]

	2014	2015	2016	2018 2019	2021	2022
CAESAR	Round 1	Round 2	Round 3	Finalists Portfolic)	
NIST LWC				Round 1 &	2 Finalists	

Ascon's Mode for Authenticated Encryption

- Doubly-keyed initialization/finalization for higher robustness under misuse
- Duplex sponge mode using a 5 × 64 = 320-bit permutation

ASCON Permutation: a = 12, $b \in \{6, 8\}$ Rounds

Linear layer

 $\begin{aligned} x_0 &:= x_0 \oplus (x_0 \Longrightarrow 19) \oplus (x_0 \ggg 28) \\ x_1 &:= x_1 \oplus (x_1 \ggg 61) \oplus (x_1 \ggg 39) \\ x_2 &:= x_2 \oplus (x_2 \ggg 1) \oplus (x_2 \ggg 6) \\ x_3 &:= x_3 \oplus (x_3 \ggg 10) \oplus (x_3 \ggg 17) \\ x_4 &:= x_4 \oplus (x_4 \ggg 7) \oplus (x_4 \ggg 41) \end{aligned}$

Analysis of Ascon

Key recovery	Ascon initialization	7 / 12	2 ⁹⁷ 🖉	Cube-like	[LZWW17]
	Ascon initialization	7 / 12	2 ¹⁰⁴ 🚬	Cube-like	[LDW17]
	Ascon initialization	7 / 12	2 ¹²³ 🗸	Cube	[RHSS21]
	Ascon initialization	6 / 12	2 ⁷⁴ 📐	Cond. HDL	[HP22]
	Ascon initialization	5 / 12	2 ³¹ 🗸	Difflinear	[Tez20]
	Ascon-128a iteration	7/8	2 ¹¹⁸ Ø	Cond. cube	[CKT22]
	Ascon-80pq iteration	6/6	2 ¹³⁰ 🖉 🗡	Cond. cube	[CHK22]
Forgery	Ascon-128 finalization	6 / 12	2 ³³ 🖉	Cube tester	[LZWW17]
	Ascon-128 finalization	4 / 12	2 ¹⁰² 🔀	Differential	[DEMS15]
	Ascon-128 finalization	4 / 12	2 ⁹⁷ 🔀	Differential	[GPT21]
	Ascon-128a finalization	3 / 12	2 ²⁰ 🗸	Differential	[GPT21]
-		- CA		120	

 \bigcirc = nonce misuse > = exceeds data limit of 2⁶⁴ blocks Z = time exceeds 2¹²⁸ weak-key variants omitted

Analysis of Ascon: (Partial*) state recovery

State recovery	Ascon-128 iteration	6/6	240 🖉	Cond. cube	[BCP22]
	Ascon-128 iteration*	6/6	2 ⁴⁵ 🖉	Cond. cube	[CHK22]
	Ascon-128 iteration	5/6	2 ⁶⁶ 🖉	Cube-like	[LZWW17]
	Ascon-128a iteration	7/8	2 ¹¹⁸ Ø	Cond. cube	[CKT22]
	Ascon-128a iteration	3/8	2117 🗸	Differential	[GPT21]
	Ascon-128a iteration	2/8	- 🗸	Sat-Solver	[DKM+17]

 \oslash = nonce misuse \gtrsim = exceeds data limit of 2⁶⁴ blocks

weak-key variants omitted

Analysis of Ascon-Hash and Ascon-Xor

Туре	Target	Output size	Rounds	Time	Method	Reference
Preimage	Ascon-Xof Ascon-Xof	64 64	6 / 12 2 / 12	2 ^{63.3} 2 ³⁹	Algebraic Cube-like	[DEMS19] [DEMS19]
Collision	Ascon-Xof Ascon-Xof Ascon-Hash Ascon-Hash	all 64 256 256	4 / 12 2 / 12 2 / 12 2 / 12 2 / 12	- 🕗 2 ¹⁵ 2 ¹²⁵ 2 ¹⁰³	Differential Differential Differential Differential	[DEMS19] [ZDW19] [ZDW19] [GPT21]

(🖉 = chosen IV)

Analysis of Ascon's Permutation

Distinguisher	Permutation	12 / 12	2 ⁵⁵ 👁	Zero-sum	[HP22]
	Permutation	11/12	2 ⁸⁵ 🕗	Zero-sum	[DEMS21a]
	Permutation	8/12	2 ⁴⁶	Integral	[HP22]
	Permutation	7 / 12	2 ⁶⁵	Integral	[Tod15]
	Permutation	7 / 12	2 ⁶⁰	Integral	[RHSS21]
	Permutation	7 / 12	2 ³⁴ 🕗	Limited-Birthday	[GPT21]
	Permutation	5/12	2 ¹⁰⁹	Truncated Differential	[Tez16]
	Permutation	5/12	2 ⁸⁰	Rectangle	[GPT21]
	Permutation	5/12	-	Zero-Correlation	[DEMS21a]
	Permutation	5/12	-	Impossible Differential	[DEMS21a]
	Permutation	4/12	2 ¹⁰⁷	Differential	[DEMS21a]
	Permutation	4/12	2 ¹⁰¹	Linear	[DEM15a]
	Permutation	3/12	-	Subspace Trails	[LTW18]

(= non-black-box distinguisher)

Analysis of Round-Reduced Ascon

Recent third-party analysis

Improvements to 7-Round Cube Attacks

Misuse-Free Key-Recovery and Distinguishing Attacks on 7-Round Ascon

Raghvendra Rohit¹, Kai Hu^{2,5}, Sumanta Sarkar³ and Siwei Sun^{4,6}

¹ Univ Rennes. Centre National de la Recherche Scientifique (CNRS). Institut de Recherche en

[RHSS21] slightly reduced the data complexity of 7-round attacks to stay below the limit of 2⁶⁴ blocks.

Diving Deep into the Weak Keys of Round Reduced Ascon

Raghvendra Rohit¹ and Santanu Sarkar^{2,3}

¹ Cryptography Research Centre, Technology Innovation Institute, Abu Dhabi, UAE

[RS21] investigated classes of "weak keys" which permit slightly better cube attacks for 7 rounds.

Refined Results for Differential Attacks

[GPT21] investigate the applicability of differential distinguishers for forgeries and collisions. Towards Tight Differential Bounds of Ascon

[MR22] find characteristics with fewer active S-boxes for 4 rounds (44 \rightarrow 43) and 5 rounds (78 \rightarrow 72).

(Higher-Order) Differential-Linear Distinguishers

Differential-linear Attacks on Permutation Ciphers Revisited: Experiments on Ascon and DryGASCON

Aslı Başak Civek^{®4} and Cihangir Tezcan^{®b} tics Institute, Department of Cyber Security, CyDeS Laboratory, Middle East Technical University, Ankara

[CT22] provide experiments on differential-linear cryptanalysis to refine previous results on 7 rounds. Revisiting Higher-Order Differential(-Linear) Attacks from an Algebraic Perspective Applications to Ascon, GRAIN v1, XOODOO, and ChaCha

Kai Hu and Thomas Peyrin

[HP22] investigate higher-order DL distinguishers and find 8-round permutation distinguishers in a dedicated setting and 6-round key-recovery attacks.

Other Distinguishers

Simplified MITM Modeling for Permutations: New (Quantum) Attacks

André Schrottenloher and Marc Stevens

Cryptology Group, CWI, Amsterdam, The Netherlands firstname.lastname@cwi.nl

Exploring Differential-Based Distinguishers and Forgeries for ASCON

David Gerault^{1,2}, Thomas Peyrin¹ and Quan Quan Tan¹

¹ Nanyang Technological University, Singapore, Singapore

[SS22a; SS22b] show that structural MitM attacks can find a fixpoint x = P(x) for up to 2.5 rounds with complexity 2²⁷².

[GPT21] find limited-birthday distinguishers up to 7 rounds.

Misuse Analysis of Ascon

Recent third-party analysis

Analysis of Ascon in Misuse Settings

- Cryptanalysis in standard settings has only lead to small improvements in the last years
- Cryptanalysts increasingly consider misuse settings:
 - Nonce misuse
 - Decryption misuse
 - Implementation attacks

Analysis of Duplex Sponges in Misuse Settings

Generic nonce-misuse attacks on duplex designs include

Confidentiality break

with 1 + 1 misuse query per block of the challenge message.

- State recovery with *D* misuse queries, $T \cdot D = 2^c$.
 - Does not lead to trivial key recovery in Ascon

With more massive nonce misuse, some dedicated attacks are possible:

Conditional Cube Attacks on Ascon in Misuse Settings

 $\begin{array}{c} \mbox{Practical cube-attack against nonce-misused} \\ \mbox{Ascon}^{\dagger} \end{array}$

Jules Baudrin, Anne Canteaut and Léo Perrin

Inria, France

[BCP22] find conditional cube attacks with nonce misuse for the full 6 encryption rounds of Ascon-128.

Ascon-80pq in a Nonce-misuse Setting

Donghoon Chang^{1,2}, Deukjo Hong^{1,3}, and Jinkeon Kang¹

A New Conditional Cube Attack on Reduced-Round Ascon-128a in a Nonce-misuse Setting

Donghoon Chang^{1,2}, Jinkeon Kang¹ and Meltem Sönmez Turan¹

[CKT22] find conditional cube attacks with nonce misuse for 7 of 8 round in Ascon-128A and a key-recovery attack.

 \blacksquare [CHK22] find similar results and KR attacks for Ascon-80pq (> 2¹²⁸).

Differential & Linear Cryptanalysis: New Bounds

ToSC 2022/1

Differential and Linear Characteristics of Ascon

- S-box has max. differential probability 2⁻², max. squared correlation 2⁻²
- Goal: Prove lower bound on number of active S-boxes of characteristics
- Weak alignment → proving bounds is challenging, need bitwise model

Gap of provable bounds vs. best known characteristics [DEMS15; DEM15b; GPT21]:

Gap of provable bounds vs. best known characteristics [DEMS15; DEM15b; GPT21]:

S New lower bounds for 4 and 6 rounds [EME22]

Slightly better characteristics [MR22]

Gap of provable bounds vs. best known characteristics [DEMS15; DEM15b; GPT21]:

S New lower bounds for **4** and **6** rounds [EME22]

Slightly better characteristics [MR22]

Gap of provable bounds vs. best known characteristics [DEMS15; DEM15b; GPT21]:

- New lower bounds for **4** and **6** rounds [EME22]
- Slightly better characteristics [MR22]

Approach for SAT Model to Prove Bounds

Continuized SAT model

SAT encoding for characteristics by Sun et al. [SWW21; SWW18] Different counter encodings

Approach for SAT Model to Prove Bounds

Optimized SAT model

SAT encoding for characteristics by Sun et al. [SWW21; SWW18]
Different counter encodings

📥 Parallelization

- Solver-based [HKWB11; HFB20; BSS15; SS21]
- Ӯ Manual partitioning

O Partition the search space into many independent problems

- S Categorize characteristics based on "girdle patterns"
 - S-box activity within the round with fewest active S-boxes

O Partition the search space into many independent problems

- S Categorize characteristics based on "girdle patterns"
 - S-box activity within the round with fewest active S-boxes

S Reduce the number of subproblems to be solved

Optimize the individual SAT models

Consider rotational symmetries

Use necklace theory to eliminate redundant checks [Mor72]

C Consider rotational symmetries

- Use necklace theory to eliminate redundant checks [Mor72]
- **T** Prefilter individual problems
 - Reduces model complexity

Consider rotational symmetries

- Use necklace theory to eliminate redundant checks [Mor72]
- **T** Prefilter individual problems
 - Reduces model complexity
- Pooling individual problems
 - Reduces overhead

New Bounds

- Single characteristic for 4-round Ascon
 - $\odot \ge$ 36 active S-boxes
 - \bigcirc Runtime \approx 600 CPU days

New Bounds

- Single characteristic for 4-round Ascon
 - $\odot \ge$ 36 active S-boxes
 - Runtime \approx 600 CPU days
- Single characteristic for 6-round Ascon
 - $\odot \ge$ 54 active S-boxes
 - Runtime \approx 60 CPU days
 - Outilizing intermediate results from our 4 round bound

New Bounds

- Single characteristic for 4-round Ascon
 - $\odot \ge$ 36 active S-boxes
 - Runtime \approx 600 CPU days
- Single characteristic for 6-round Ascon
 - $\odot \ge$ 54 active S-boxes
 - Runtime \approx 60 CPU days
 - Outilizing intermediate results from our 4 round bound
- Almost certainly not tight, but good enough to support trust in the permutation

Authenticated Encryption: Initialization and Finalization

- 12 round configuration
- Ample security margin for 128-bit security

Authenticated Encryption: Data processing

- Ascon-128: 6 rounds
- Ascon-128A: 8 rounds
- Data limit of 2⁶⁴ encrypted blocks
- Goal: Find better (tighter) 6-round bound

Ascon-Hash and Ascon-Xof

- Difficult to evaluate unkeyed modes based on probability
- Assumption: 2^{-128} (attempts) $\times 2^{-64}$ (degrees of freedom)

Ascon-Mac and Ascon-Prf [DEMS21b]

- Ascon-Mac, Ascon-Prf: 12 rounds
- Ascon-MacA, Ascon-PrFA: 8 rounds

Bounds for ISAP

- Scenario: Create collision based on 1-bit absorption
- For 1 to 4 rounds (consecutive bits), no solution exists
- For 5 rounds, collision-producing characteristic with 105 active S-boxes exists
- General bound: For 3+ final rounds in any collision-producing characteristic with 1-bit rate, there are at least 64 active S-boxes

Bounds for ISAP – 5-round characteristic

Conclusion

Ascon has received a lot of attention by cryptanalysts

- during CAESAR and during NIST LWC
- **Q** Main results: Optimizations of 7-round cube attack; Misuse attacks
- No cryptanalytic breakthroughs
- Improved bounds

Bibliography I

[BCP22]Jules Baudrin, Anne Canteaut, and Léo Perrin. Practical cube-attack against
nonce-misused Ascon. FSE 2022 Rump Session. 2022. URL:
https://youtu.be/avBHsIM_5DA?t=2582.

- [BSS15] Tomás Balyo, Peter Sanders, and Carsten Sinz. HordeSat: A Massively Parallel Portfolio. Theory and Applications of Satisfiability Testing – SAT 2015. Vol. 9340. LNCS. Springer, 2015, pp. 156–172. DOI: 10.1007/978-3-319-24318-4_12.
- [CHK22] Donghoon Chang, Deukjo Hong, and Jinkeon Kang. Conditional Cube Attacks on Ascon-128 and Ascon-80pq in a Nonce-misuse Setting. IACR Cryptology ePrint Archive, Report 2022/544. 2022. URL: https://eprint.iacr.org/2022/544.
- [CKT22] Donghoon Chang, Jinkeon Kang, and Meltem Sönmez Turan. A New Conditional Cube Attack on Reduced-Round Ascon-128a in a Nonce-misuse Setting. NIST LWC Workshop 2022. 2022.

Bibliography II

[CT22] Aslí Basak Civek and Cihangir Tezcan. Differential-linear Attacks on Permutation Ciphers Revisited: Experiments on Ascon and DryGASCON. Information Systems Security and Privacy – ICISSP 2022. SCITEPRESS, 2022, pp. 202–209. DOI: 10.5220/0010982600003120.

[DEM15a] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Heuristic Tool for Linear Cryptanalysis with Applications to CAESAR Candidates. ASIACRYPT 2015. Vol. 9453. LNCS. Springer, 2015, pp. 490–509. DOI: 10.1007/978-3-662-48800-3_20.

[DEM15b] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. Heuristic Tool for Linear Cryptanalysis with Applications to CAESAR Candidates. Advances in Cryptology – ASIACRYPT 2015. Vol. 9453. LNCS. Springer, 2015, pp. 490–509. DOI: 10.1007/978-3-662-48800-3_20.

Bibliography III

[DEMS15] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. Cryptanalysis of Ascon. Topics in Cryptology – CT-RSA 2015. Vol. 9048. LNCS. Springer, 2015, pp. 371–387. DOI: 10.1007/978-3-319-16715-2_20.

- [DEMS16] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. Ascon v1.2. CAESAR Competition. 2016. URL: https://competitions.cr.yp.to/caesar-submissions.html.
- [DEMS19] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. Preliminary Analysis of Ascon-Xof and Ascon-Hash. Technical Report. 2019. URL: https://ascon.iaik.tugraz.at.

[DEMS21a] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. Ascon. Submission as a Finalist to the NIST Lightweight Crypto Standardization Process. 2021. URL: https://csrc.nist.gov/Projects/lightweightcryptography/finalists.

Bibliography IV

[DEMS21b] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. Ascon PRF, MAC, and Short-Input MAC. IACR Cryptology ePrint Archive, Report 2021/1574. 2021. URL: https://ia.cr/2021/1574.

- [DEMS21c] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. Ascon v1.2: Lightweight Authenticated Encryption and Hashing. Journal of Cryptology 34.3 (2021), p. 33. DOI: 10.1007/s00145-021-09398-9.
- [DKM+17] Ashutosh Dhar Dwivedi, Miloš Klouček, Pawel Morawiecki, Ivica Nikolič, Josef Pieprzyk, and Sebastian Wójtowicz. SAT-based Cryptanalysis of Authenticated Ciphers from the CAESAR Competition. SECRYPT ICETE 2017. SciTePress, 2017, pp. 237–246. DOI: 10.5220/0006387302370246.
- [EME22] Johannes Erlacher, Florian Mendel, and Maria Eichlseder. Bounds for the Security of Ascon against Differential and Linear Cryptanalysis. IACR Transactions on Symmetric Cryptology 2022.1 (2022), pp. 64–87. DOI: 10.46586/tosc.v2022.i1.64–87.

Bibliography V

[GPT21] David Gérault, Thomas Peyrin, and Quan Quan Tan. Exploring Differential-Based Distinguishers and Forgeries for ASCON. IACR Transactions on Symmetric Cryptology 2021.3 (2021), pp. 102–136. DOI: 10.46586/tosc.v2021.i3.102–136.

[HFB20] Maximilian Heisinger, Mathias Fleury, and Armin Biere. Distributed Cube and Conquer with Paracooba. Theory and Applications of Satisfiability Testing – SAT 2020. Vol. 12178. LNCS. Springer, 2020, pp. 114–122. DOI: 10.1007/978-3-030-51825-7_9.

[HKWB11] Marijn Heule, Oliver Kullmann, Siert Wieringa, and Armin Biere. Cube and Conquer: Guiding CDCL SAT Solvers by Lookaheads. Hardware and Software: Verification and Testing Conference – HVC 2011. Vol. 7261. LNCS. Springer, 2011, pp. 50–65. DOI: 10.1007/978-3-642-34188-5_8.

Bibliography VI

[HP22] Kai Hu and Thomas Peyrin. Revisiting Higher-Order Differential(-Linear) Attacks from an Algebraic Perspective: Applications to Ascon, Grain v1, Xoodoo, and ChaCha. NIST LWC Workshop 2022. 2022.

[LDW17] Zheng Li, Xiaoyang Dong, and Xiaoyun Wang. Conditional Cube Attack on Round-Reduced ASCON. IACR Transactions on Symmetric Cryptology 2017.1 (2017), pp. 175–202. ISSN: 2519-173X. DOI: 10.13154/tosc.v2017.i1.175-202. URL: https://github.com/lizhengcn/Ascon_test.

[LTW18] Gregor Leander, Cihangir Tezcan, and Friedrich Wiemer. Searching for Subspace Trails and Truncated Differentials. IACR Transactions on Symmetric Cryptology 2018.1 (2018), pp. 74–100. DOI: 10.13154/tosc.v2018.i1.74–100.

[LZWW17] Yanbin Li, Guoyan Zhang, Wei Wang, and Meiqin Wang. Cryptanalysis of round-reduced ASCON. SCIENCE CHINA Information Sciences 60.3 (2017), p. 38102. DOI: 10.1007/s11432-016-0283-3.

Bibliography VII

 [Mor72] C. Moreau. Sur les permutations circulaires distinctes. fr. Nouvelles annales de mathématiques : journal des candidats aux écoles polytechnique et normale 2e série, 11 (1872), pp. 309–314. URL: http://www.numdam.org/item/NAM_1872_2_11_309_0/.
[MR22] Rusydi H. Makarim and Raghvendra Rohit. Towards Tight Differential Bounds of

- [MR22] Rusyal H. Makarim and Ragnvendra Ronit. Towards Fight Differential Bounds of Ascon. FSE 2022 Rump Session. 2022. URL: https://youtu.be/avBHsIM_5DA?t=2091.
- [RHSS21] Raghvendra Rohit, Kai Hu, Sumanta Sarkar, and Siwei Sun. Misuse-Free Key-Recovery and Distinguishing Attacks on 7-Round Ascon. IACR Transactions of Symmetric Cryptology 2021.1 (2021), pp. 130–155. DOI: 10.46586/tosc.v2021.i1.130–155.
- [RS21] Raghvendra Rohit and Santanu Sarkar. Diving Deep into the Weak Keys of Round Reduced Ascon. IACR Transactions on Symmetric Cryptology 2021.4 (2021), pp. 74–99. DOI: 10.46586/tosc.v2021.i4.74–99.

Bibliography VIII

- [SS21] Dominik Schreiber and Peter Sanders. Scalable SAT Solving in the Cloud. Theory and Applications of Satisfiability Testing – SAT 2021. Vol. 12831. LNCS. Springer, 2021, pp. 518–534. DOI: 10.1007/978–3–030–80223–3_35.
- [SS22a] André Schrottenloher and Marc Stevens. MitM Attacks on Ascon. Personal communication. 2022.
- [SS22b] André Schrottenloher and Marc Stevens. Simplified MITM Modeling for Permutations: New (Quantum) Attacks. Dagstuhl Seminar 22141 Symmetric Cryptology. 2022. URL: https://eprint.iacr.org/2022/189.
- [SWW18] Ling Sun, Wei Wang, and Meiqin Wang. More Accurate Differential Properties of LED64 and Midori64. IACR Transactions on Symmetric Cryptology 2018.3 (2018), pp. 93–123. DOI: 10.13154/tosc.v2018.i3.93–123.

Bibliography IX

[SWW21] Ling Sun, Wei Wang, and Meiqin Wang. Accelerating the Search of Differential and Linear Characteristics with the SAT Method. IACR Transactions on Symmetric Cryptology 2021.1 (2021), pp. 269–315. DOI: 10.46586/tosc.v2021.i1.269–315.

- [Tez16] Cihangir Tezcan. Truncated, Impossible, and Improbable Differential Analysis of Ascon. ICISSP 2016. SciTePress, 2016, pp. 325–332. DOI: 10.5220/0005689903250332.
- [Tez20] Cihangir Tezcan. Analysis of Ascon, DryGASCON, and Shamash Permutations. International Journal of Information Security Science 9.3 (2020), pp. 172–187. URL:

https://www.ijiss.org/ijiss/index.php/ijiss/article/view/762.

[Tod15] Yosuke Todo. Structural Evaluation by Generalized Integral Property. EUROCRYPT 2015. Vol. 9056. LNCS. Springer, 2015, pp. 287–314. DOI: 10.1007/978-3-662-46800-5_12.

Bibliography X

[ZDW19]

Rui Zong, Xiaoyang Dong, and Xiaoyun Wang. Collision Attacks on Round-Reduced Gimli-Hash/Ascon-Xof/Ascon-Hash. IACR Cryptology ePrint Archive, Report 2019/1115. 2019.