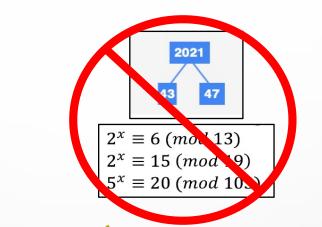
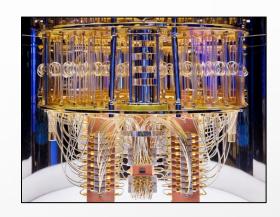
AND THEN THERE WERE FOUR: THE FIRST NIST PQC STANDARDS

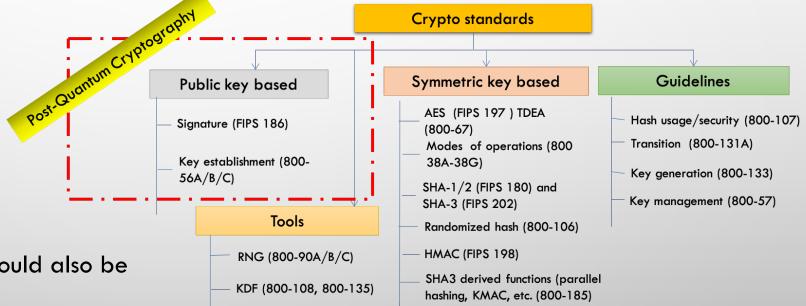
Dustin Moody
NIST PQC Team

Sept. 27, 2023

MPTS 2023: NIST Workshop on Multi-Party Threshold Schemes 2023


Crypto Technology Group
Computer Security Division
Information Technology Lab


THE QUANTUM THREAT



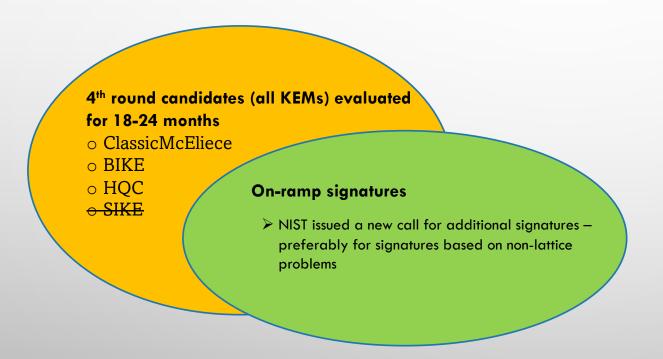
- NIST public-key crypto standards
 - SP 800-56A: Diffie-Hellman, ECDH
 - SP 800-56B: RSA encryption
 - FIPS 186: RSA, DSA, and ECDSA signatures

all vulnerable to attacks from a (large-scale) quantum computer

Symmetric-key crypto (AES, SHA) would also be affected, but less dramatically

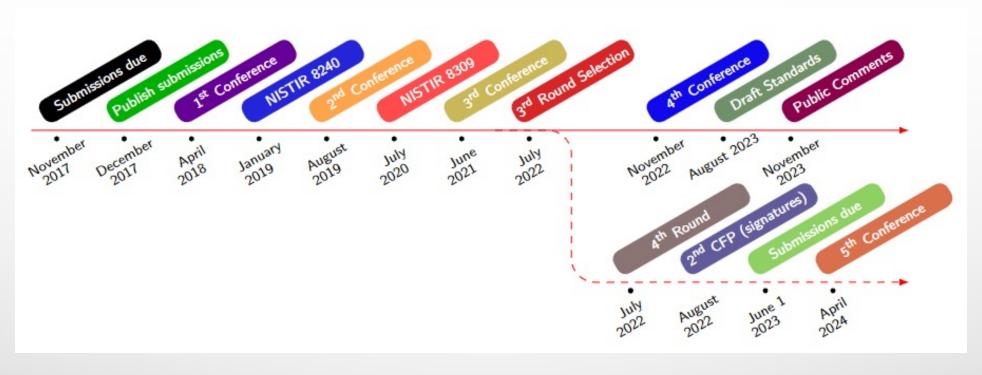
THE PQC "COMPETITION"

- NIST CALLED FOR QUANTUM-RESISTANT CRYPTOGRAPHIC ALGORITHMS FOR NEW PUBLIC-KEY CRYPTO STANDARDS
 - DIGITAL SIGNATURES
 - ENCRYPTION/KEY-ESTABLISHMENT
- OUR ROLE: MANAGING A PROCESS OF ACHIEVING COMMUNITY CONSENSUS IN AN OPEN, TRANSPARENT, AND TIMELY MANNER
- DIFFERENT AND MORE COMPLICATED THAN PAST AES/SHA-3 COMPETITIONS
- THERE WOULD NOT BE A SINGLE "WINNER"
 - IDEALLY, SEVERAL ALGORITHMS WILL EMERGE AS 'GOOD CHOICES'



ROUND 3 RESULTS

3 rd round selection (KEM)	3 rd round selection (Signatures)
CRYSTALS-Kyber	CRYSTALS-Dilithium, Falcon, SPHINCS+


See NISTIR 8413, Status Report on the 3rd Round of the NIST PQC Standardization Process, for the rationale on the selections

TIMELINE

- The 5th NIST PQC Standardization Conference
 - April 10-12, 2024 in Rockville, Maryland
- Draft standards for public comment released Aug 2023
 - Deadline for comments: November 22, 2023
- The first PQC standards should be published in 2024

STANDARDIZATION

THE 1ST PQC STANDARDS

- FIPS 203: ML-KEM (KYBER)
- FIPS 204: ML-DSA (DILITHIUM)
- FIPS 205: SLH-DSA (SPHINCS+)
- FN-DSA (FALCON) UNDER DEVELOPMENT
- WILL HAVE OTHER DOCS WITH MORE GUIDANCE/DETAILS
- SOME CHOICES MADE
 - WHICH PARAMETER SETS, WHICH HASH FUNCTIONS, OTHER SYMMETRIC PRIMITIVES, ETC
- PLEASE PROVIDE FEEDBACK
 - PQC-FORUM, EMAIL ETC

- FIPS 203 (Draft)
- 2 Federal Information Processing Standards Publication
- Module-Lattice-basedKey-Encapsulation
- 6 Mechanism Standard
- 7 Category: Computer Security

Subcategory: Cryptography

- 8 Information Technology Laboratory
- 9 National Institute of Standards and Technology
- 10 Gaithersburg, MD 20899-8900
- 11 This publication is available free of charge from:
- 12 https://doi.org/10.6028/NIST.FIPS.203.ipd
- 13 Published August 24, 2023

- 15 U.S. Department of Commerce
- 16 Gina M. Raimondo, Secretary
- 17 National Institute of Standards and Technology
- 8 Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology

CRYSTALS-DILITHIUM

- SIGNATURE BASED ON STRUCTURED LATTICES
- ALL OPERATIONS OVER $R = \mathbb{Z}_q[x]/(x^{256} + 1)$

KeyGen:

 $A \leftarrow R^{n \times m}$ $s \leftarrow S^m$ t = Round(As)

pk=(A,t) sk=s

Verify(μ , σ ,pk):

w=UseHintVector(pk,σ)

check that c=Hash(w, μ) and |z| is small

Sign(pk,sk,μ):

 $y \leftarrow Y^m$

w=Round(Ay)

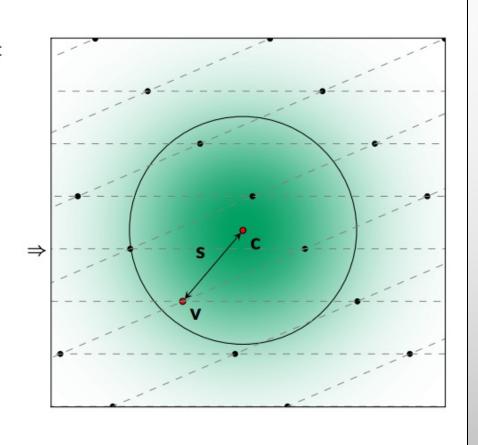
c=Hash(w,μ)

z=sc+y

RejectionSample(pk,sk,z)

 $\omega = HintVector(pk,sk,z)$

 $\sigma = (z, \omega, c)$

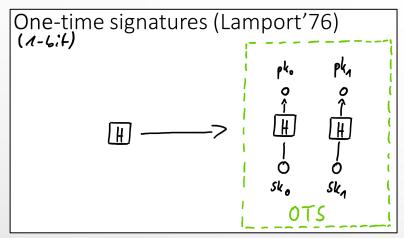

SIGNATURE BASED ON STRUCTURED LATTICES

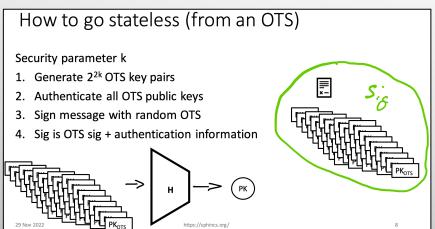
We work over the cyclotomic ring $\mathcal{R} = \mathbb{Z}_q[x]/(x^n+1)$.

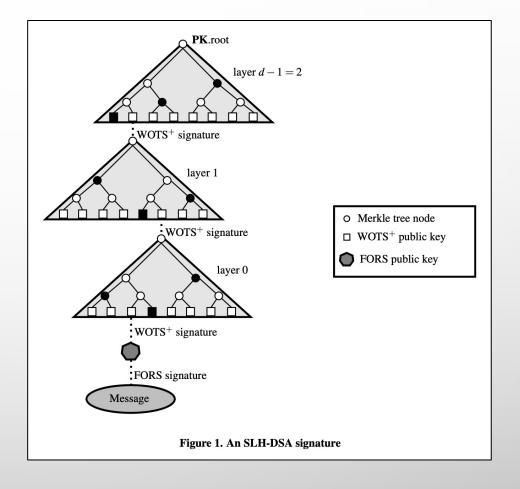
- Keygen()
 - **1** Generate matrices **A**, **B** with coefficients in \mathcal{R} such that
 - \rightarrow BA = 0
 - → B has small coefficients
 - 2 pk ← A
 - 3 sk \leftarrow B
- Sign(m,sk)
 - **1** Compute **c** such that $\mathbf{cA} = H(m)$
 - 2 $\mathbf{v} \leftarrow$ "a vector in the lattice $\Lambda(\mathbf{B})$, close to \mathbf{c} "
 3 $\mathbf{s} \leftarrow \mathbf{c} \mathbf{v}$

The signature sig is $\mathbf{s} = (s_1, s_2)$

- Verify(m,pk sig) Accept iff:
 - **1 s** is short
 - **SA**= H(m)






SPHINCS+

- DIGITAL SIGNATURE BASED ON STATELESS HASH-BASED CRYPTOGRAPHY
- USE ROUND 2 PRESENTATION

CRYSTALS-KYBER

- KEM BASED ON STRUCTURED LATTICES
- ALL OPERATIONS OVER $R = \mathbb{Z}_q[x]/(x^n + 1)$

Kyber.CPAPKE: LPR encryption or "Noisy ElGamal"

A, s,
$$\mathbf{e} \leftarrow \chi$$
 (a Gaussian distribution)

$$sk = s, pk = t = As + e$$

$$\mathbf{r} \leftarrow \chi$$

$$\mathbf{e}_1, \mathbf{e}_2 \leftarrow \chi'$$

$$\mathbf{u} \leftarrow \mathbf{A}^T \mathbf{r} + \mathbf{e}_1$$

$$v \leftarrow \mathbf{t}^T \mathbf{r} + e_2 + \mathsf{Enc}(m)$$

$$c = (\mathbf{u}, \mathbf{v})$$

$$m = Dec(v - \mathbf{s}^T \mathbf{u})$$

THE KEMS IN THE 4TH ROUND

Classic McEliece

- NIST is confident in the security
- Smallest ciphertexts, but largest public keys
- We'd like feedback on specific use cases for Classic McEliece

BIKE

- Most competitive performance of 4th round candidates
- We encourage vetting of IND-CCA security

• HQC

- Offers strong security assurances and mature decryption failure rate analysis
- Larger public keys and ciphertext sizes than BIKE

SIKE

• The SIKE team acknowledges that SIKE (and SIDH) are insecure and should not be used

CONCLUSION

- THE BEGINNING OF THE END IS HERE!
- OR IS IT THE END OF THE BEGINNING?

- WHAT WILL BE THE INTERSECTION OF THE PQC AND THRESHOLD PROJECTS?
- NIST IS GRATEFUL FOR EVERYBODY'S EFFORTS
- CHECK OUT <u>WWW.NIST.GOV/PQCRYPTO</u>
 - SIGN UP FOR THE PQC-FORUM FOR ANNOUNCEMENTS & DISCUSSION
 - SEND E-MAIL TO <u>PQC-COMMENTS@NIST.GOV</u>