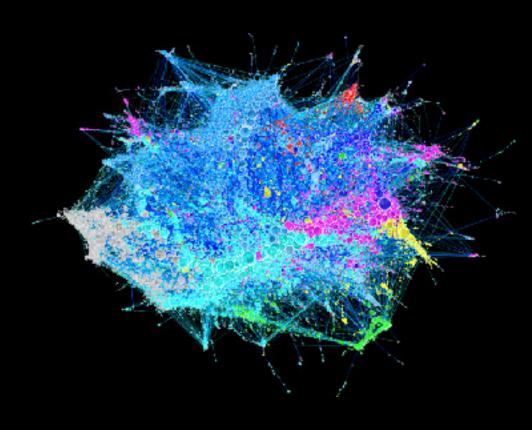
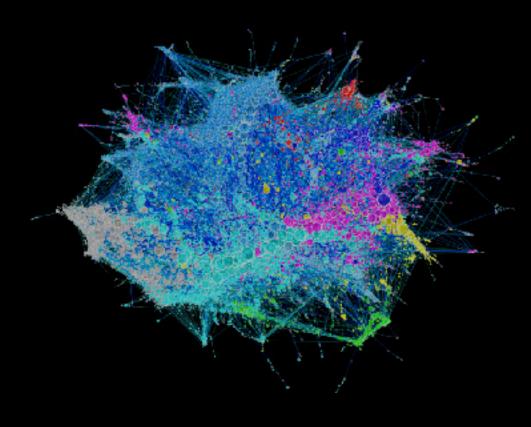


Laconic Cryptography: New Paradigms, Constructions and Directions

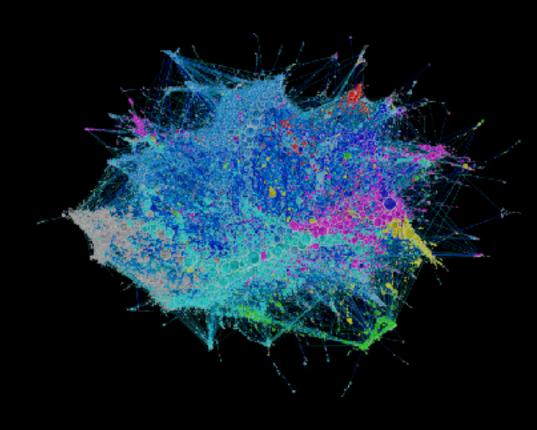
Nico Döttling I 06.03.2024



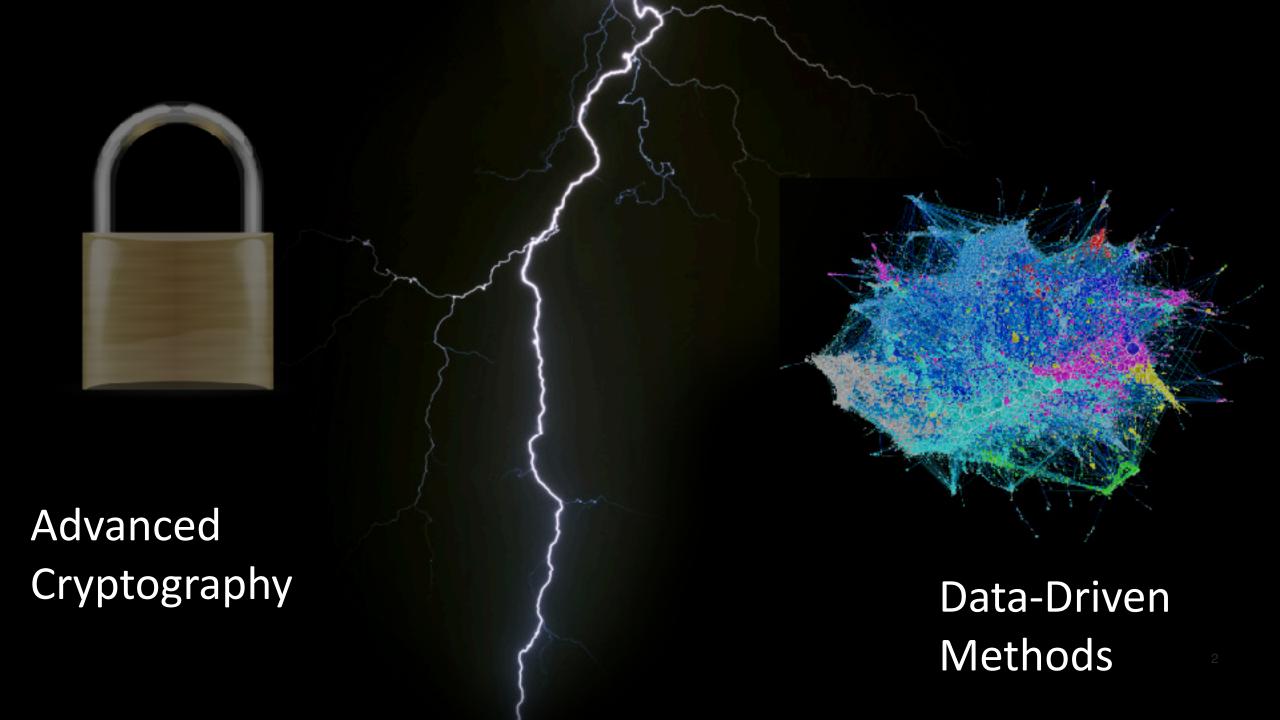


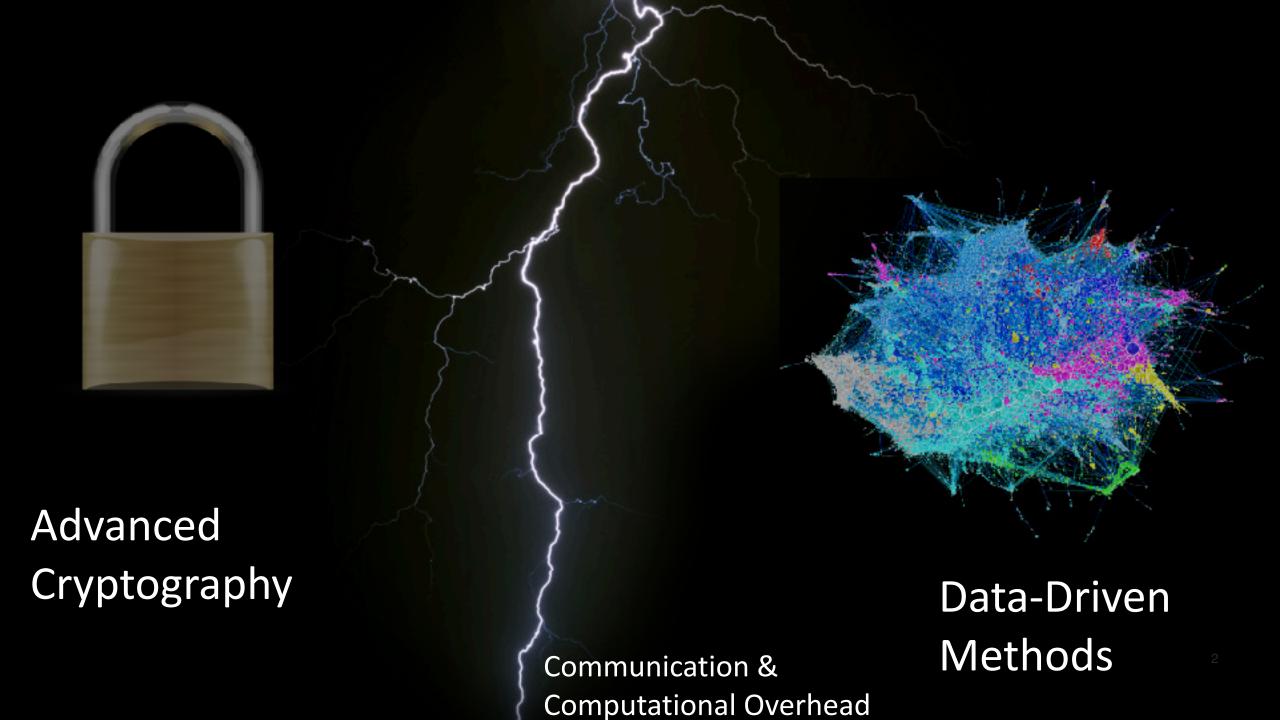
Data-Driven Methods

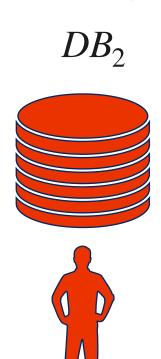
Advanced Cryptography

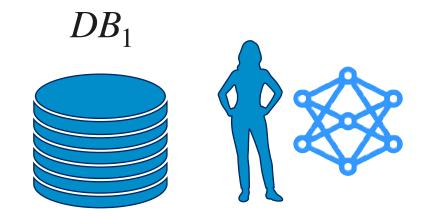


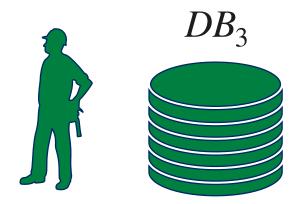
Data-Driven Methods

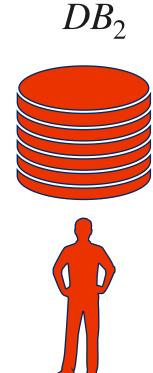


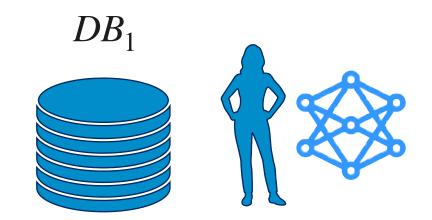


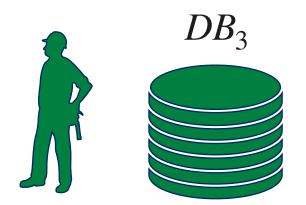


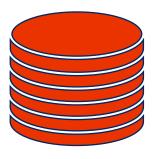


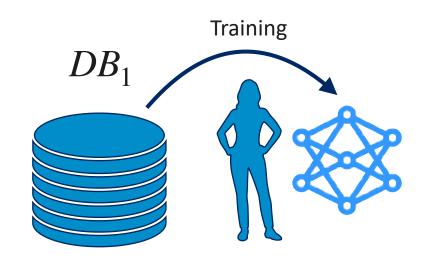


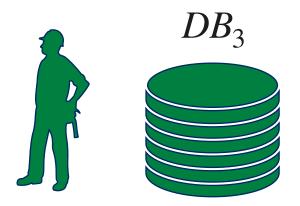


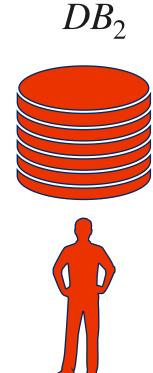


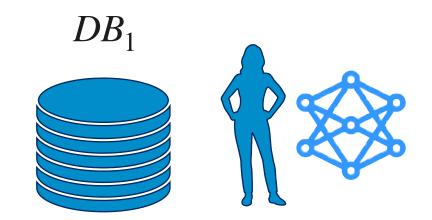


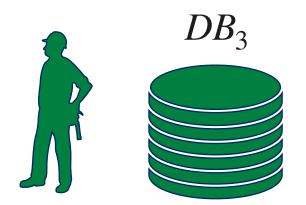


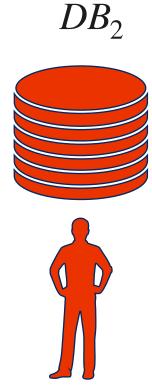


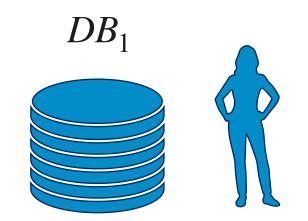


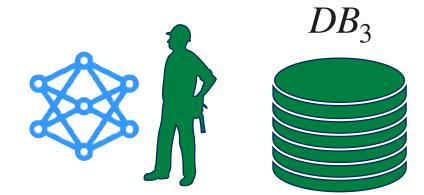


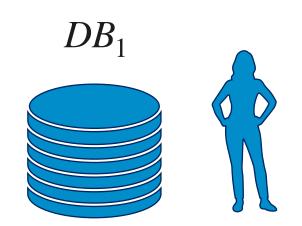


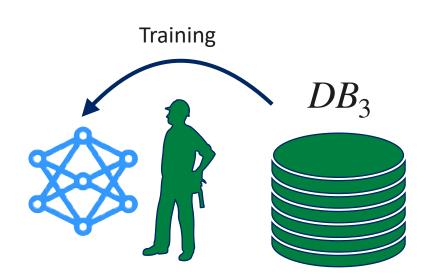


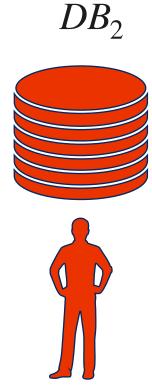


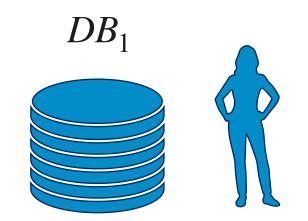


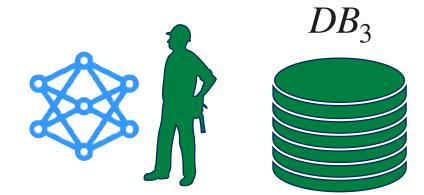


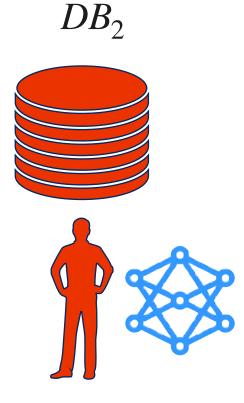


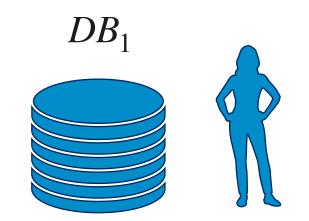


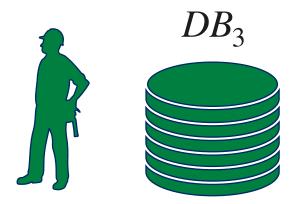


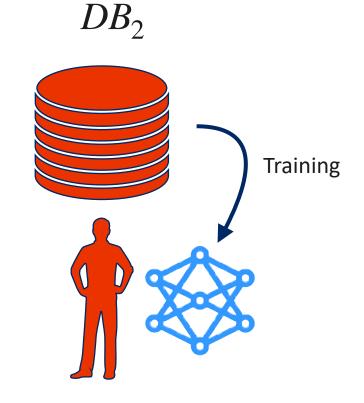


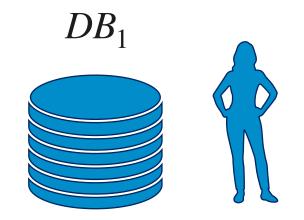


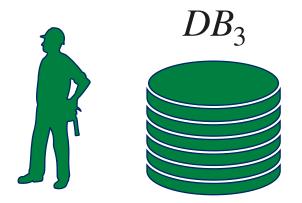


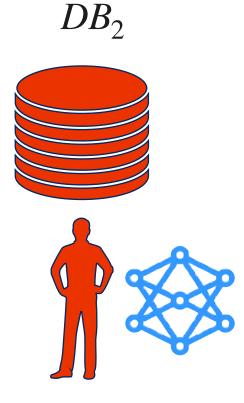


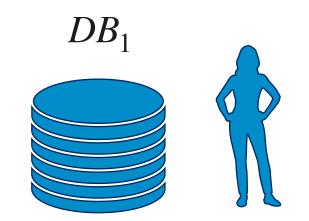


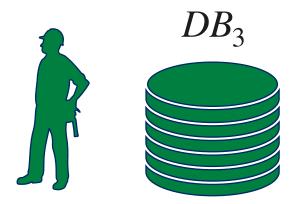




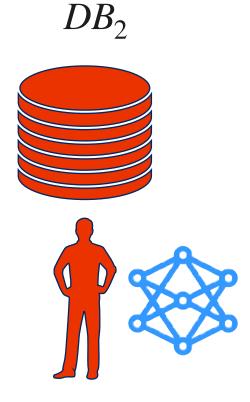


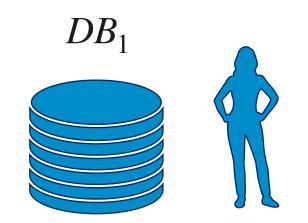


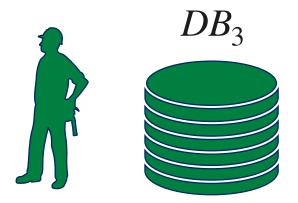




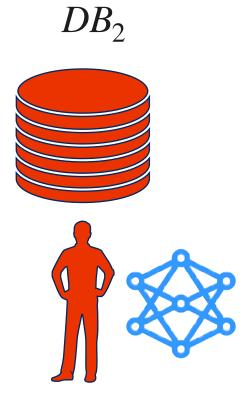
- Jointly train models on datasets held by different owners
- Partially trained models leak information

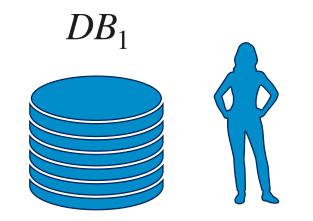


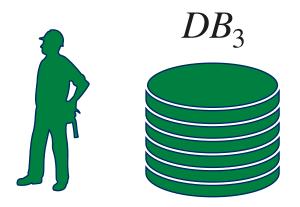


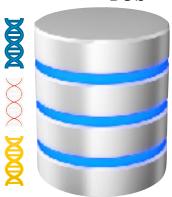


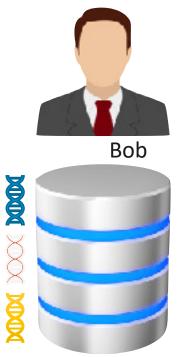
- Jointly train models on datasets held by different owners
- Partially trained models leak information
- Conventional MPC leads to exorbitant communication and computation costs

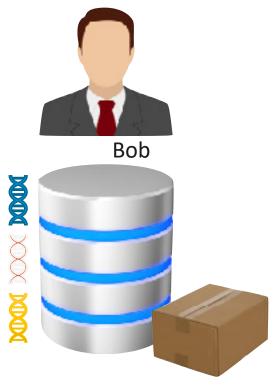


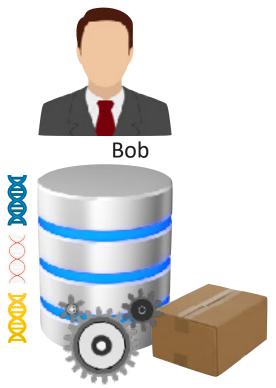


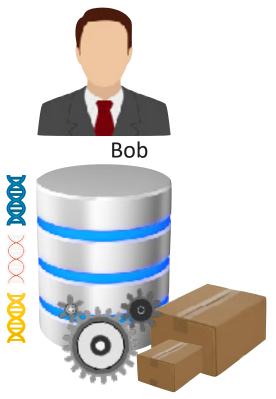


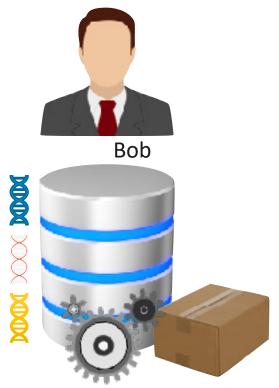


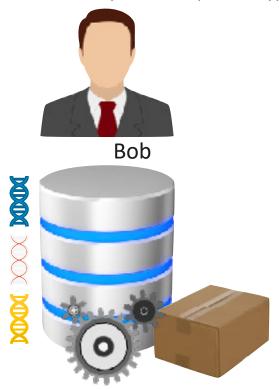


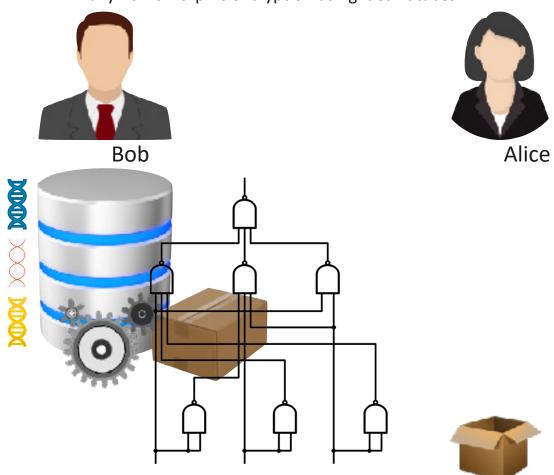




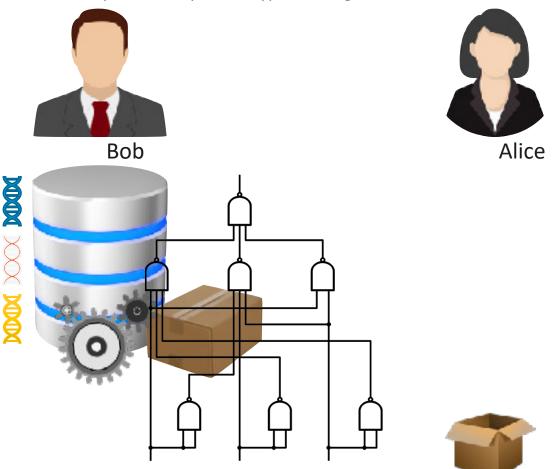






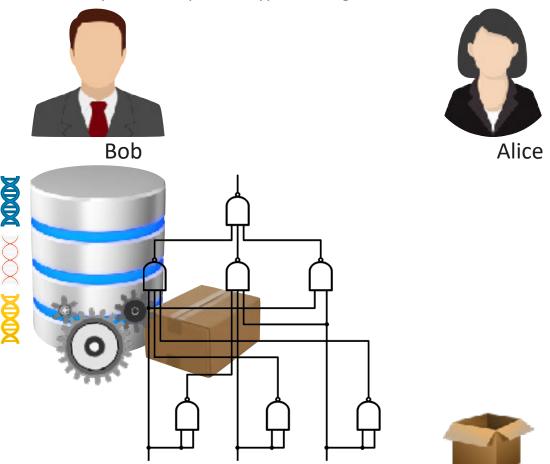


[Gentry STOC'09]
Fully homomorphic encryption using ideal lattices



Laconic Cryptography

[Gentry STOC'09]
Fully homomorphic encryption using ideal lattices

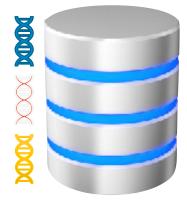


Laconic Cryptography

[C**D**GGMP CRYPTO'17]
Laconic Oblivious Transfer and Its Applications

[Gentry STOC'09]
Fully homomorphic encryption using ideal lattices

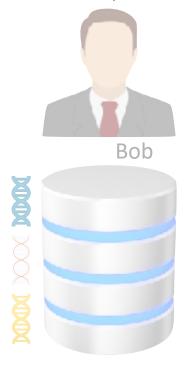
Bob



Laconic Cryptography

[CDGGMP CRYPTO'17]
Laconic Oblivious Transfer and Its Applications

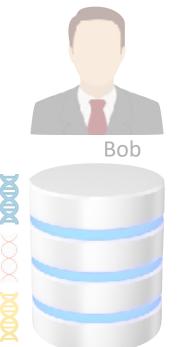
[Gentry STOC'09]
Fully homomorphic encryption using ideal lattices



Laconic Cryptography

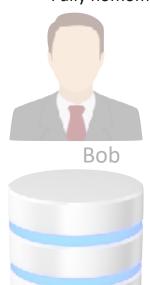
[CDGGMP CRYPTO'17]
Laconic Oblivious Transfer and Its Applications

[Gentry STOC'09]
Fully homomorphic encryption using ideal lattices

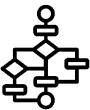


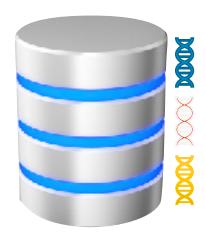
Laconic Cryptography

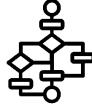
[Gentry STOC'09] Fully homomorphic encryption using ideal lattices



Laconic Cryptography

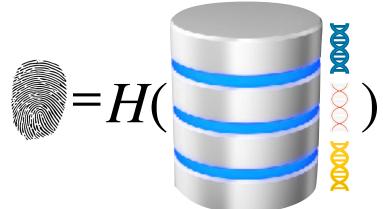






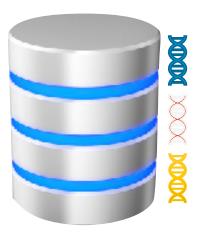
[Gentry STOC'09]
Fully homomorphic encryption using ideal lattices

Laconic Cryptography

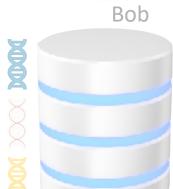


[Gentry STOC'09]
Fully homomorphic encryption using ideal lattices

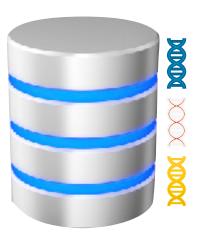
Laconic Cryptography



[Gentry STOC'09] Fully homomorphic encryption using ideal lattices



Laconic Cryptography



[Gentry STOC'09]
Fully homomorphic encryption using ideal lattices

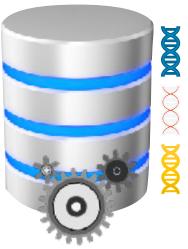
Laconic Cryptography

[Gentry STOC'09]
Fully homomorphic encryption using ideal lattices

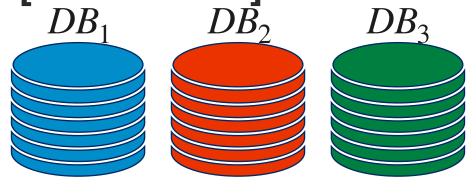
Laconic Cryptography

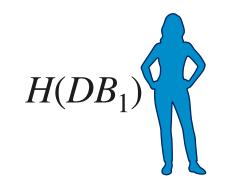
[Gentry STOC'09]
Fully homomorphic encryption using ideal lattices

Laconic Cryptography

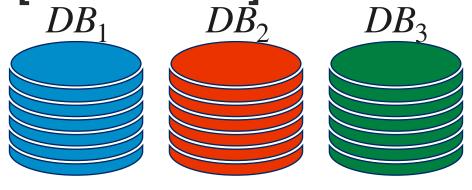


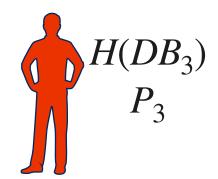
Paradigms

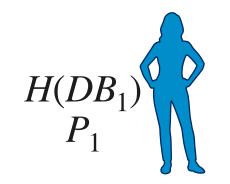


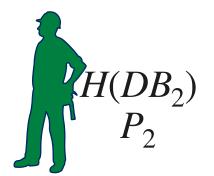


RAM Delegation [CDGGMP17] $DB_1 DB_2$

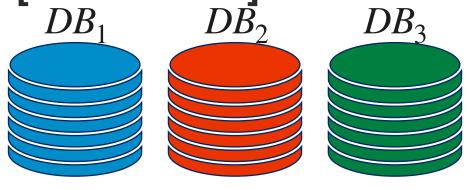


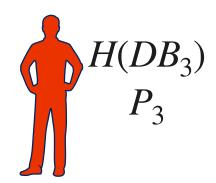


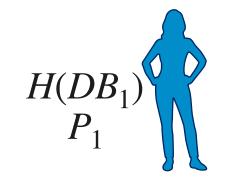




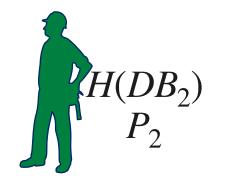
RAM Delegation [CDGGMP17] $DB_1 DB_2$



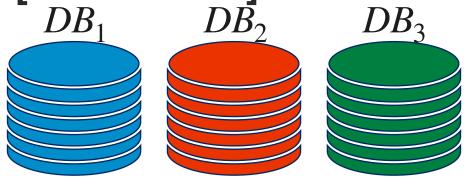


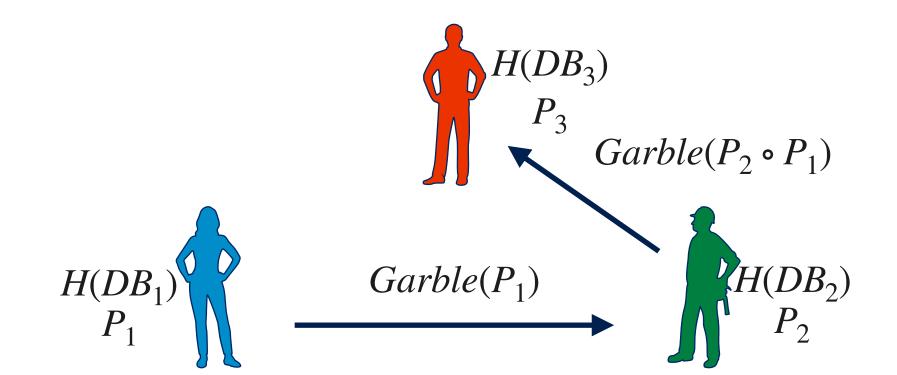


 $Garble(P_1)$

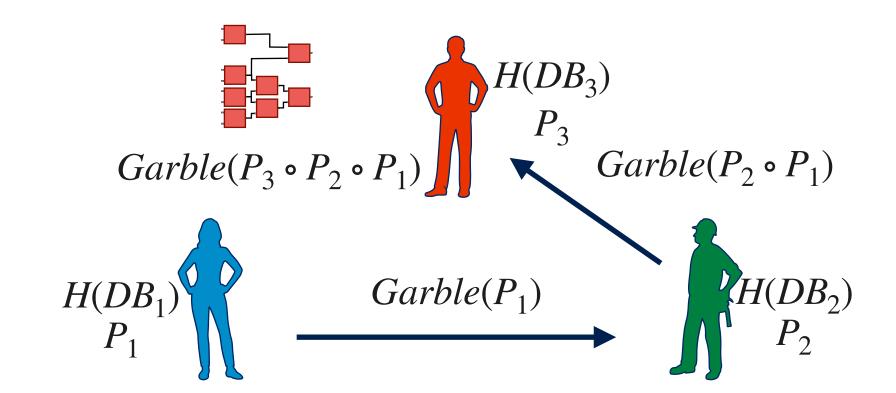


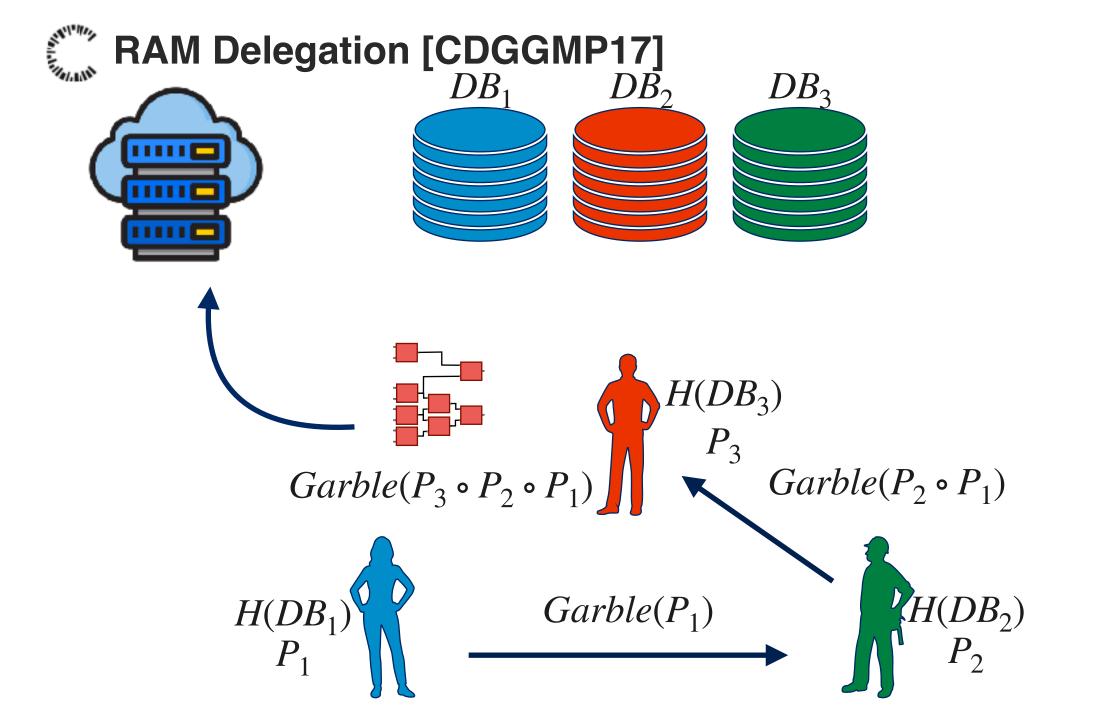
RAM Delegation [CDGGMP17] $DB_1 DB_2$

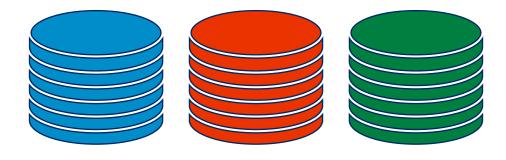


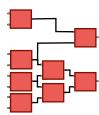


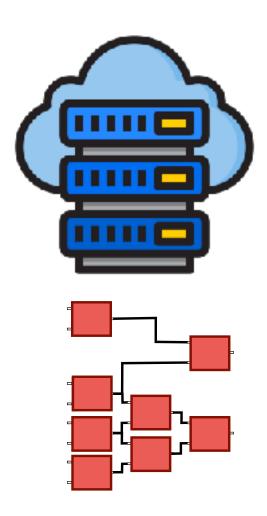
RAM Delegation [CDGGMP17] $DB_1 DB_2 DB_3$

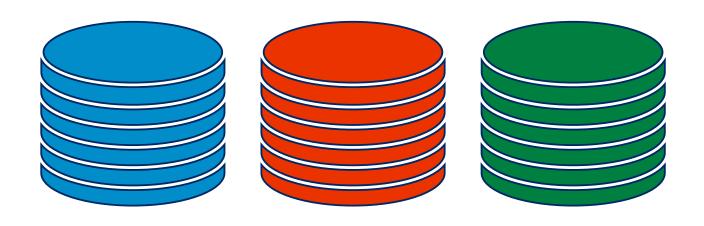


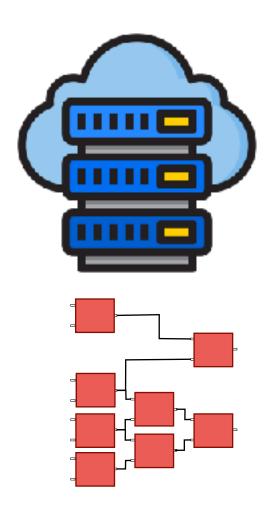


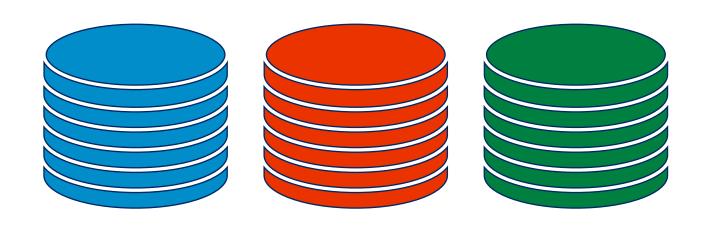


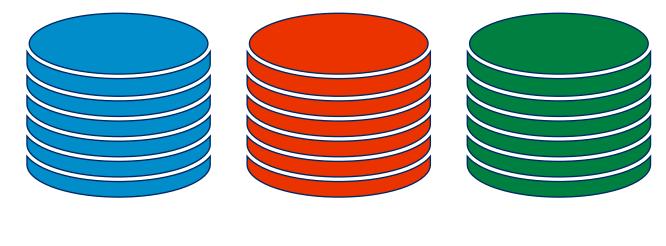


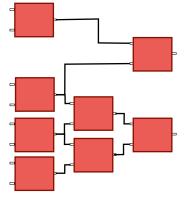


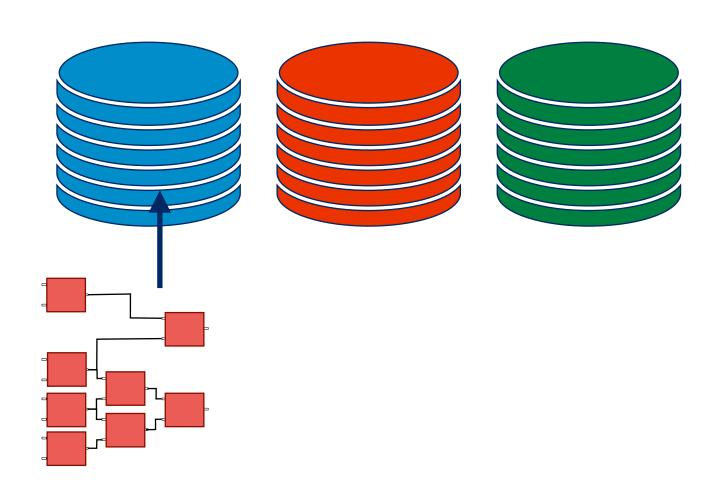


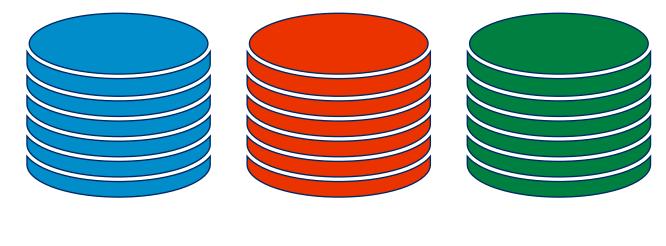


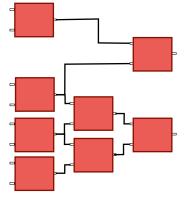


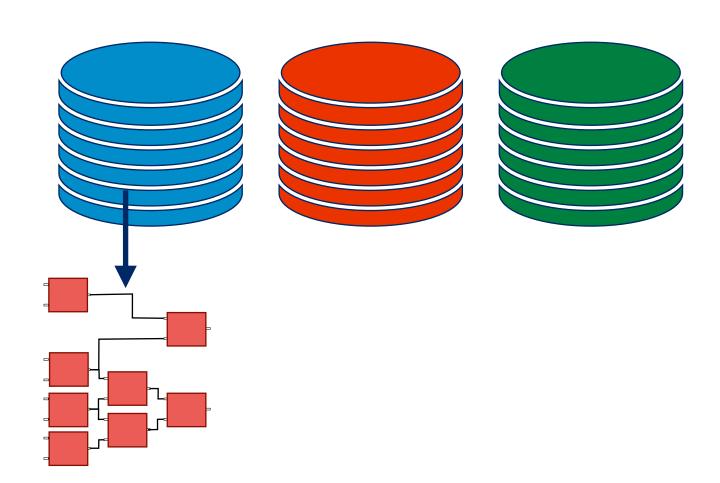


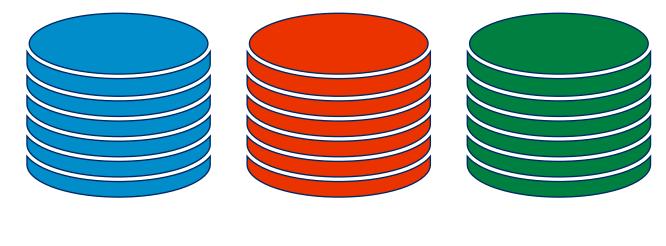


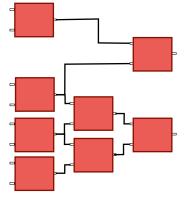


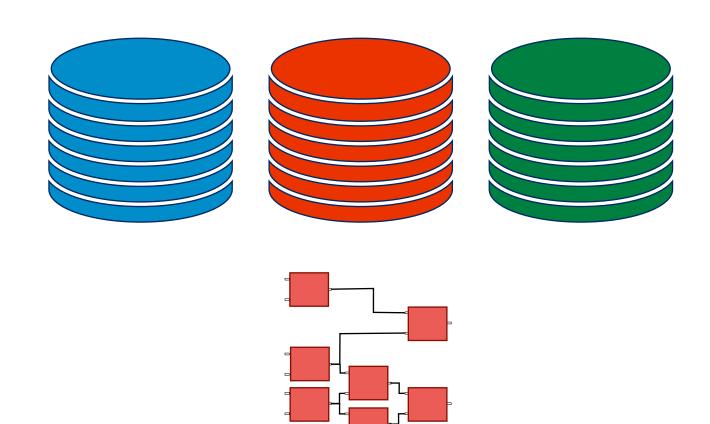


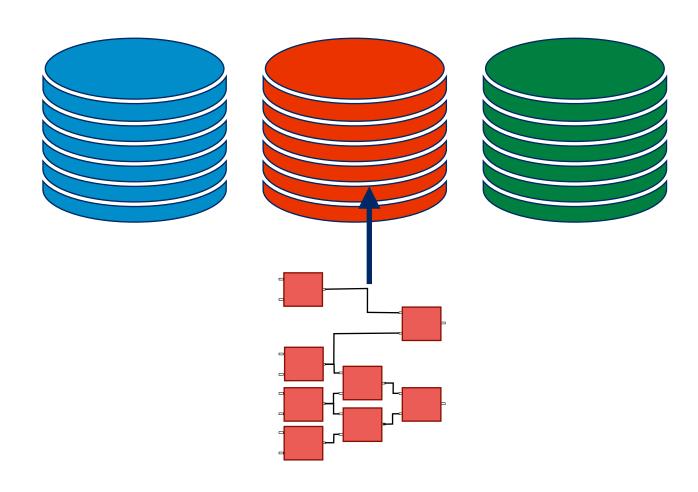


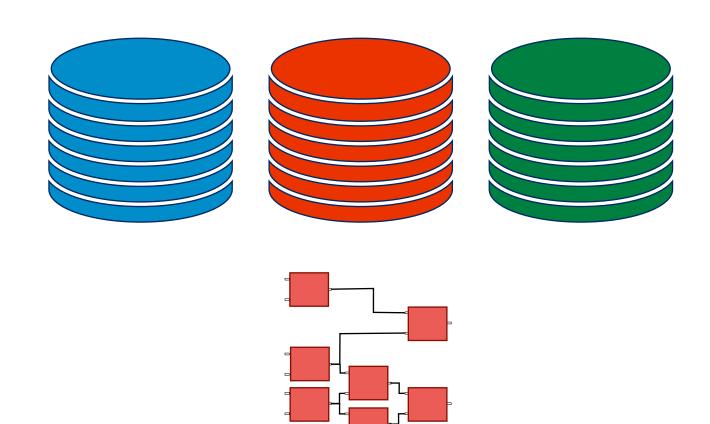


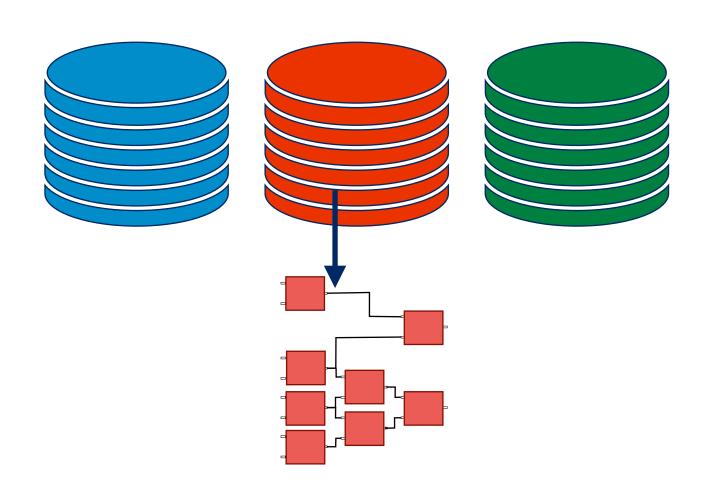


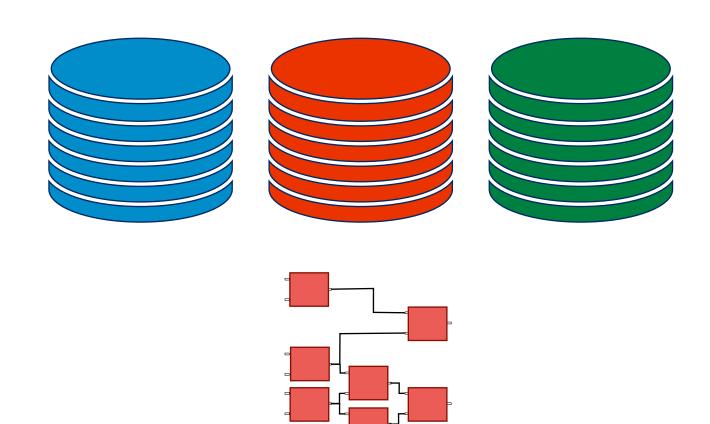


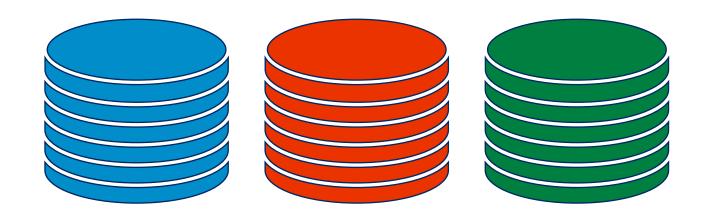


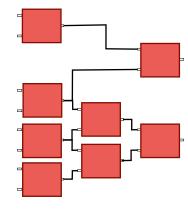


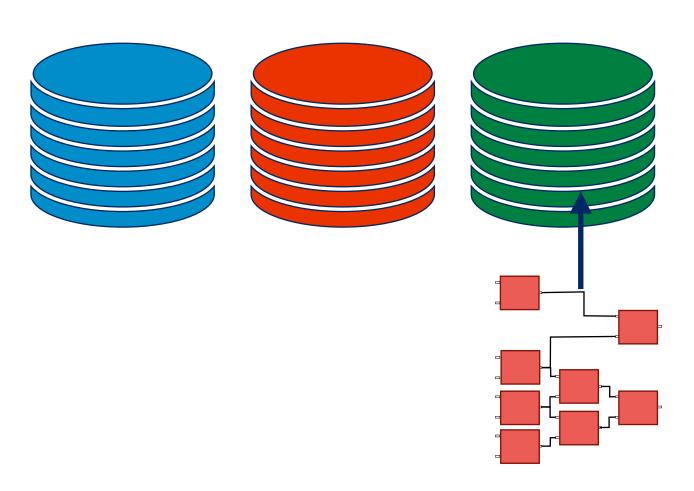


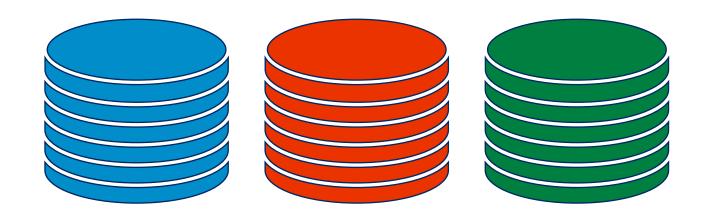


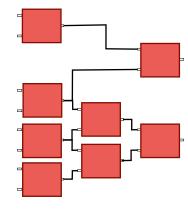


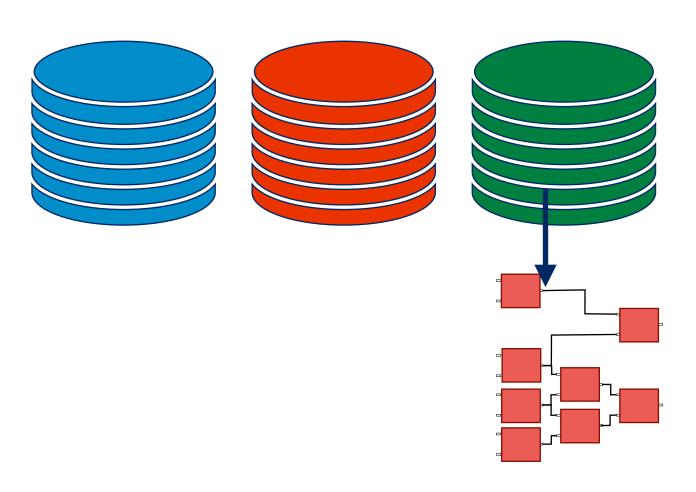


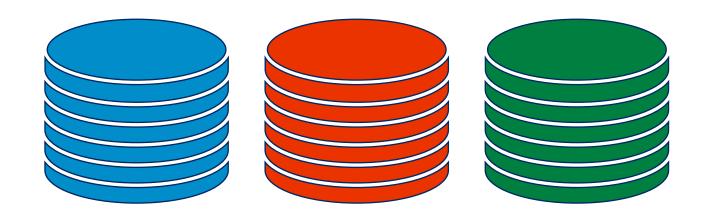


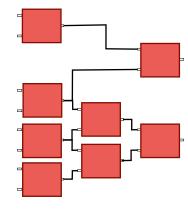


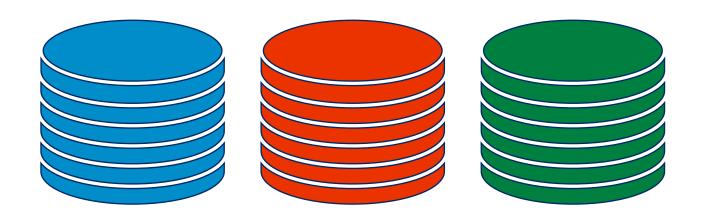


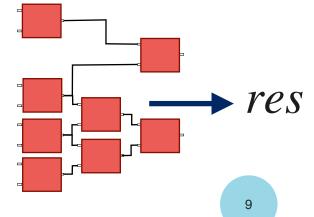


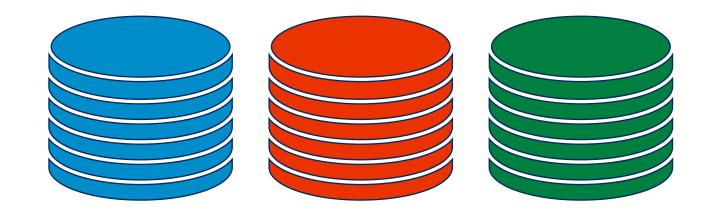


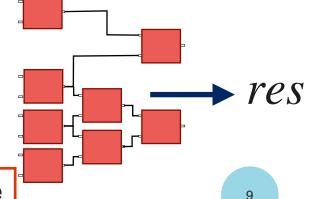




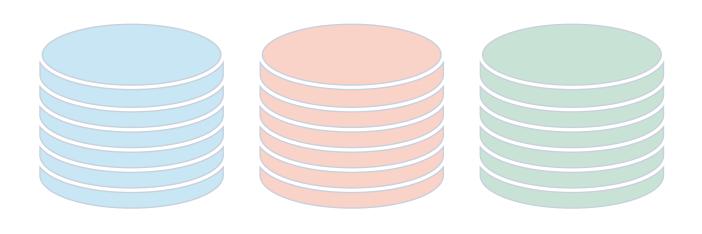








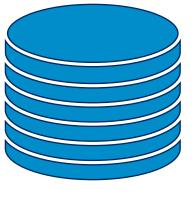
Nothing more than res is revealed, even if parties collude



Need a primitive to let garbled program access large database!

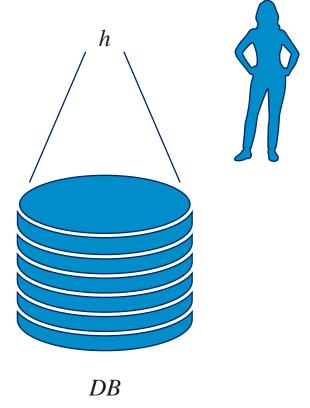
Nothing more than res is revealed, even if parties collude

 i, m_0, m_1



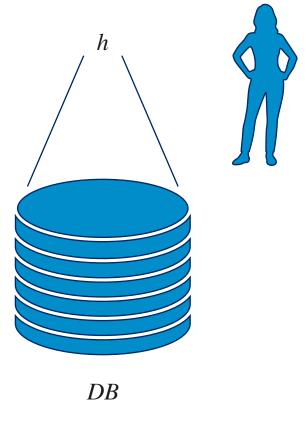
DB

 i, m_0, m_1



 i, m_0, m_1

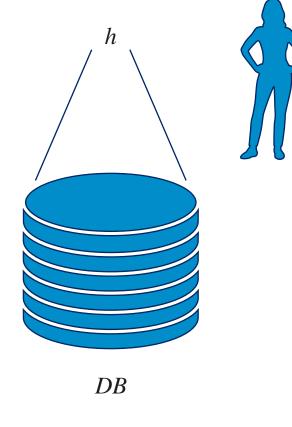
h



 i, m_0, m_1

h

$$c = Enc(h, i, m_0, m_1)$$

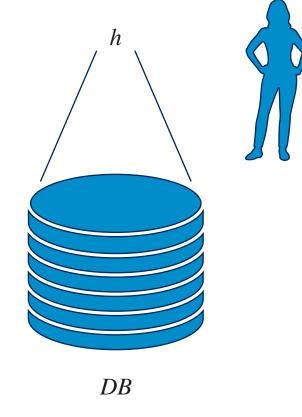


 i, m_0, m_1

h

$$c = Enc(h, i, m_0, m_1)$$

 \mathcal{C}



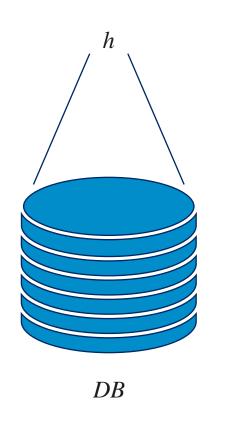
Laconic OT

 i, m_0, m_1

h

 $\boldsymbol{\mathcal{C}}$

$$c = Enc(h, i, m_0, m_1)$$



$$m_{DB_i} = Dec(DB, c)$$

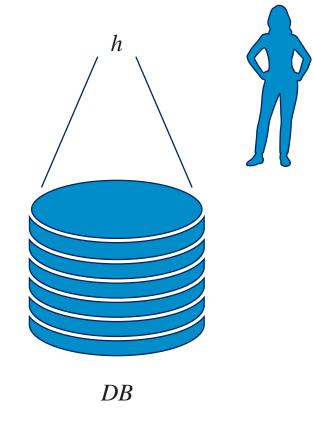
Laconic OT

 i, m_0, m_1

h

$$c = Enc(h, i, m_0, m_1)$$

 $\boldsymbol{\mathcal{C}}$

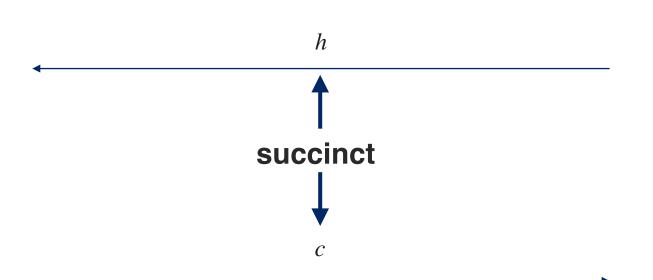


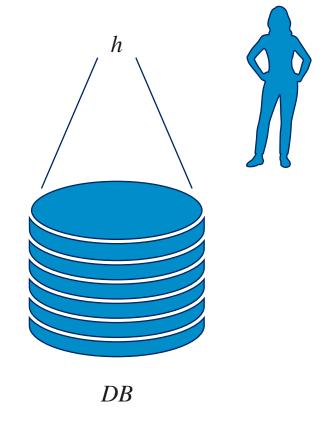
$$m_{DB_i} = Dec(DB, c)$$

Laconic OT

 i, m_0, m_1

 $c = Enc(h, i, m_0, m_1)$

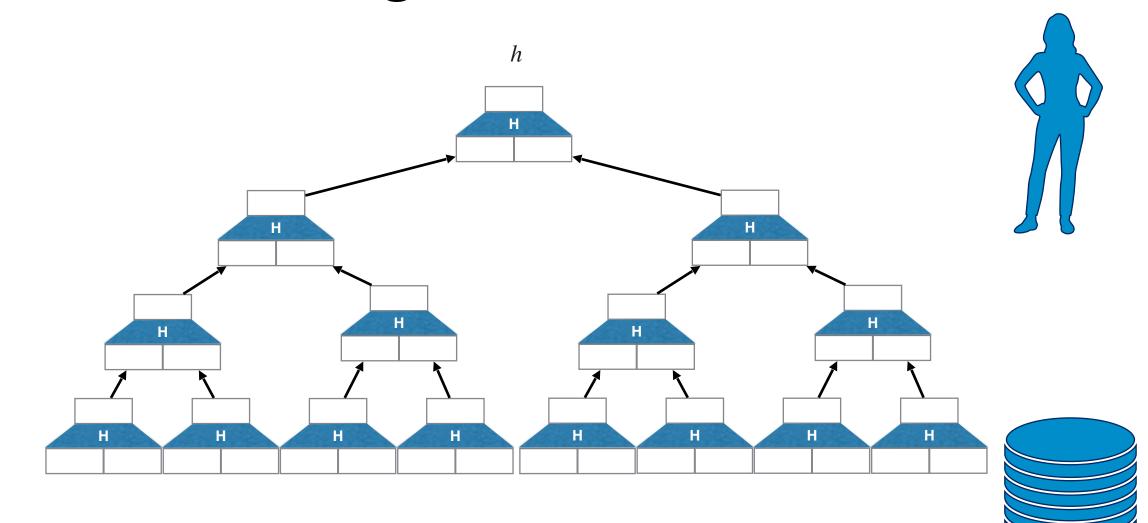




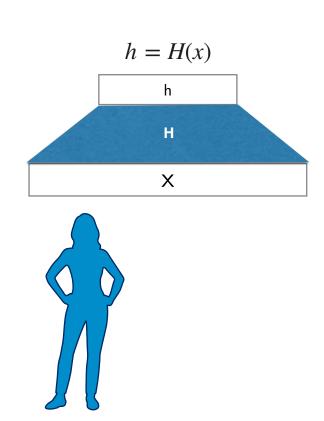
$$m_{DB_i} = Dec(DB, c)$$

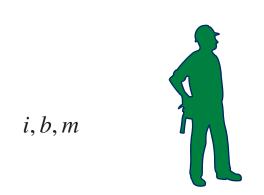
Constructing Laconic OT [CDGGMP17]

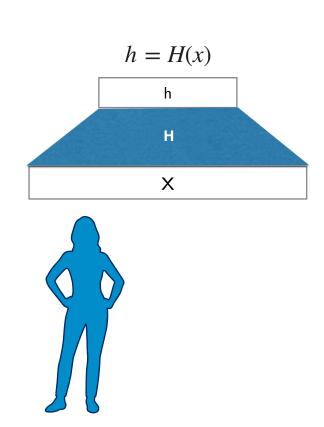
Hashing: Merkle Trees

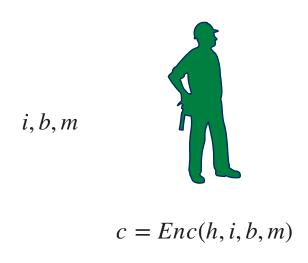


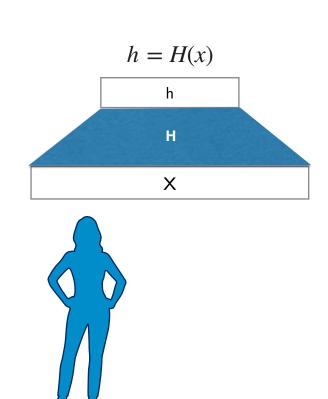
h = H(x)

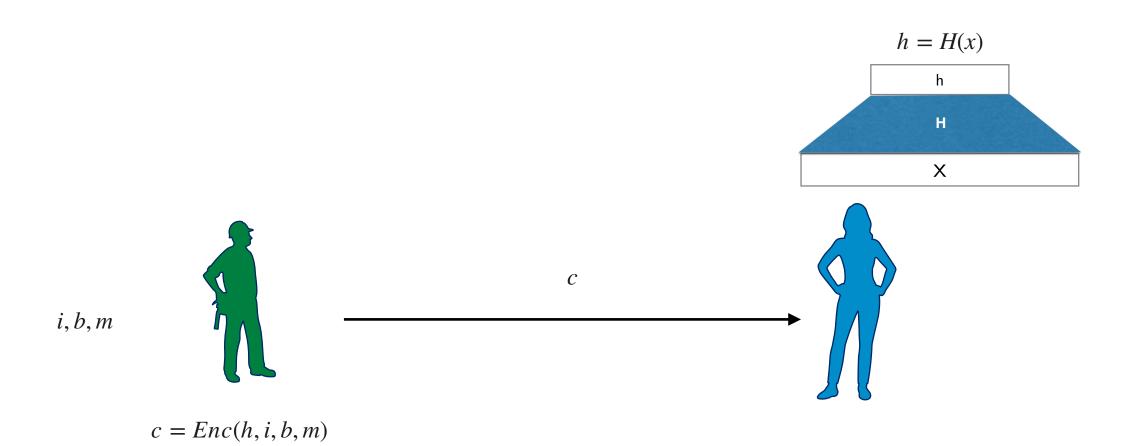


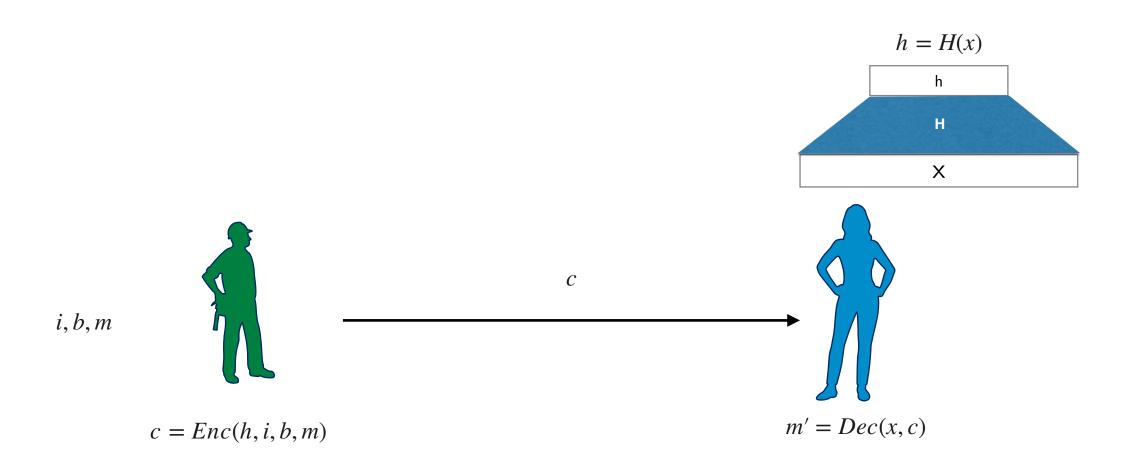


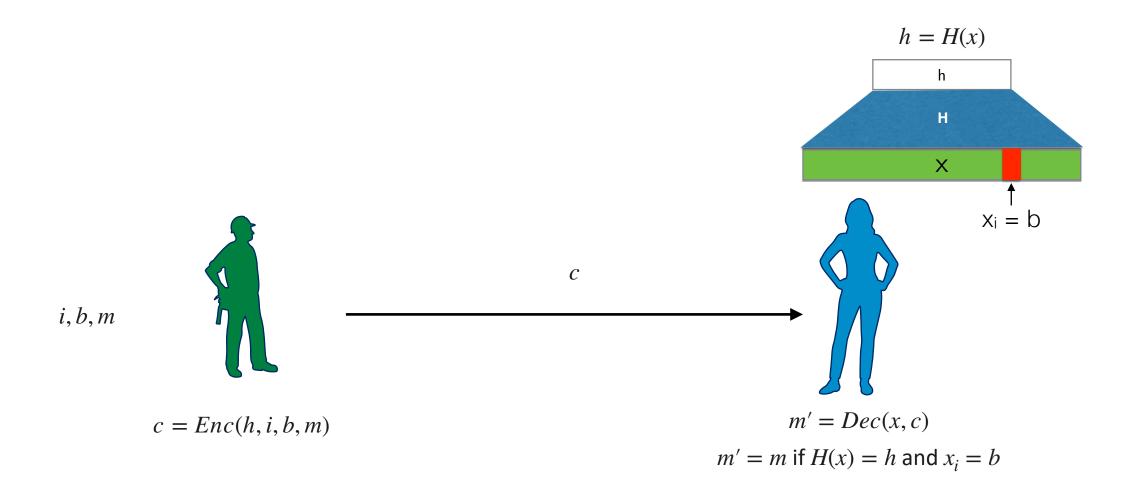


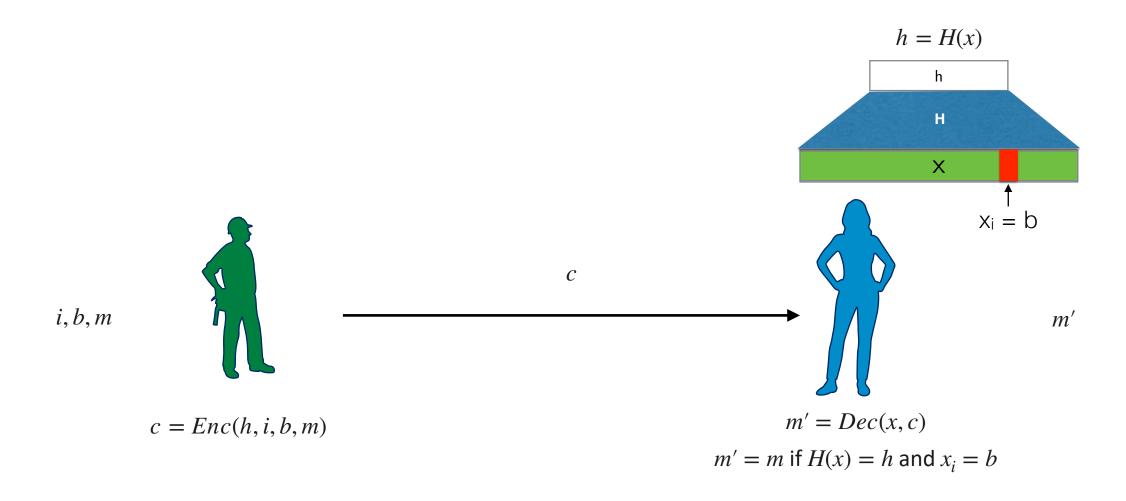












Hash Encryption from DDH (CDH)

$$\mathsf{k} = \begin{pmatrix} g_{1,0} = g^{\alpha_{1,0}}, \dots, & g_{i,0} = g^{\alpha_{i,0}}, \dots, & g_{n,0} = g^{\alpha_{n,0}} \\ g_{1,1} = g^{\alpha_{1,1}}, \dots, & g_{i,1} = g^{\alpha_{i,1}}, \dots, & g_{n,1} = g^{\alpha_{n,n}} \end{pmatrix}$$

$$H(k, x; r) \leftarrow g^r \cdot \prod_j g_{j, x_j} = h$$

$$Enc(k, (h, i, b), m) :$$

$$c_{1} \leftarrow h^{s}$$

$$e \leftarrow g_{i,b}^{s} \cdot m$$

$$c_{0} \leftarrow g^{s}$$

$$\forall j \neq i : c_{j,0} \leftarrow g_{j,0}^{s}$$

$$c_{j,1} \leftarrow g_{j,1}^{s}$$

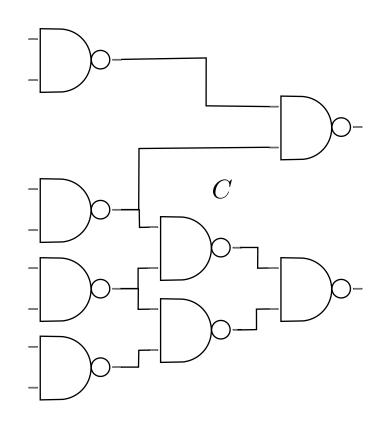
$$Dec(k, (x, r), c) :$$

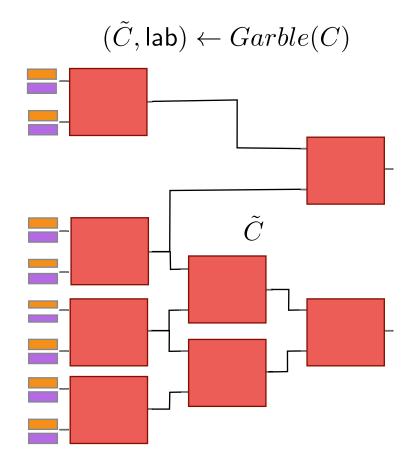
$$m \leftarrow e \cdot \frac{c_0^r \cdot \prod_{j \neq i} c_{j, x_j}}{c_1}$$

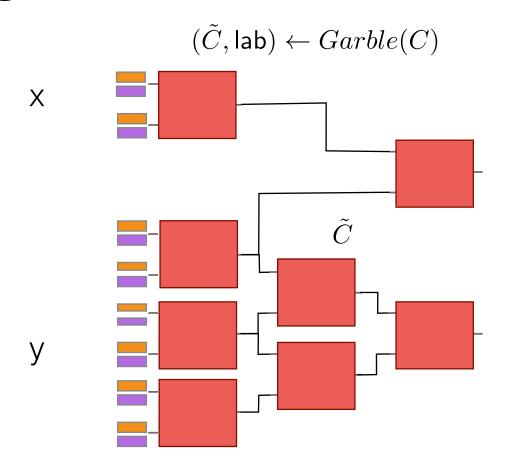
$$= e \cdot \frac{c_0^r \cdot \prod_{j \neq i} c_{j, x_j}}{h^s}$$

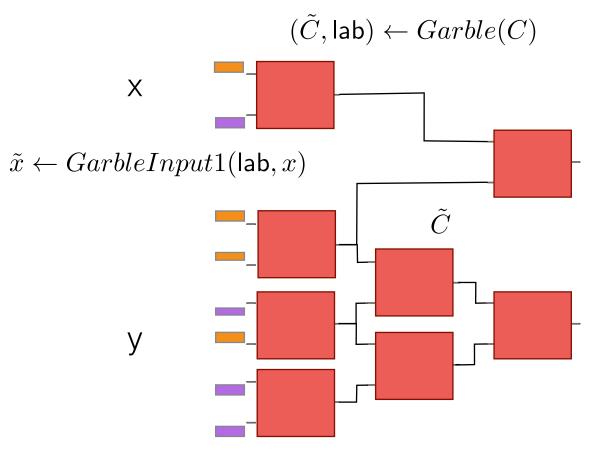
$$= e \cdot \frac{c_0^r \cdot \prod_{j \neq i} c_{j, x_j}}{g_{i, x_i}^s \cdot c_0^r \cdot \prod_{j \neq i} c_{j, x_j}}$$

$$= m \cdot \frac{g_{i, b}^s}{g_{i, x_i}^s} = m$$

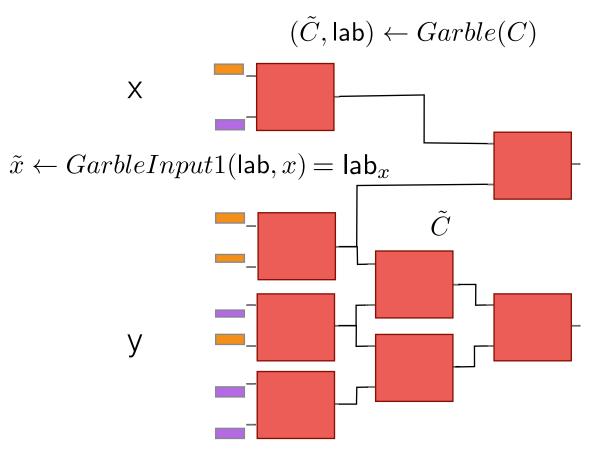




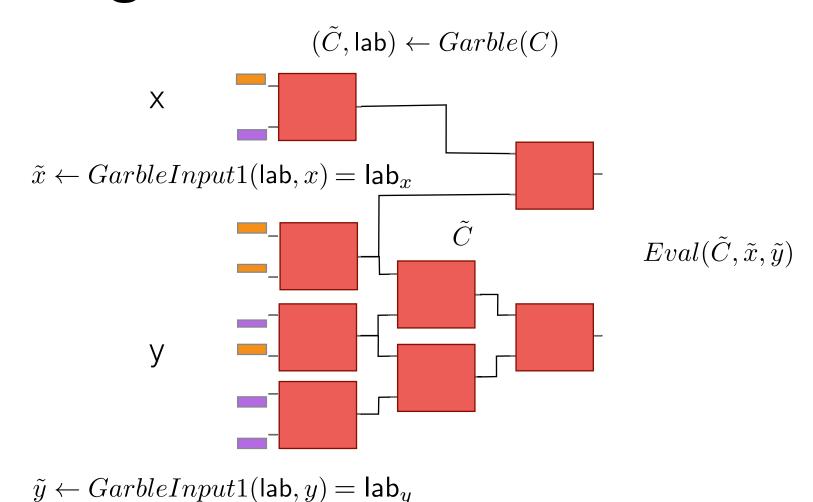


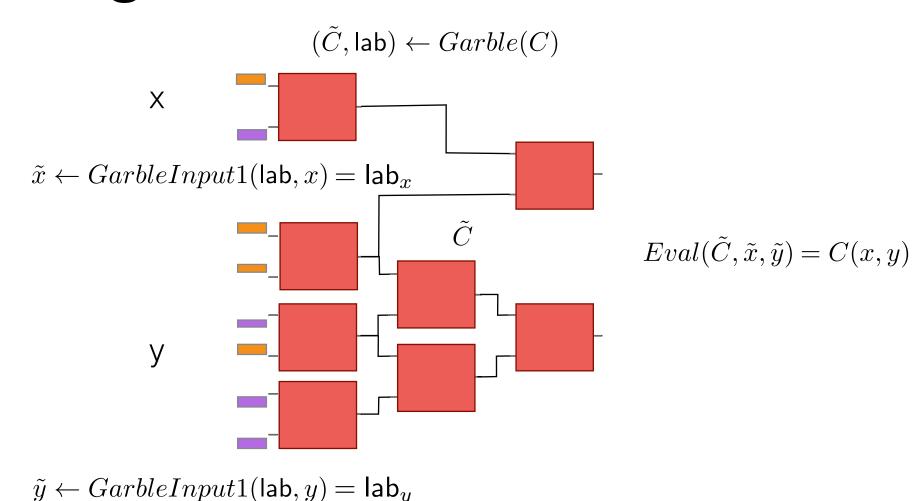


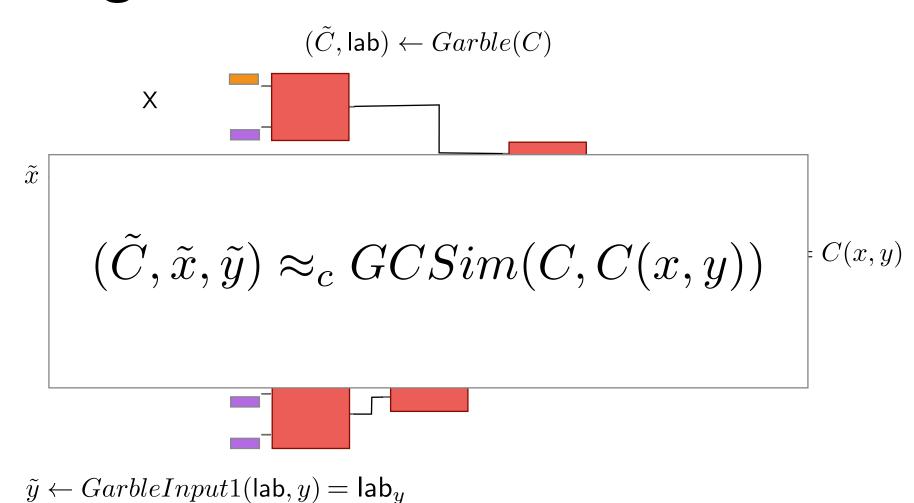
 $\tilde{y} \leftarrow GarbleInput1(\mathsf{lab}, y)$

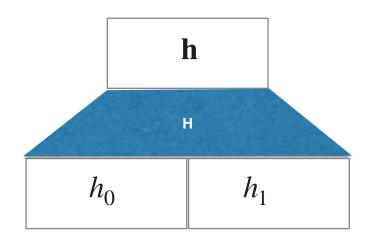


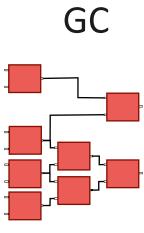
 $\tilde{y} \leftarrow GarbleInput1(\mathsf{lab}, y) = \mathsf{lab}_y$

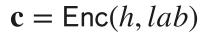


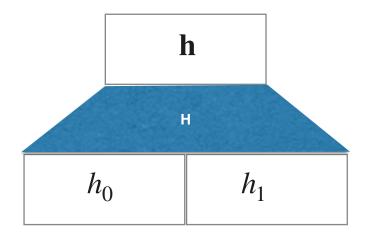


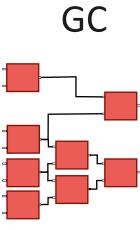


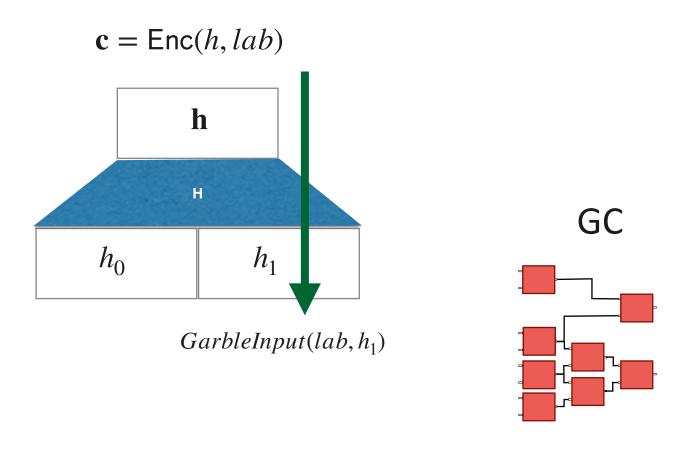


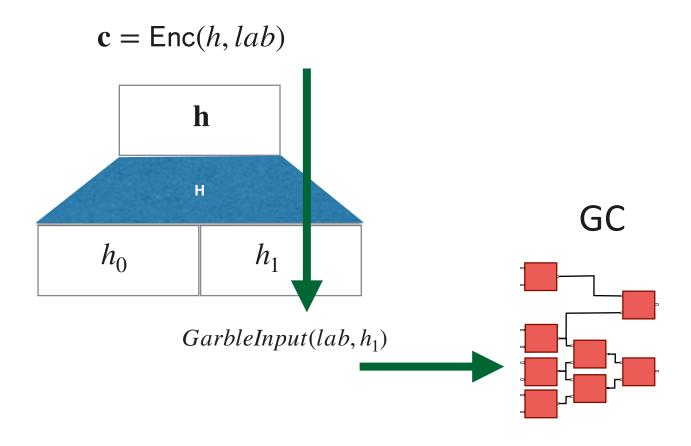


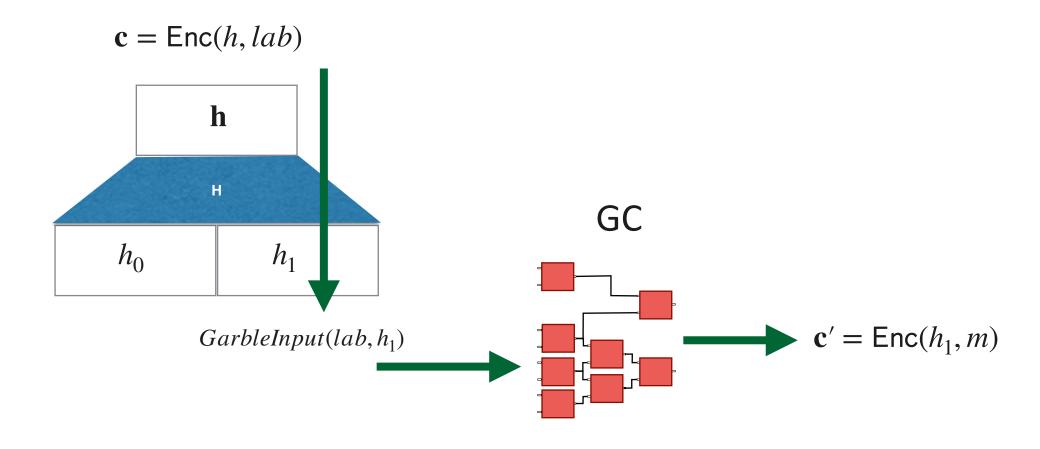


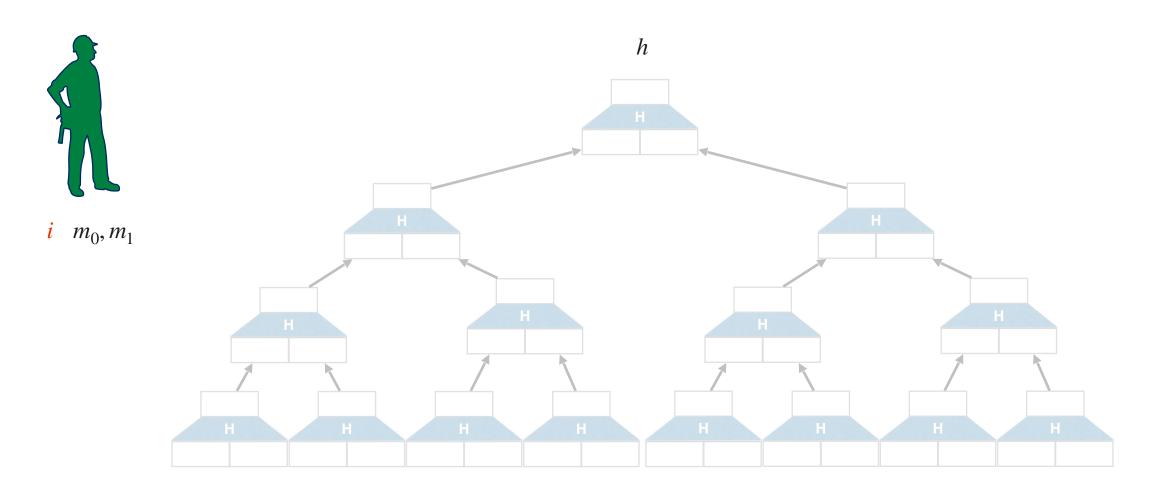


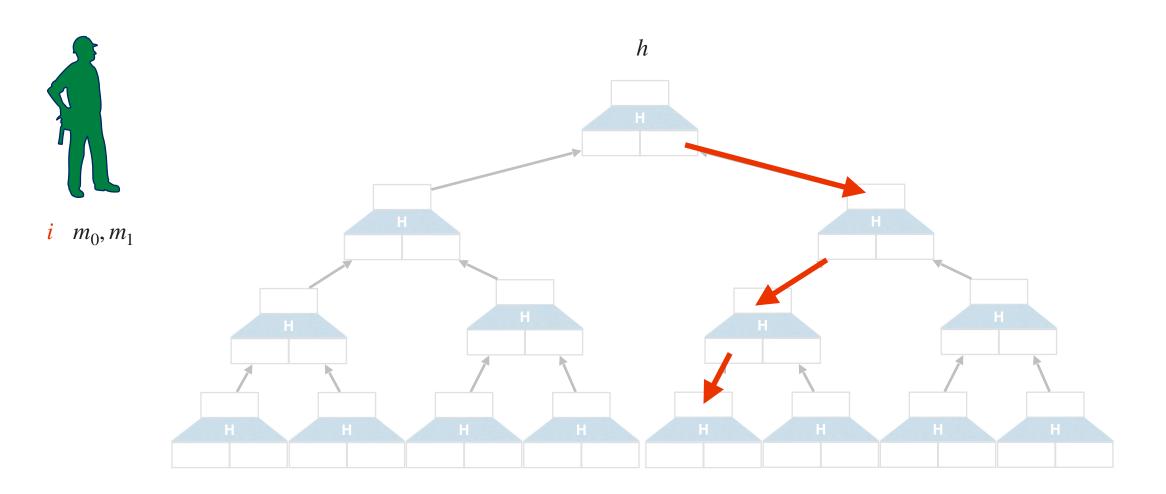


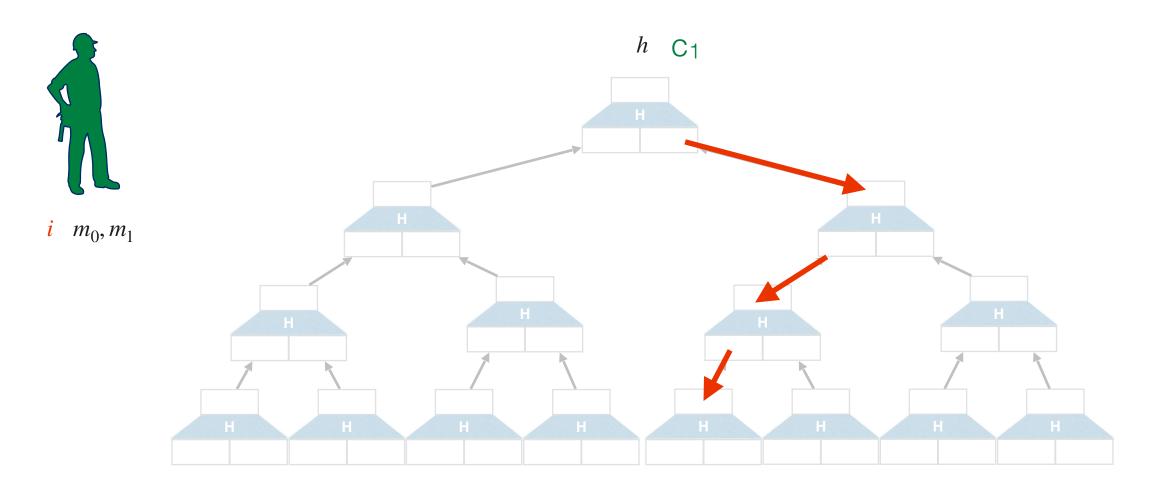


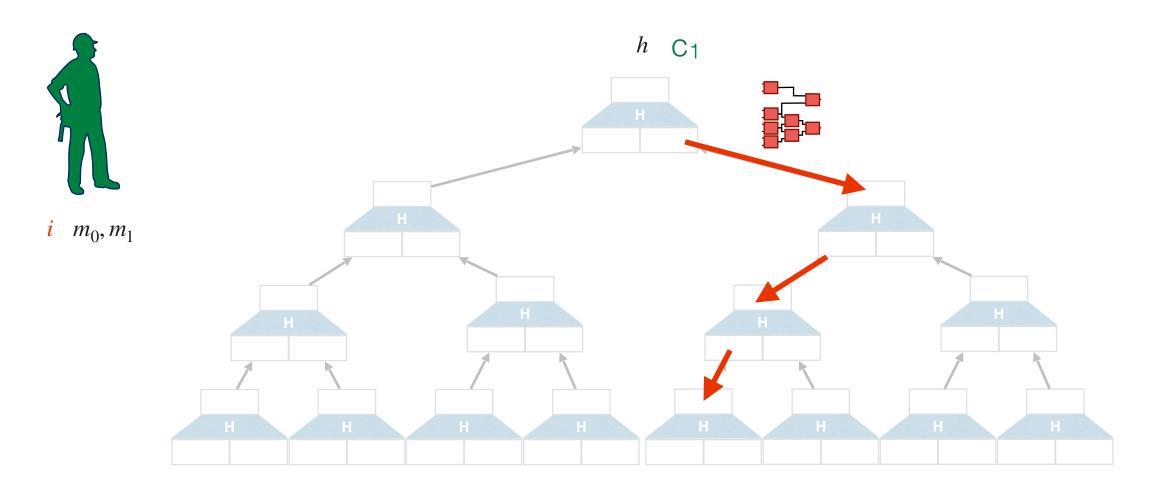


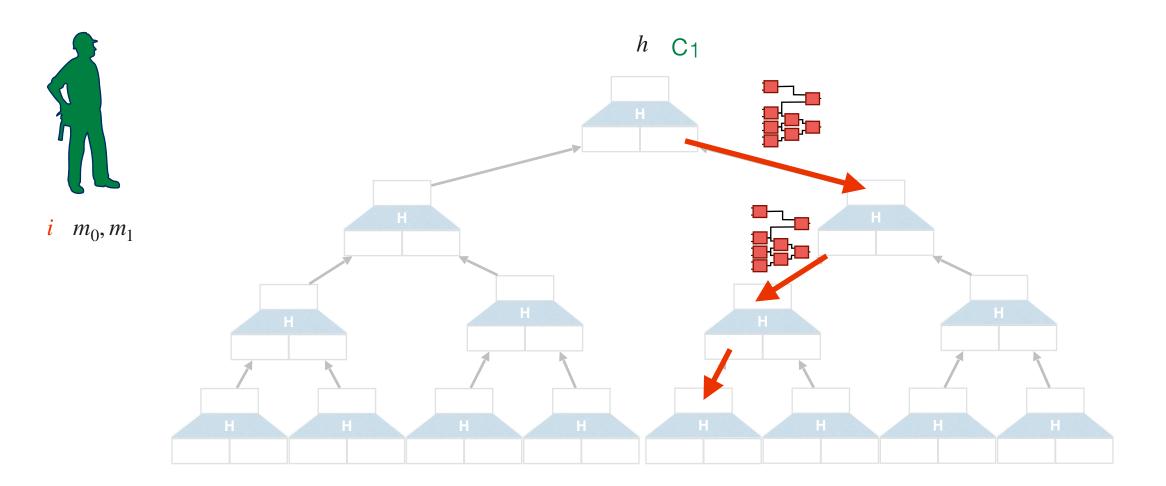


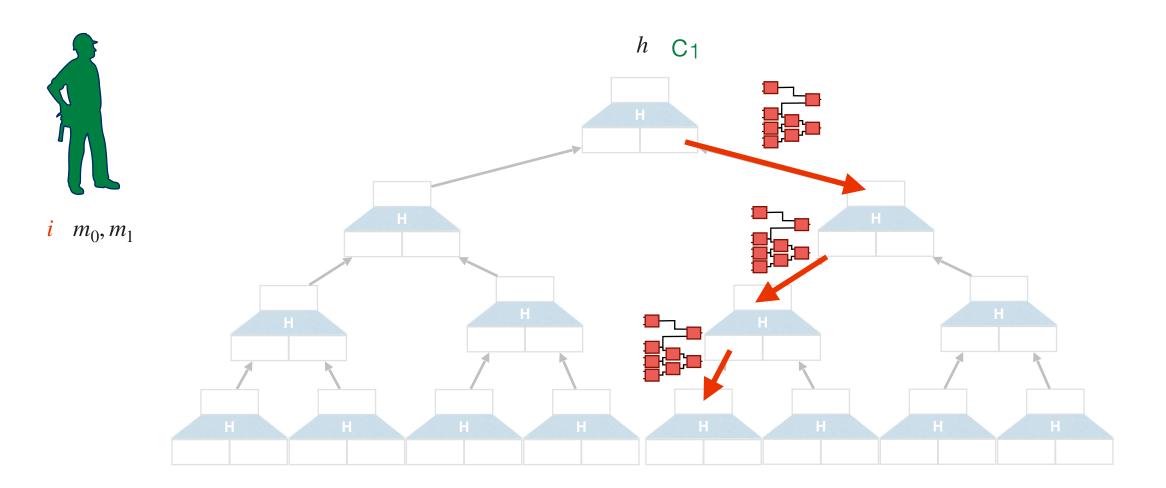




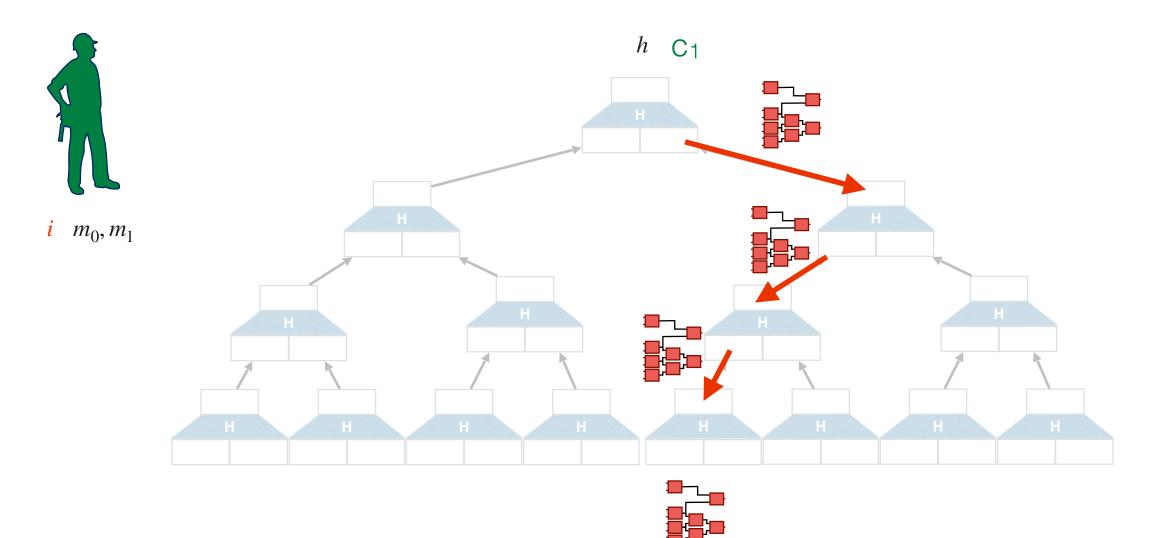


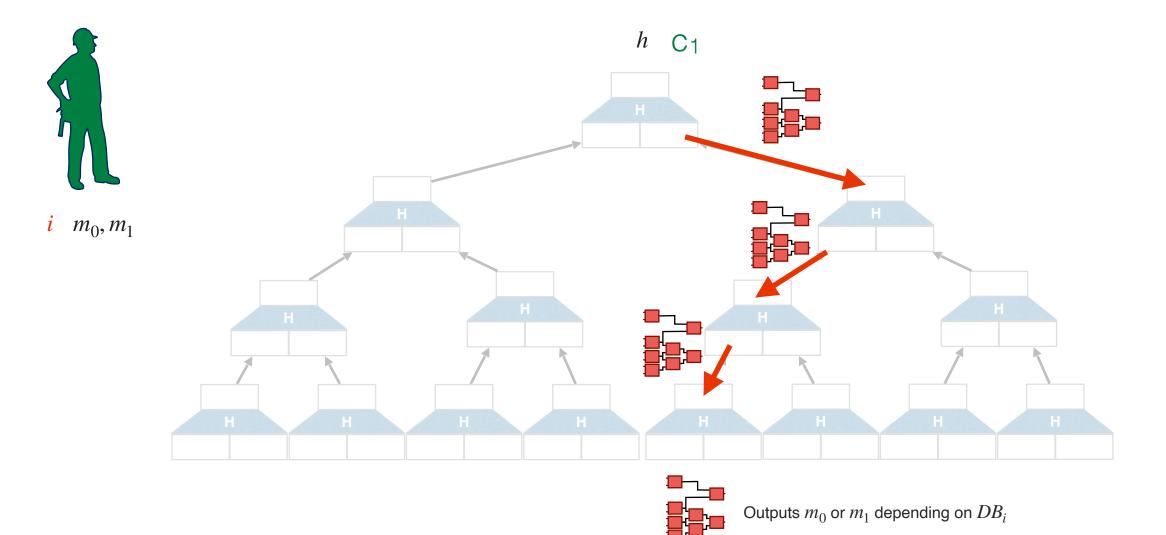




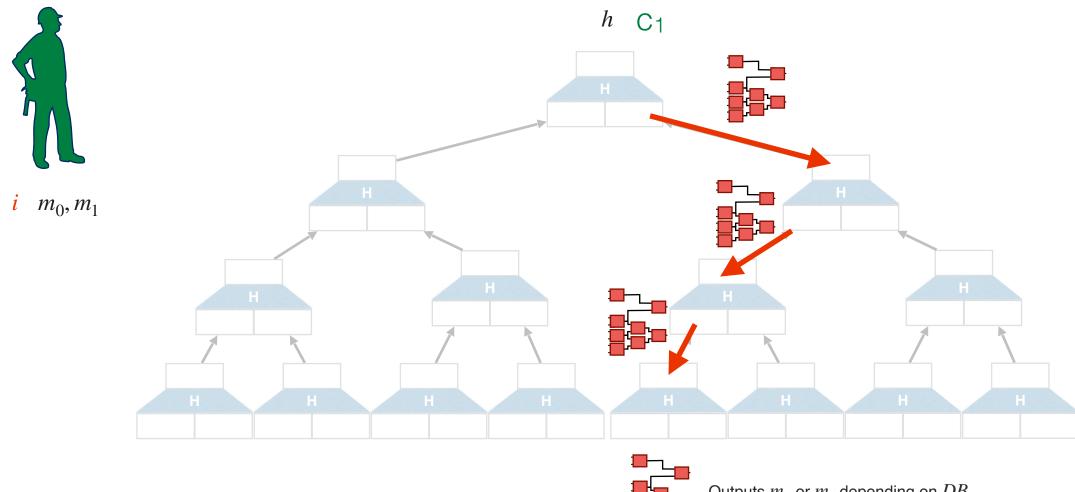


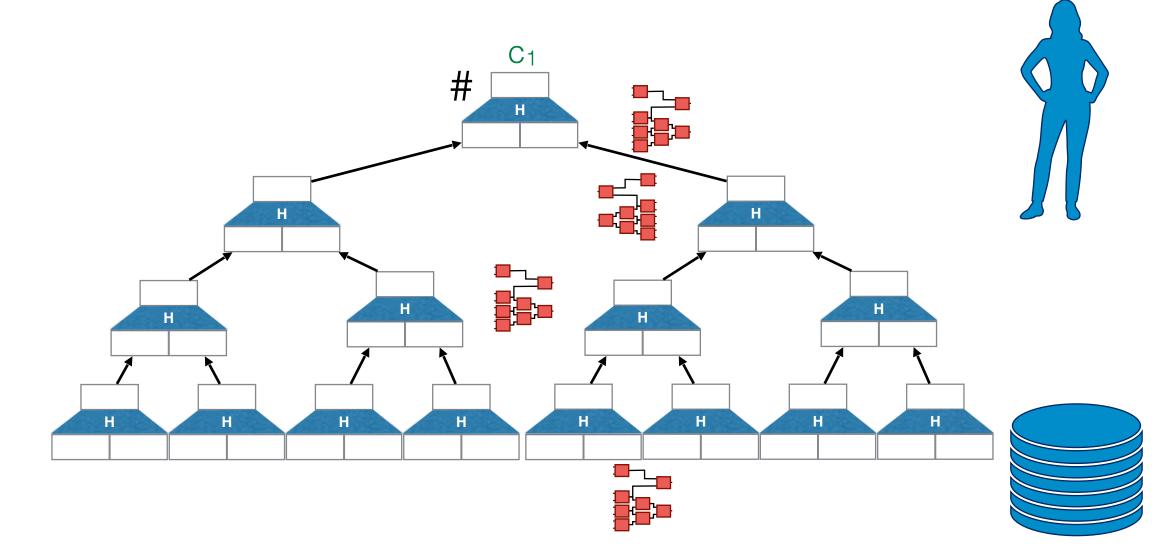
FIRMANIA STATES

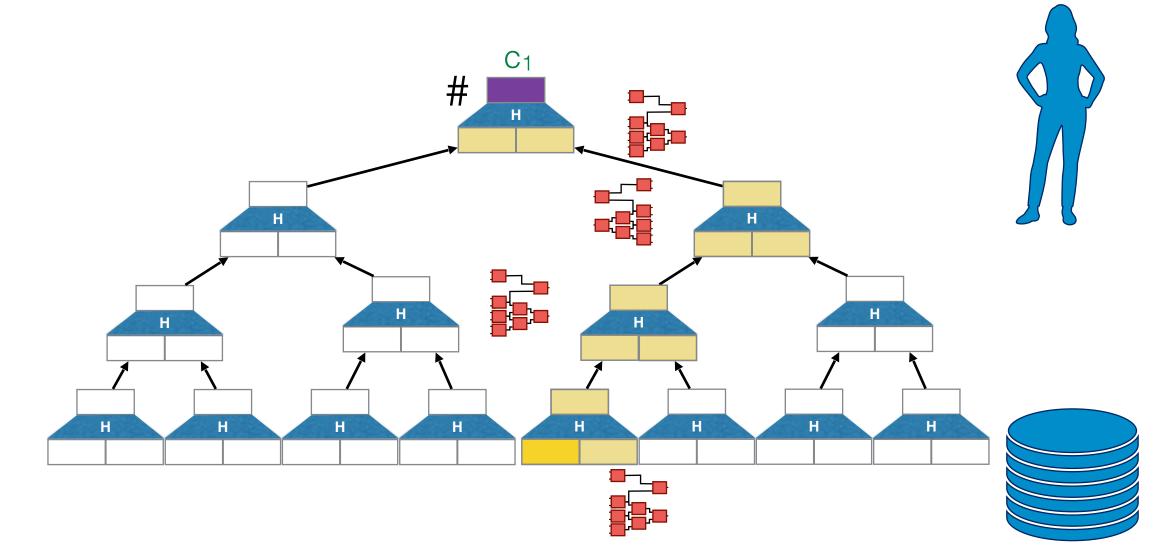


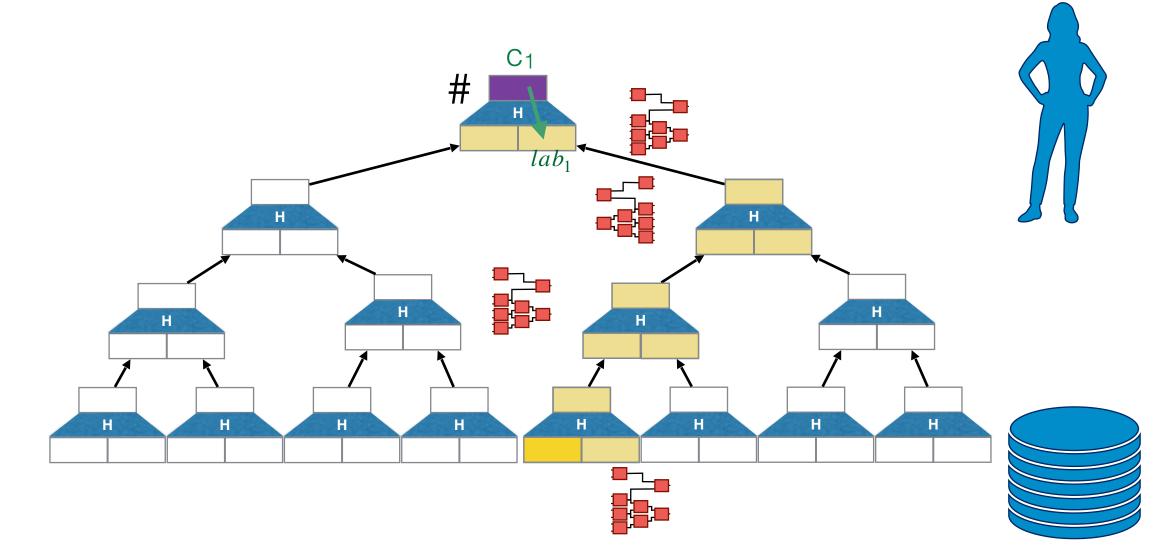


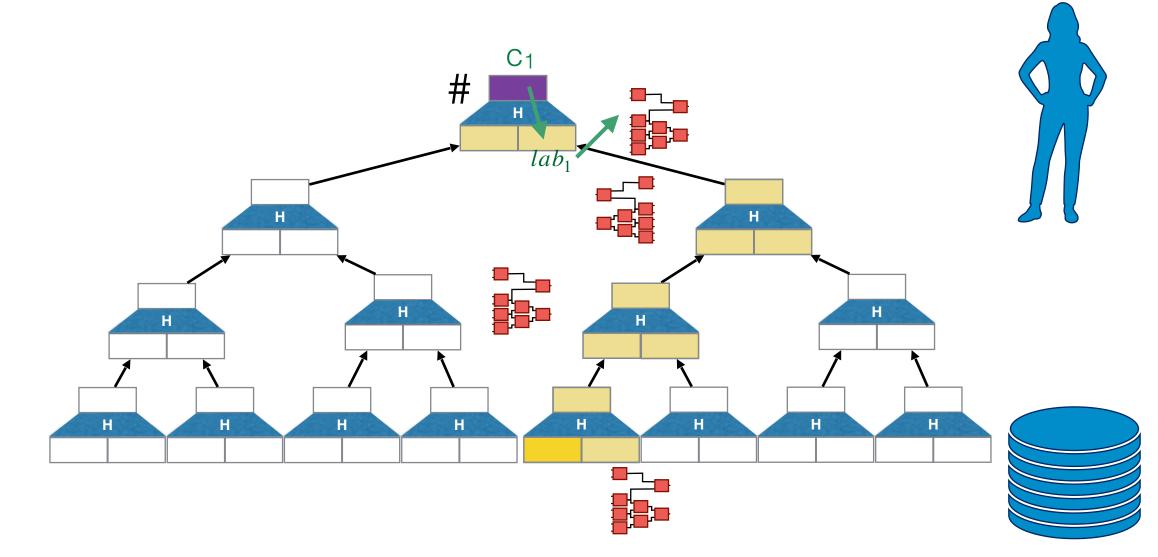
Core Paradigm: Delegate Work "into the Future"

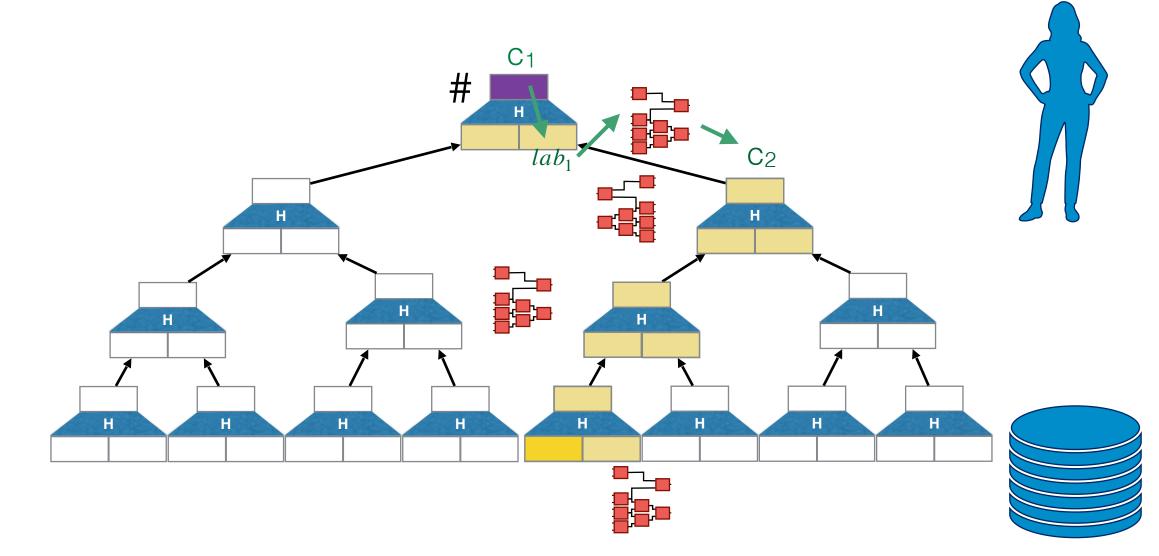


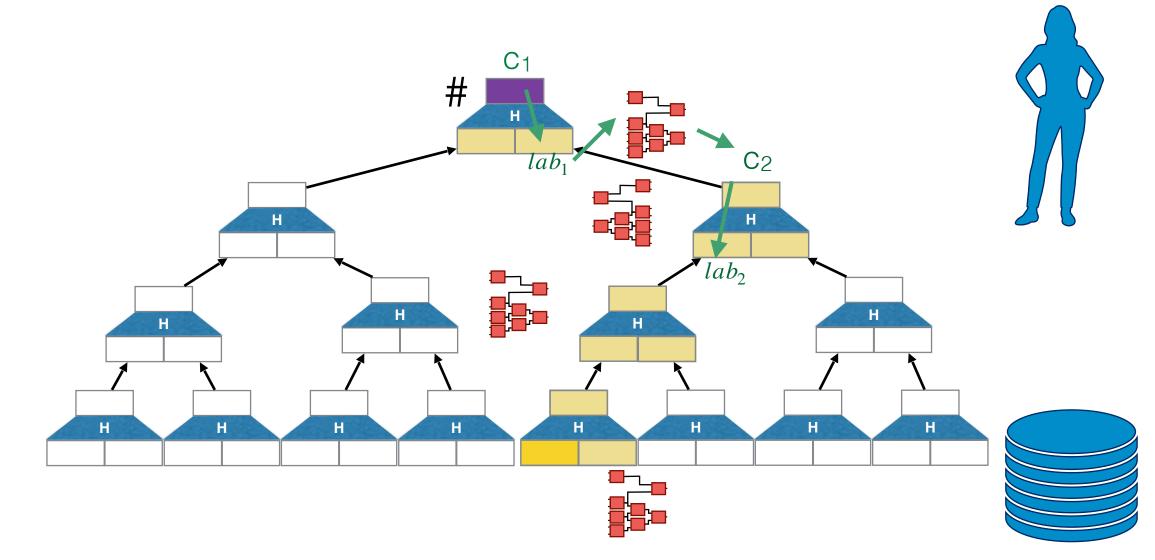


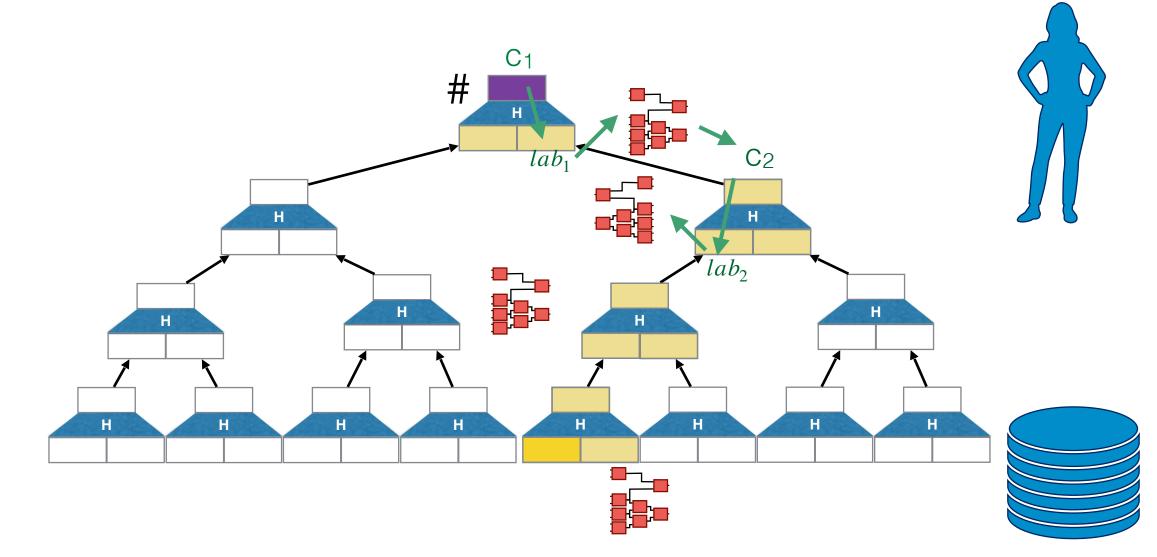


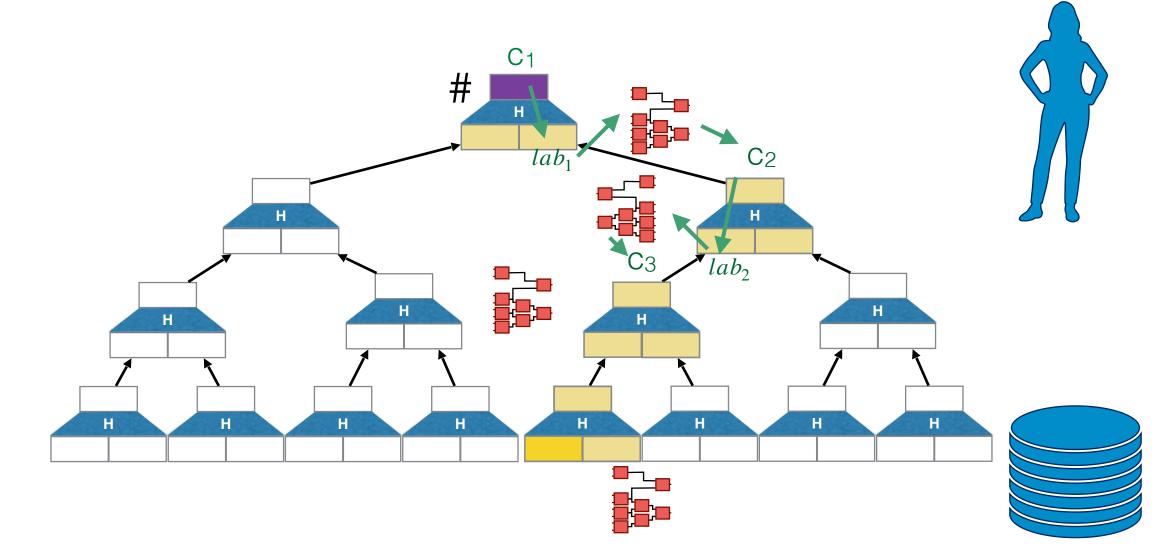


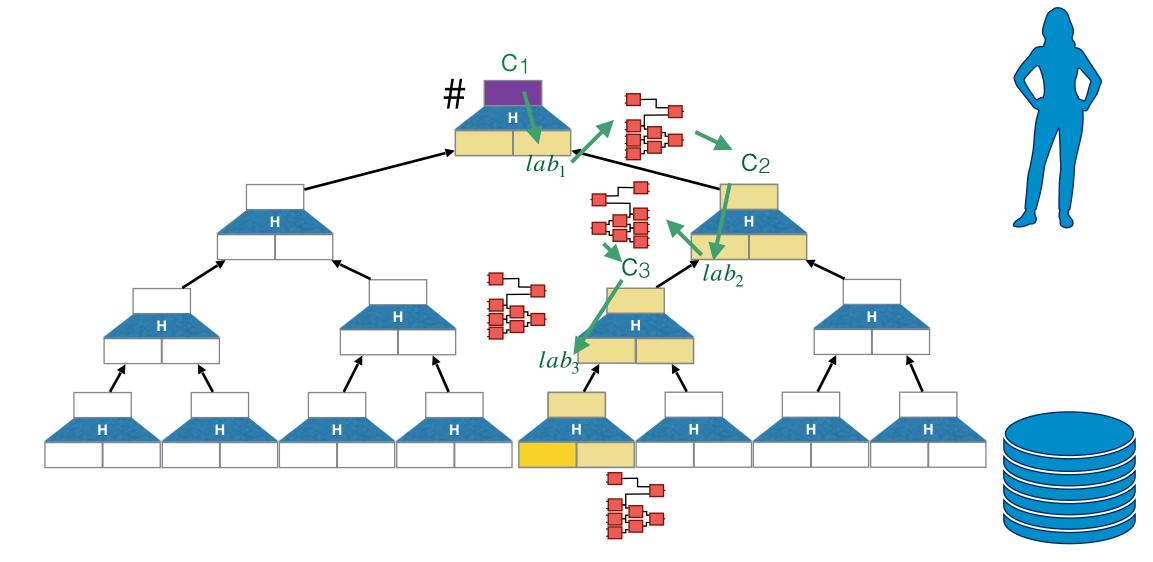


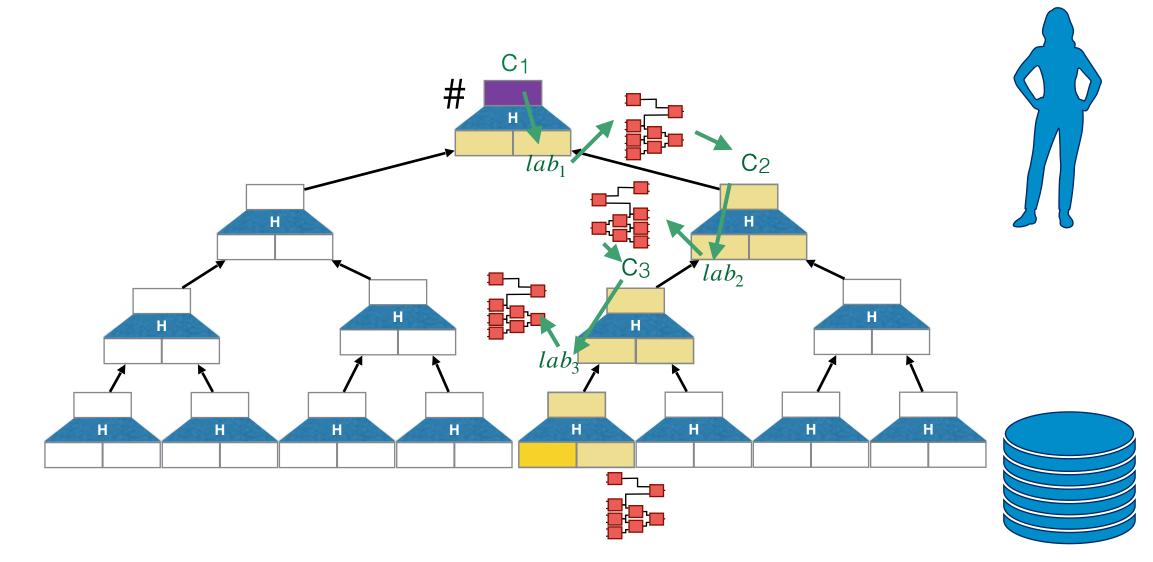


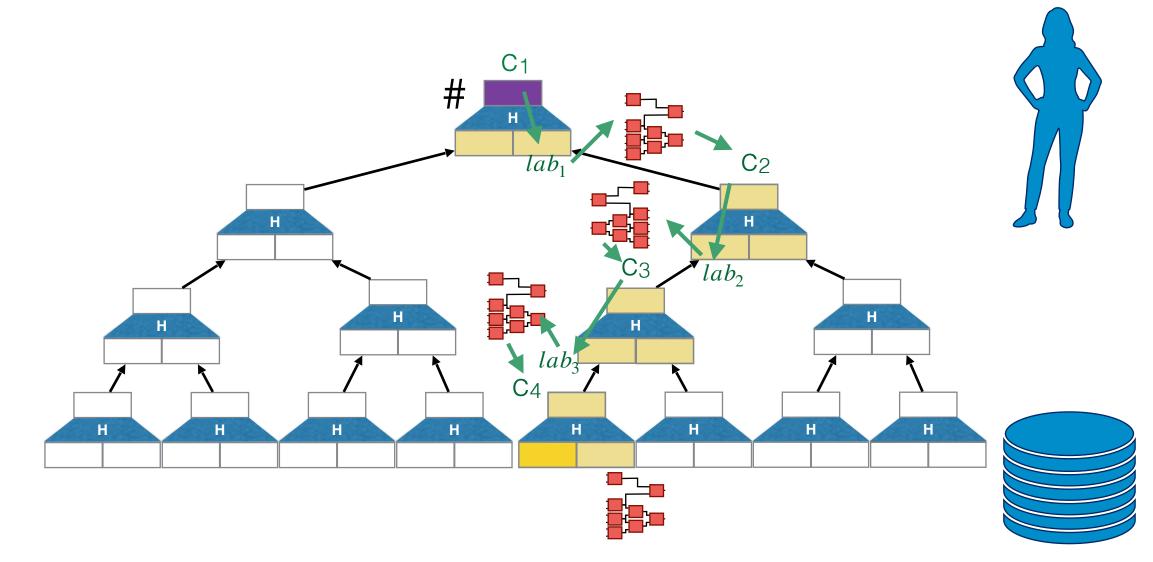


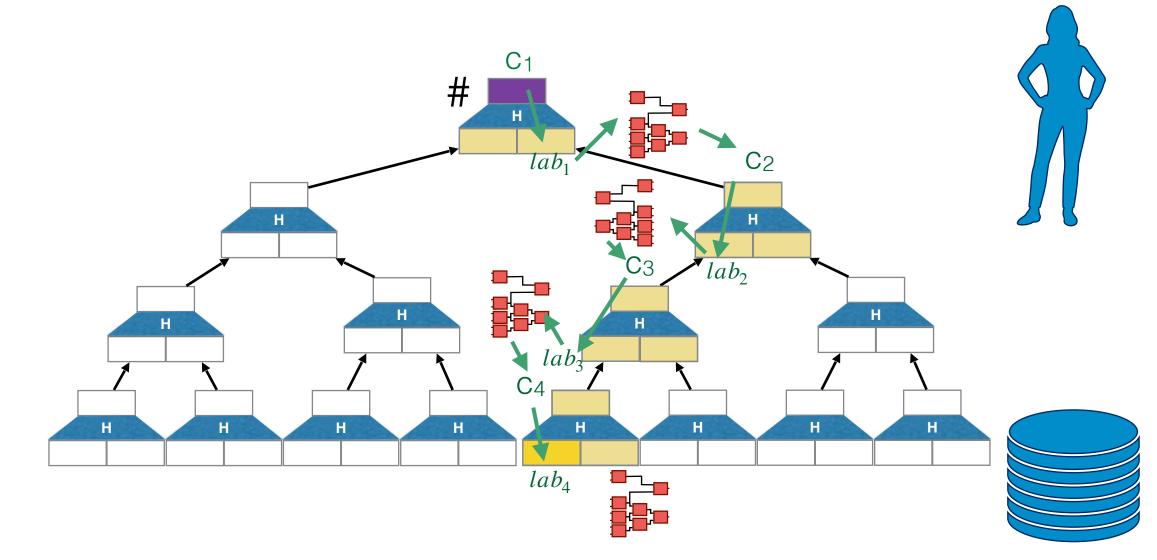


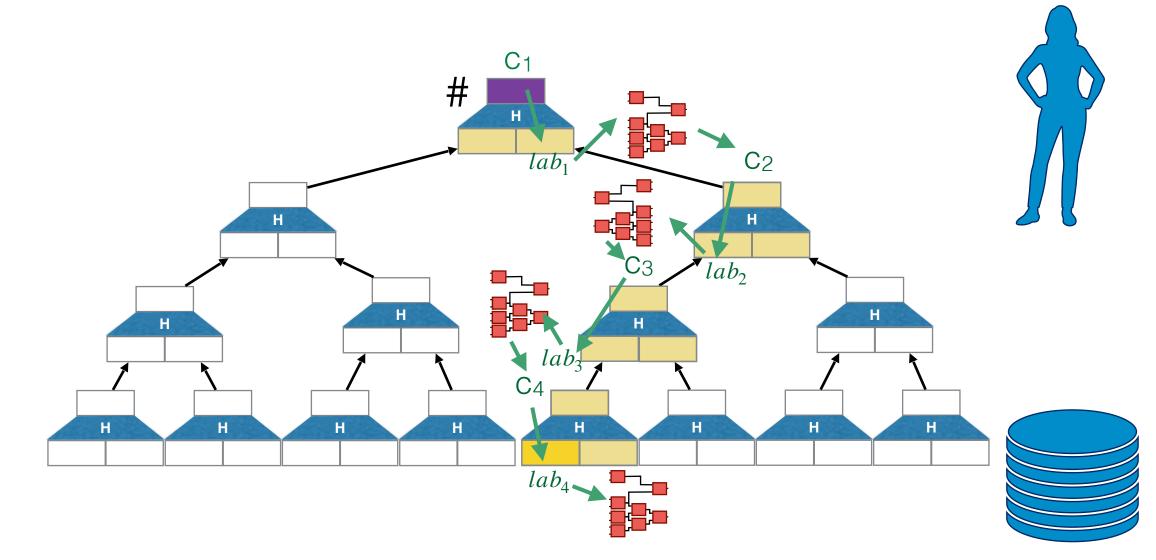


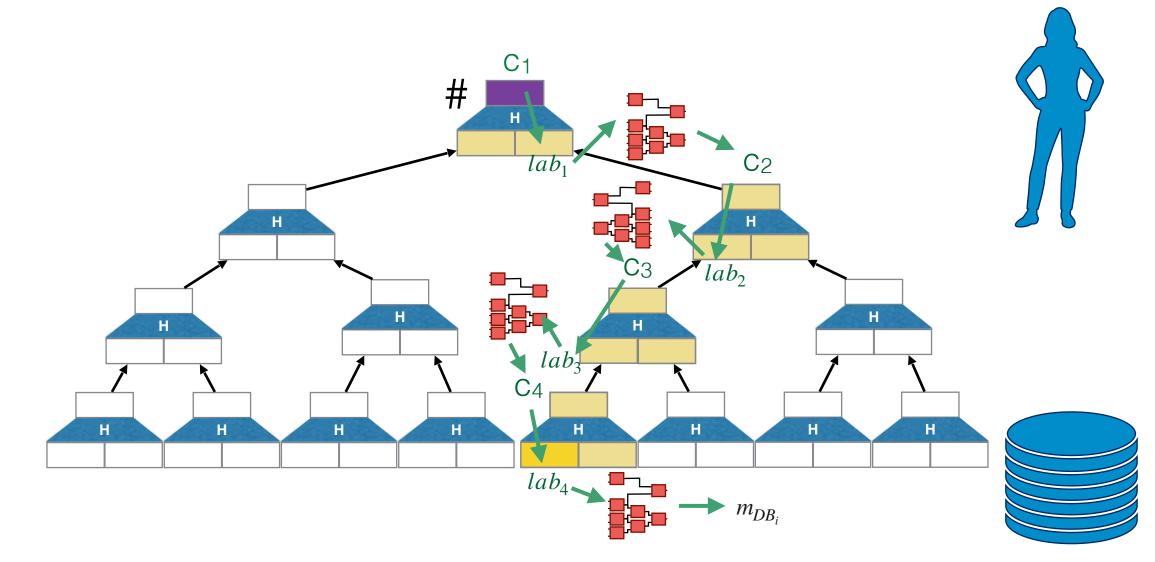


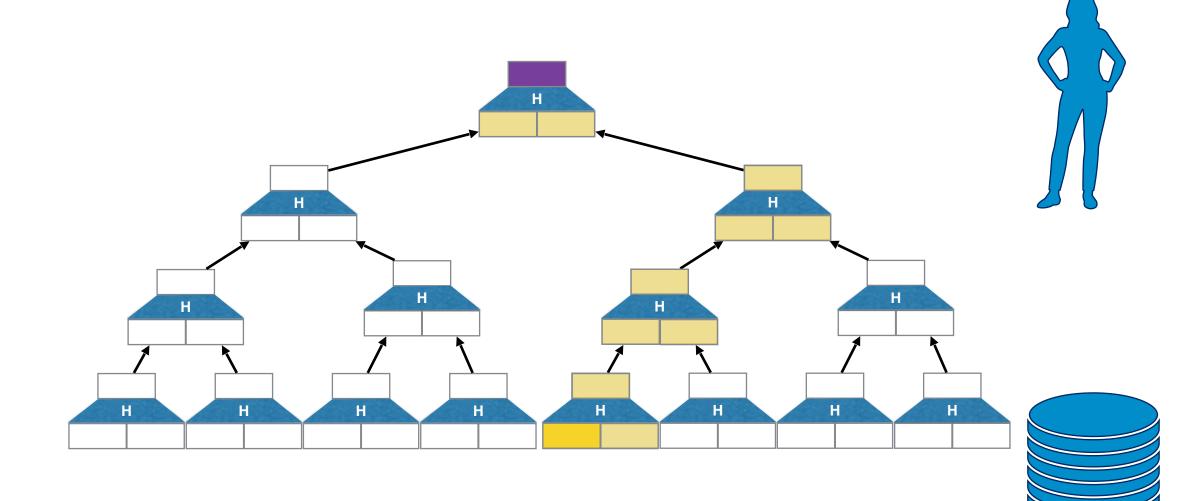


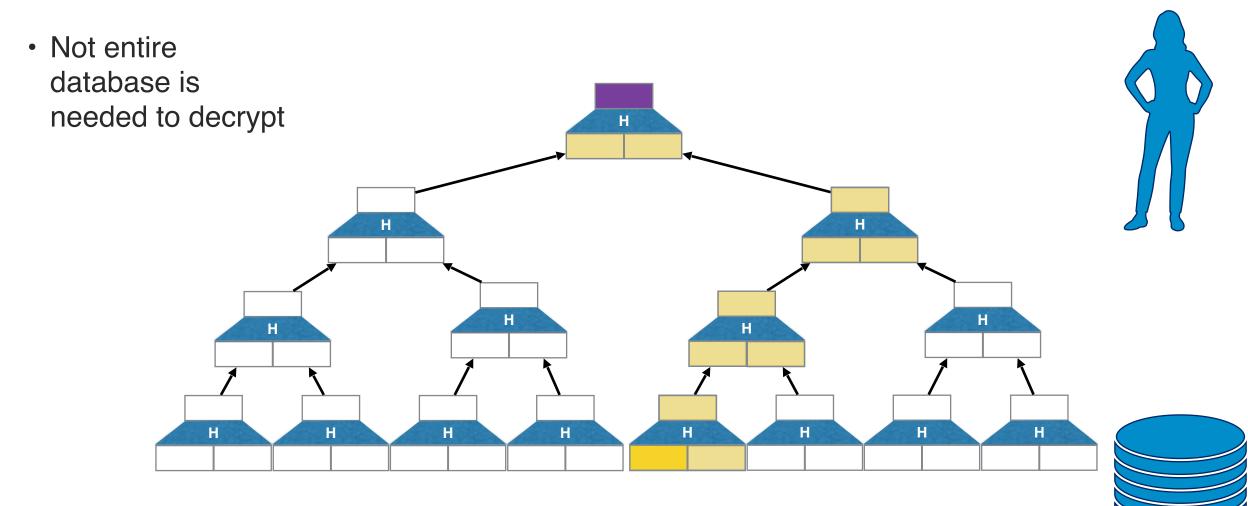


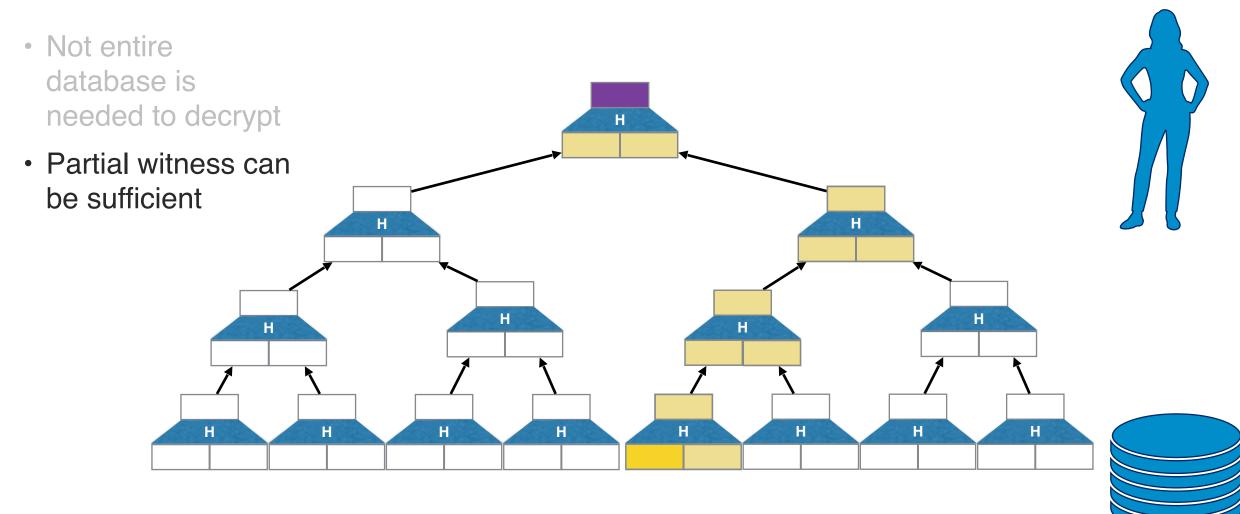








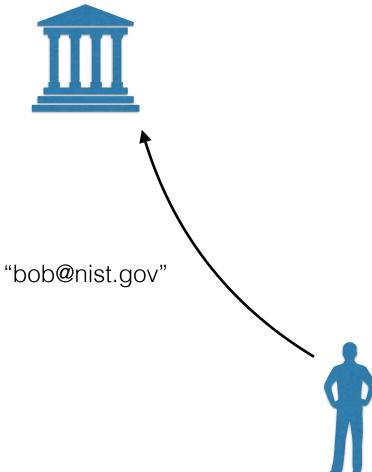




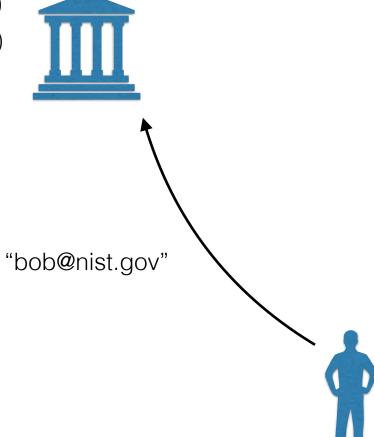
Advanced Constructions

 $(mpk, msk) \leftarrow Setup(1^{\lambda})$

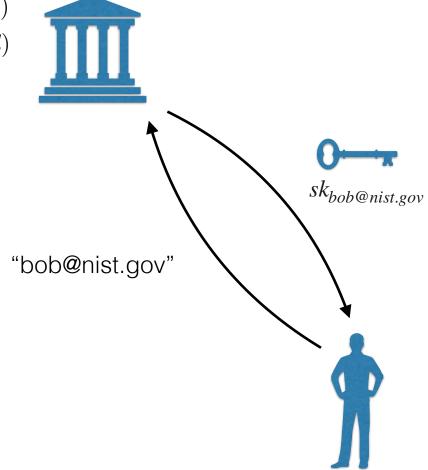
 $(mpk, msk) \leftarrow Setup(1^{\lambda})$



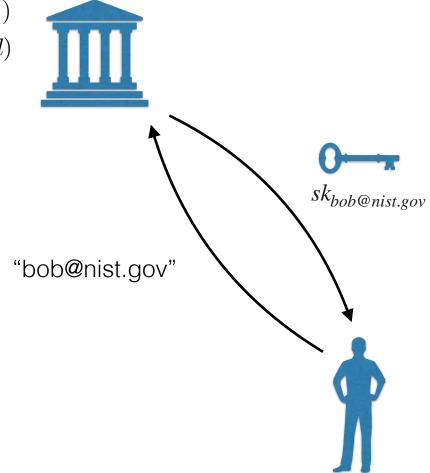
 $(mpk, msk) \leftarrow Setup(1^{\lambda})$ $sk_{id} \leftarrow KeyGen(msk, id)$



 $(mpk, msk) \leftarrow Setup(1^{\lambda})$ $sk_{id} \leftarrow KeyGen(msk, id)$



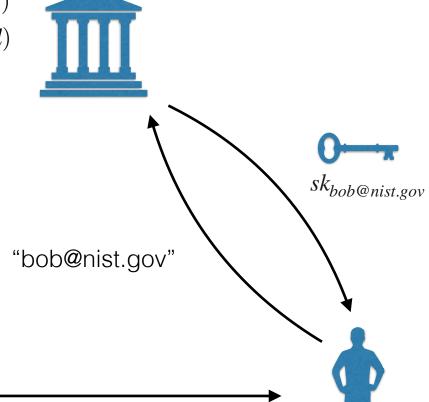
 $(mpk, msk) \leftarrow Setup(1^{\lambda})$ $sk_{id} \leftarrow KeyGen(msk, id)$



mpk

 $c \leftarrow Encrypt(mpk, id, m)$

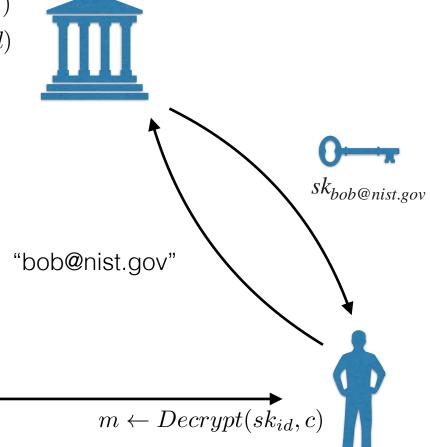
 $(mpk, msk) \leftarrow Setup(1^{\lambda})$ $sk_{id} \leftarrow KeyGen(msk, id)$



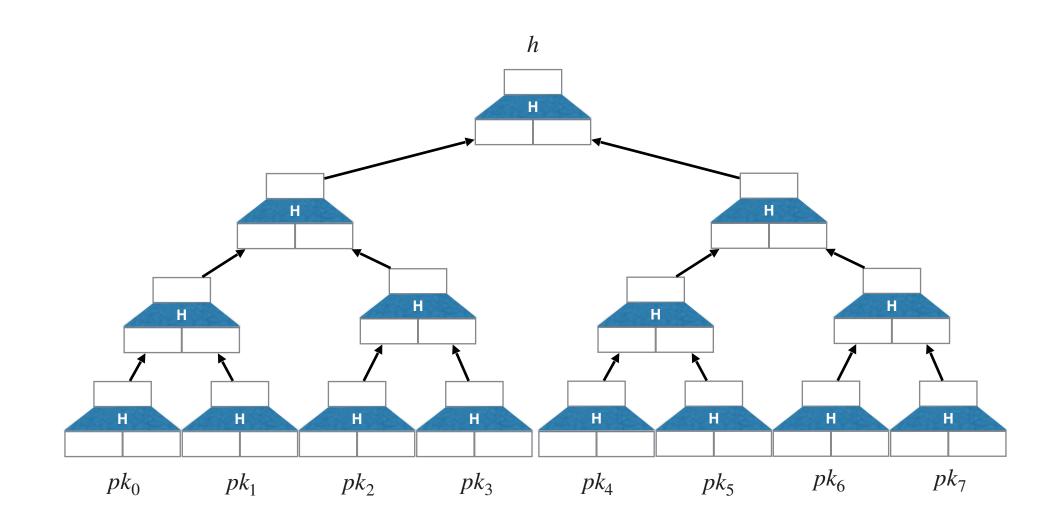
mpk

 $c \leftarrow Encrypt(mpk, id, m)$

 $(mpk, msk) \leftarrow Setup(1^{\lambda})$ $sk_{id} \leftarrow KeyGen(msk, id)$

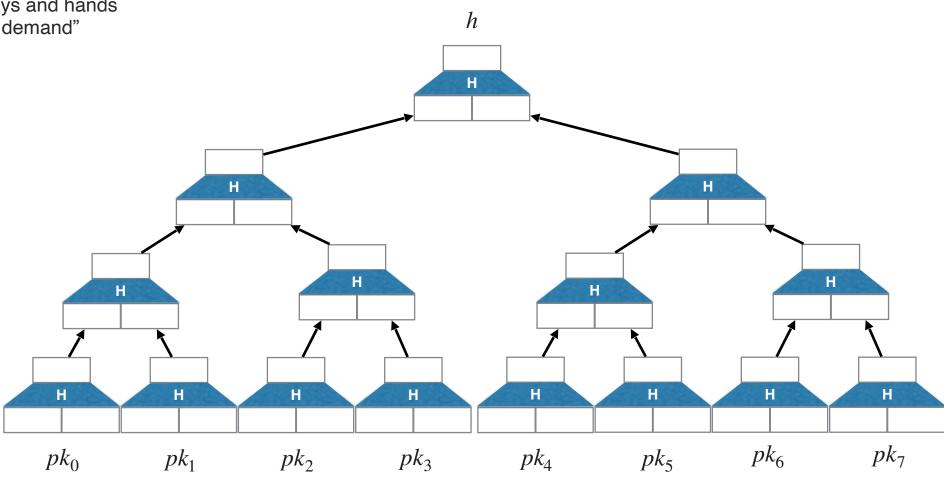


Identity-Based Encryption [DG17]: Setup



Identity-Based Encryption [DG17]: Setup

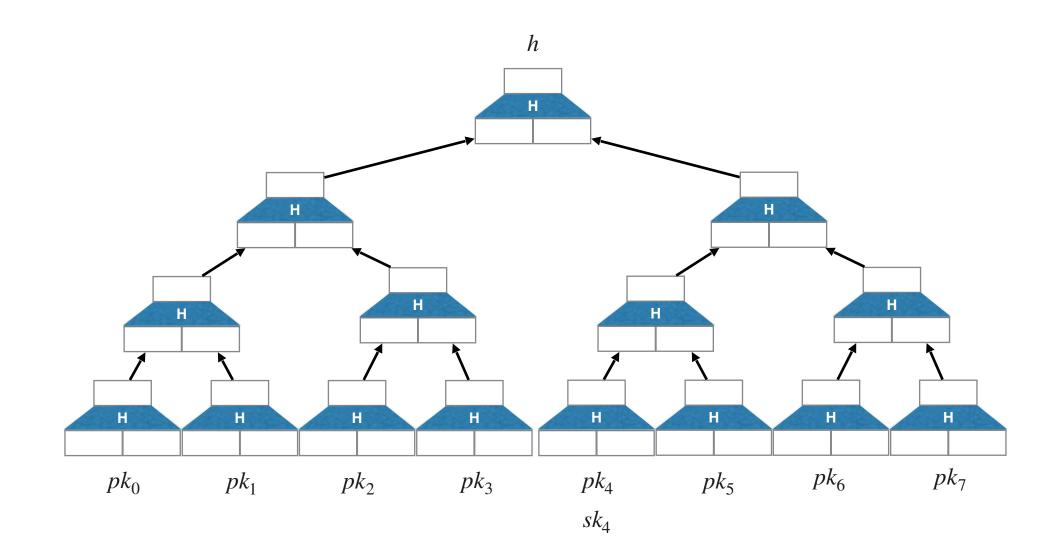
 Simpler Setting: Key generator has "pregenerated" a polynomial number of keys and hands them out "on demand"



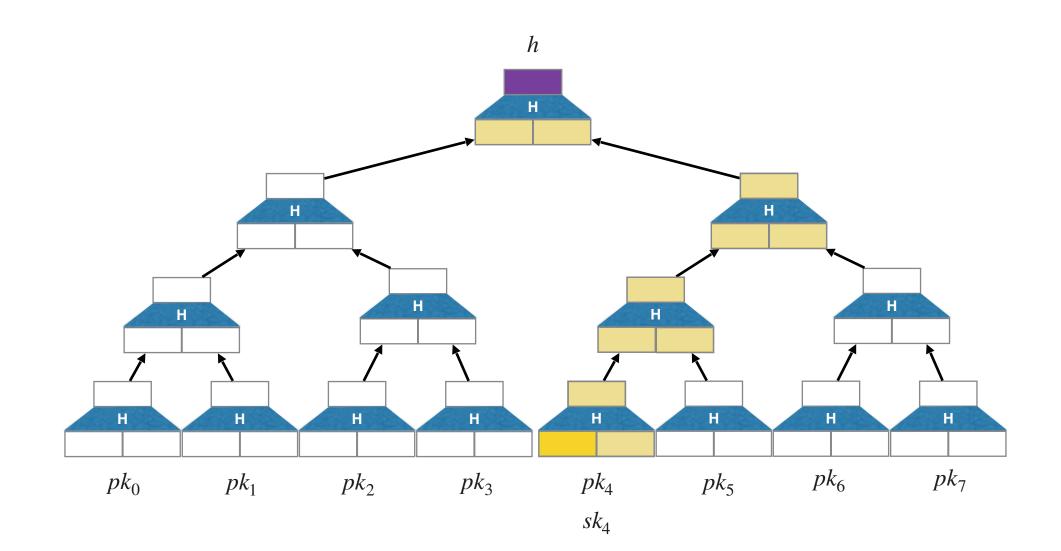
Identity-Based Encryption [DG17]: Setup

 Simpler Setting: Key generator has "pregenerated" a polynomial number of keys and hands hthem out "on demand" Can be turned into fullblown IBE (with H exponentially many identities) by using pseudorandomness and trapdoors (Chameleon H н encryption) н H Н н H H H H H pk_7 pk_6 pk_0 pk_1 pk_2 pk_3 pk_4 pk_5

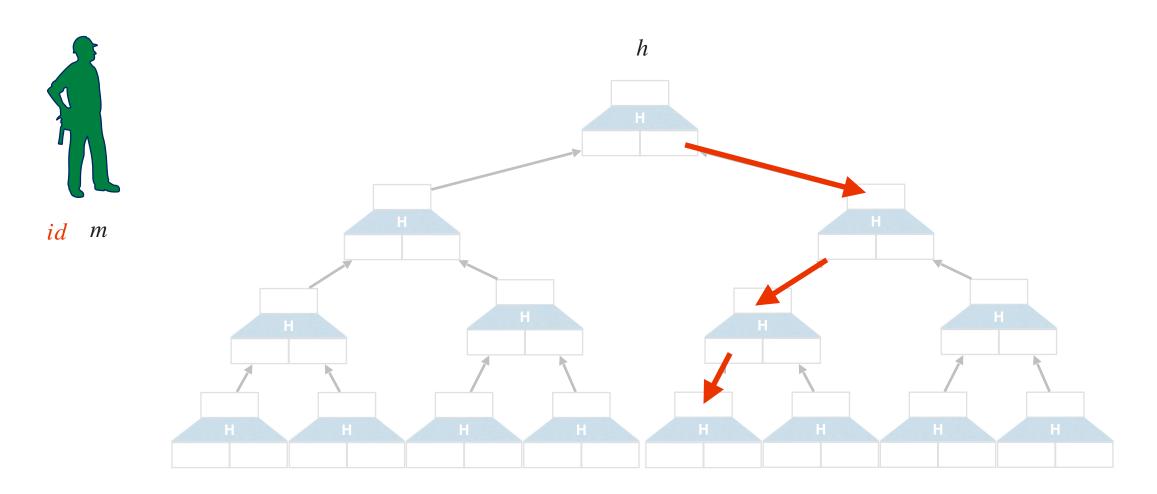
Identity-Based Encryption [DG17]: KeyGen



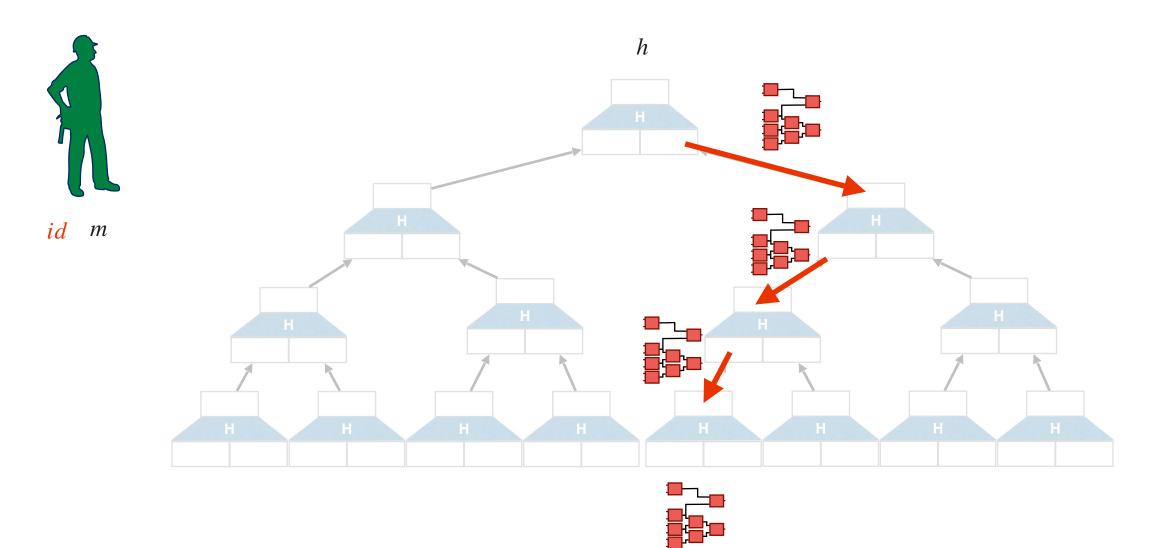
Identity-Based Encryption [DG17]: KeyGen



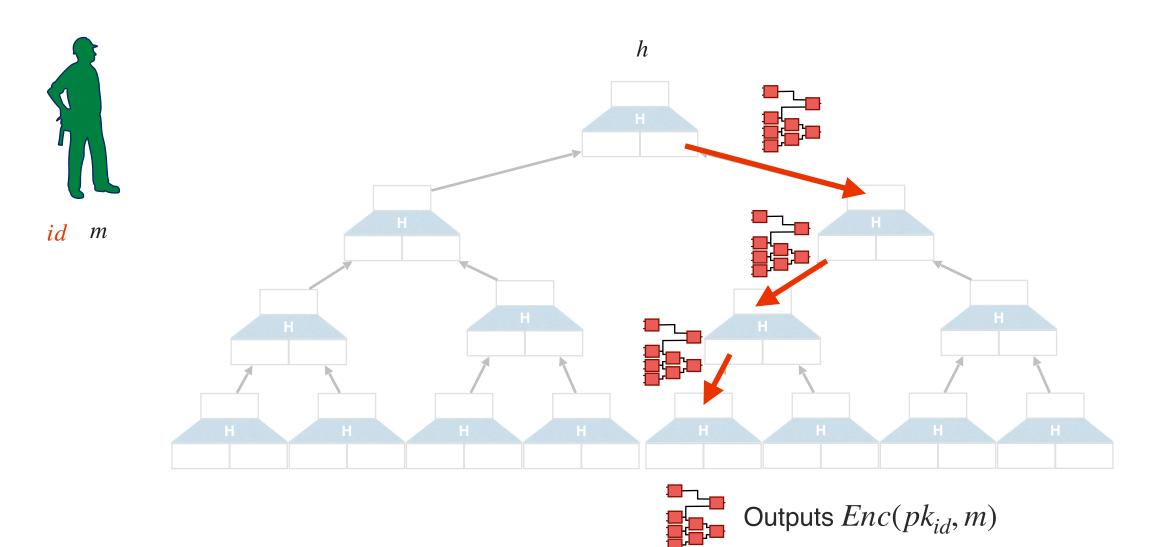
Identity-Based Encryption [DG17]: Encryption Reverse Delegation as in Laconic OT



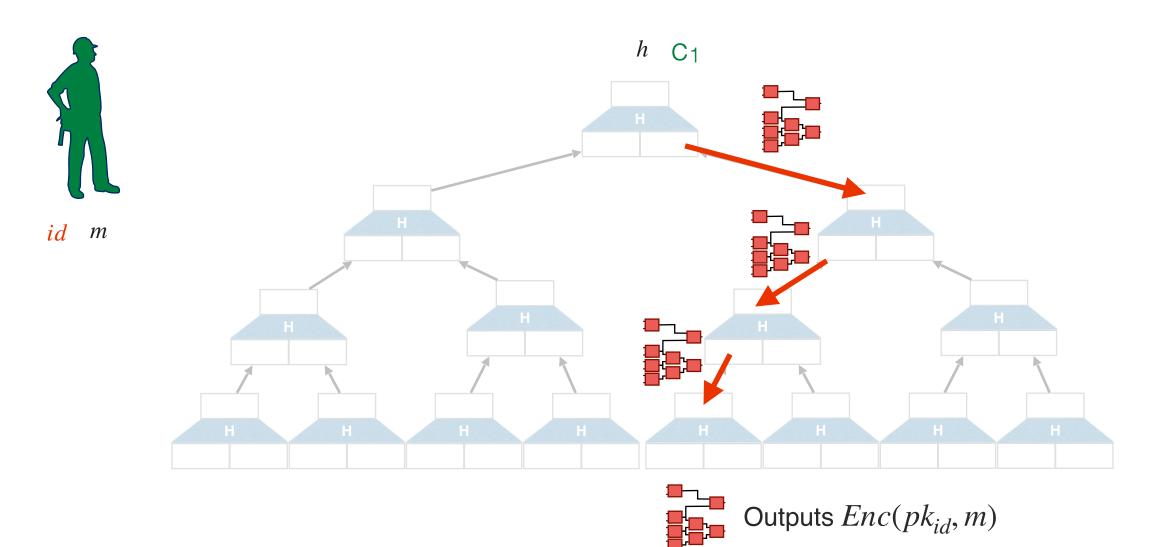
Identity-Based Encryption [DG17]: Encryption Reverse Delegation as in Laconic OT

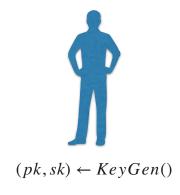


Identity-Based Encryption [DG17]: Encryption Reverse Delegation as in Laconic OT

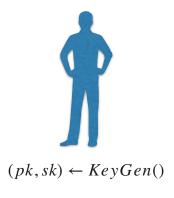


Identity-Based Encryption [DG17]: Encryption Reverse Delegation as in Laconic OT

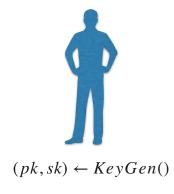




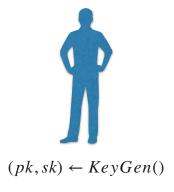
Master Secret Key
 msk is single point
 of failure in IBE



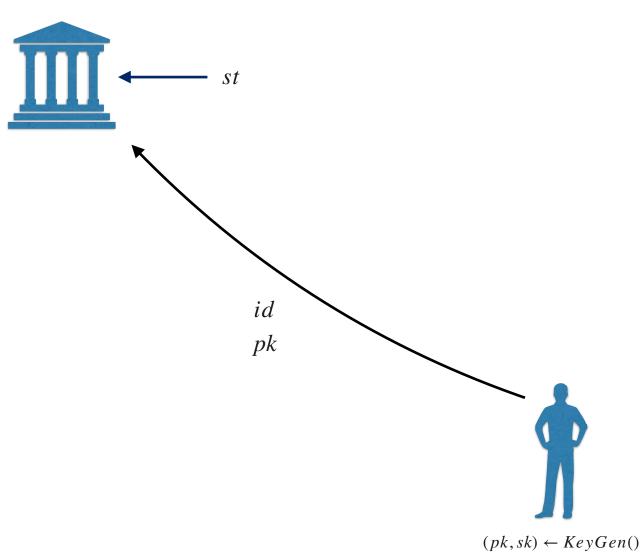
- Master Secret Key
 msk is single point
 of failure in IBE
- Idea: Replace Key-Authority with Key-Curator



- Master Secret Key
 msk is single point
 of failure in IBE
- Idea: Replace Key-Authority with Key-Curator



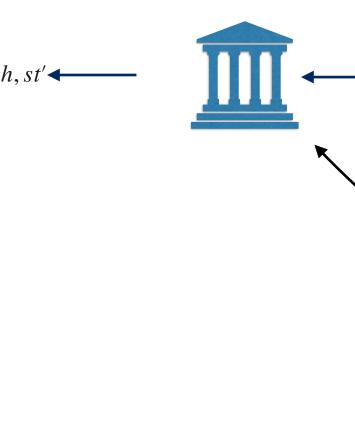
- Master Secret Key
 msk is single point
 of failure in IBE
- Idea: Replace Key-Authority with Key-Curator

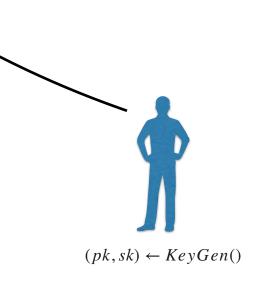


id

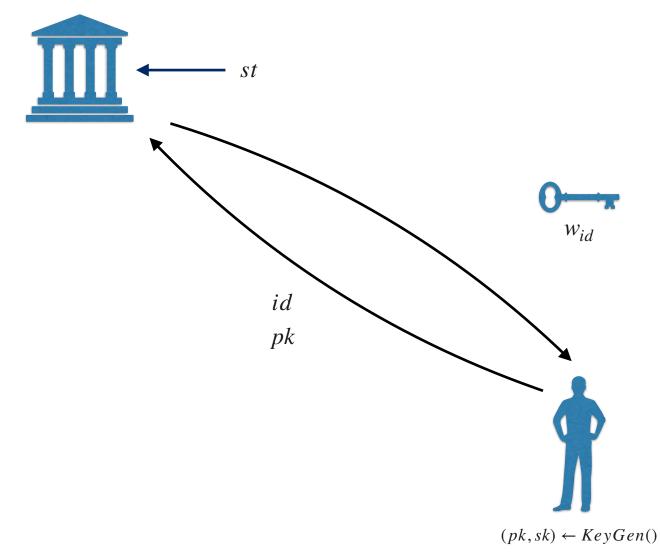
pk

- Master Secret Key
 msk is single point
 of failure in IBE
- Idea: Replace Key-Authority with Key-Curator

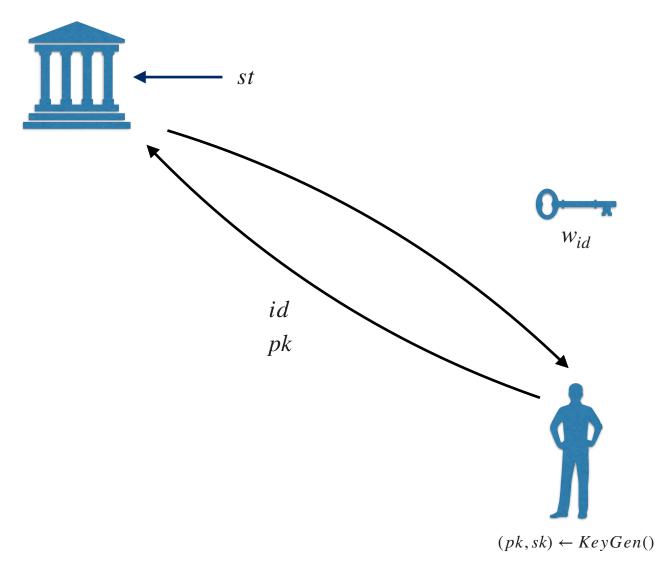


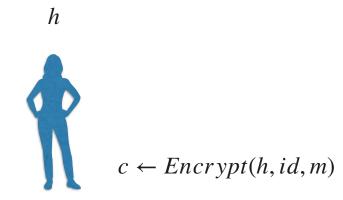


- Master Secret Key
 msk is single point
 of failure in IBE
- Idea: Replace Key-Authority with Key-Curator

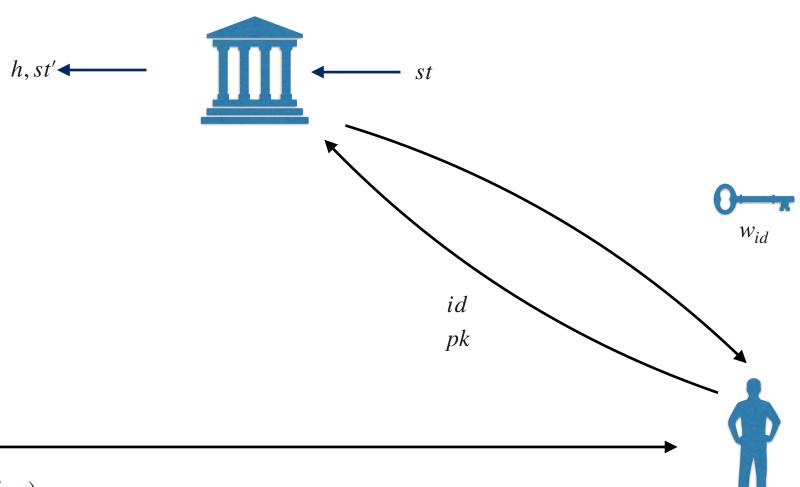


- Master Secret Key
 msk is single point
 of failure in IBE
- Idea: Replace Key-Authority with Key-Curator





- Master Secret Key
 msk is single point
 of failure in IBE
- Idea: Replace Key-Authority with Key-Curator



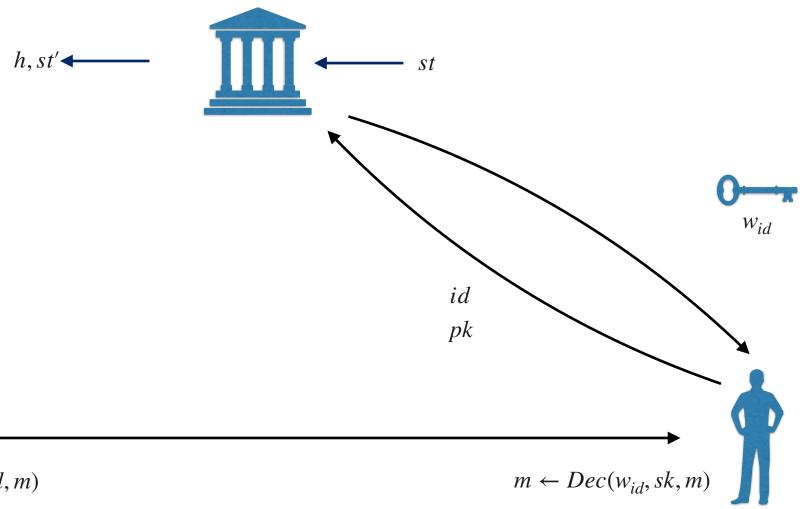
*

h

 $c \leftarrow Encrypt(h, id, m)$

- Master Secret Key
 msk is single point
 of failure in IBE
- Idea: Replace Key-Authority with Key-Curator

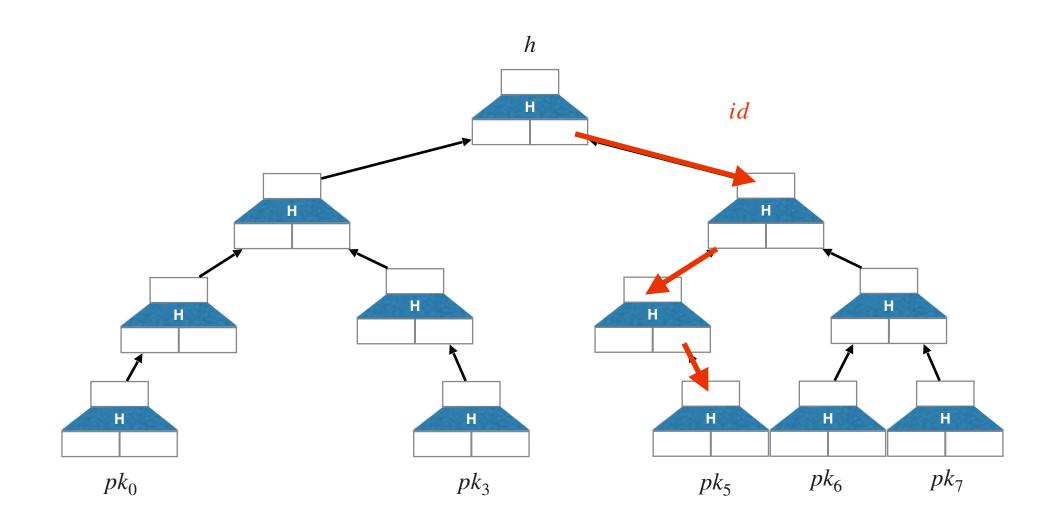
h

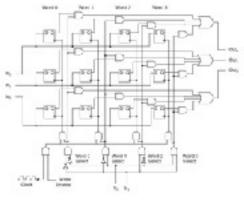


 $c \leftarrow Encrypt(h, id, m)$

 $(pk, sk) \leftarrow KeyGen()$

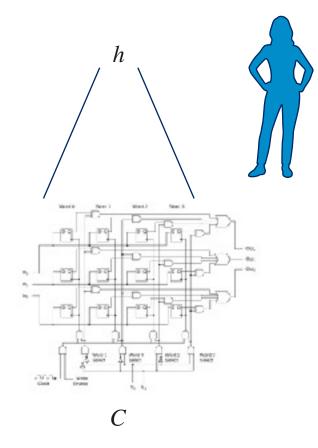
Registration-based Encryption: Registration





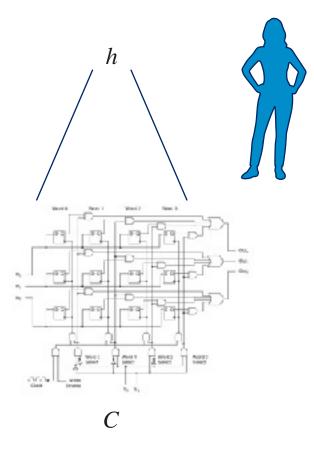
C

Χ



 \mathcal{X}

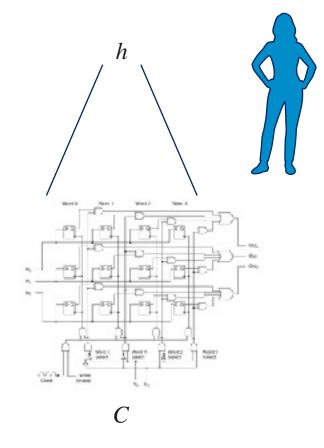
h



 \mathcal{X}

h

$$c = Enc(h, x)$$

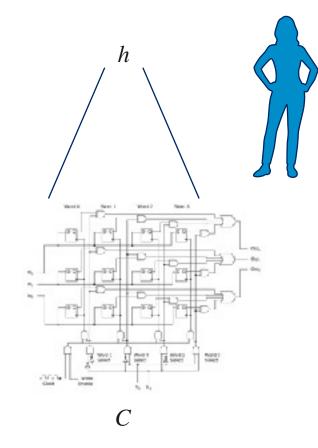


 \mathcal{X}

h

$$c = Enc(h, x)$$

 $\boldsymbol{\mathcal{C}}$

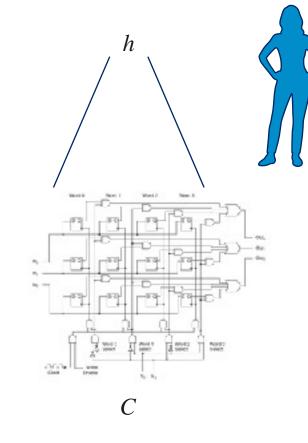


 \mathcal{X}

c = Enc(h, x)

 \mathcal{C}

h



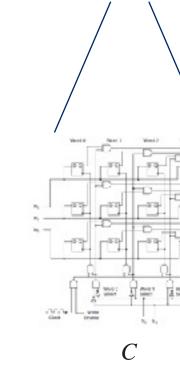
$$y = Dec(C, c) = C(x)$$

X

c = Enc(h, x)

 $\boldsymbol{\mathcal{C}}$

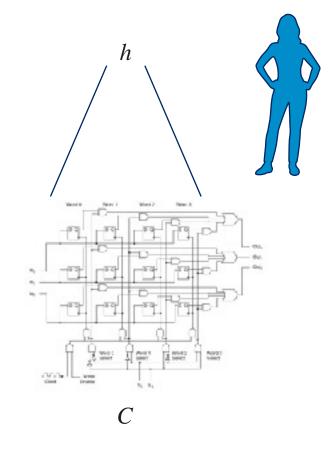
h



$$y = Dec(C, c) = C(x)$$

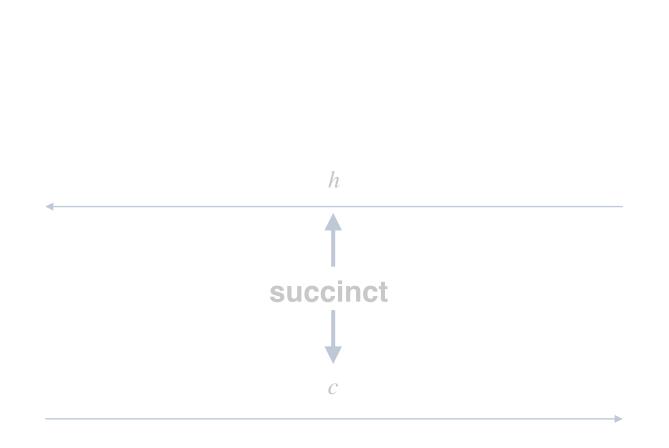
c = Enc(h, x)

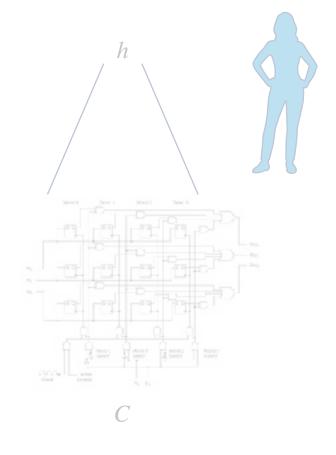




$$y = Dec(C, c) = C(x)$$

$$c = Enc(h, x)$$

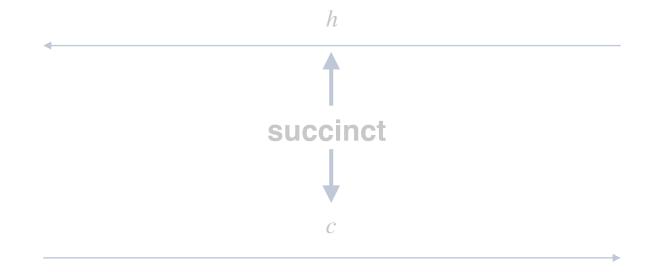


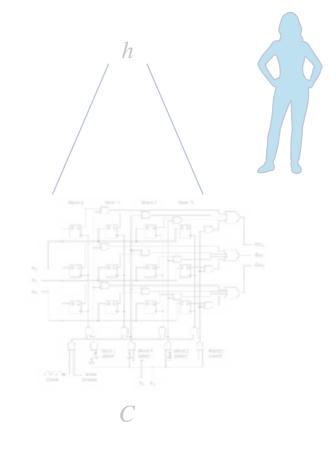


$$y = Dec(C, c) = C(x)$$

$$c = Enc(h, x)$$

Receiver commits to large function instead of database

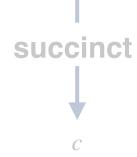


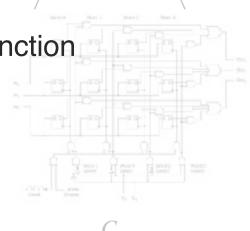


$$y = Dec(C, c) = C(x)$$

$$c = Enc(h, x)$$

- Receiver commits to large function instead of database
- Laconic OT is a special case of LFE: Hashed function is selection function

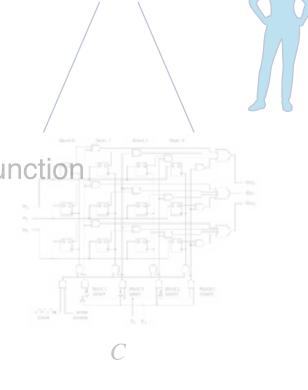




$$y = Dec(C, c) = C(x)$$

$$c = Enc(h, x)$$

- Receiver commits to large function instead of database
- Laconic OT is a special case of LFE: Hashed function is selection function
- [QWW18] construct LFE from LWE succinct

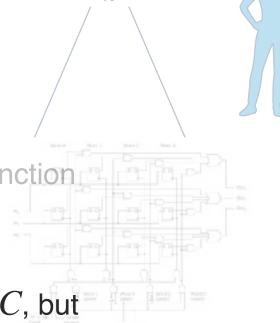


$$y = Dec(C, c) = C(x)$$

$$c = Enc(h, x)$$

- Receiver commits to large function instead of database
- Laconic OT is a special case of LFE: Hashed function is selection function
- [QWW18] construct LFE from LWE
- Size of ciphertext c depends on depth of circuit C, but not on size

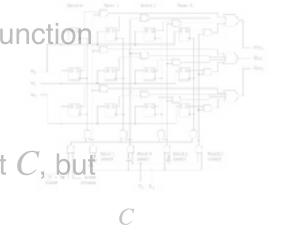
C



$$y = Dec(C, c) = C(x)$$

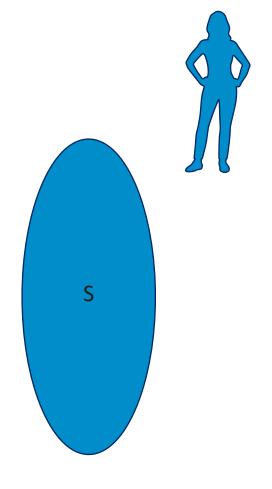
$$c = Enc(h, x)$$

- Receiver commits to large function instead of database
- Laconic OT is a special case of LFE: Hashed function is selection function
- [QWW18] construct LFE from LWE
- Size of ciphertext q depends on depth of circuit C, but not on size

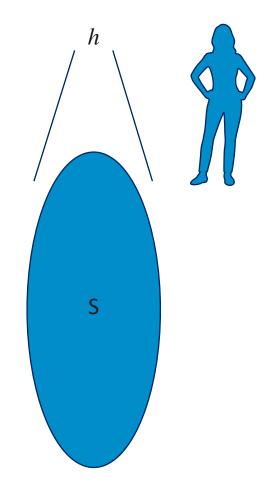


$$y = Dec(C, c) = C(x)$$

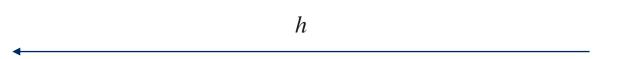
 \mathcal{X}

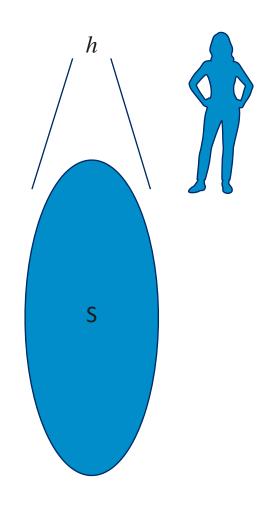


 \mathcal{X}



 \mathcal{X}

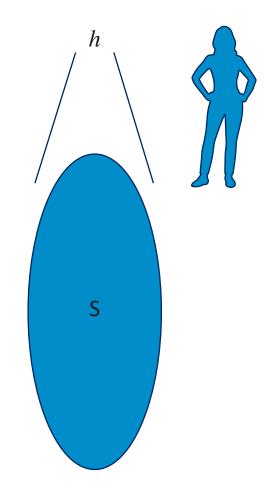




h

 \mathcal{X}

c = Enc(h, x)

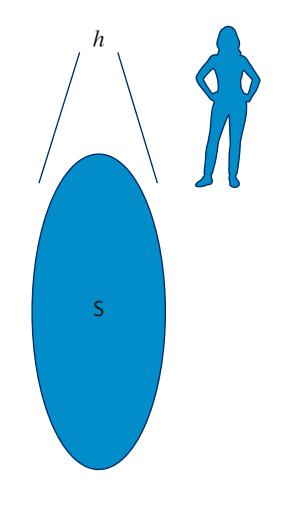


 \mathcal{X}

c = Enc(h, x)

h

 \mathcal{C}

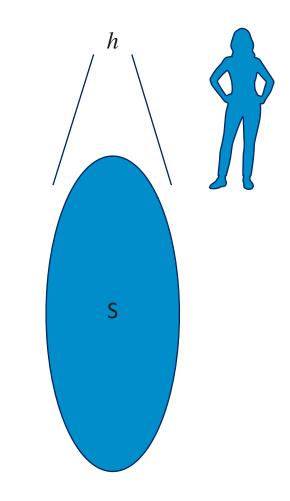


 χ

c = Enc(h, x)

h

c



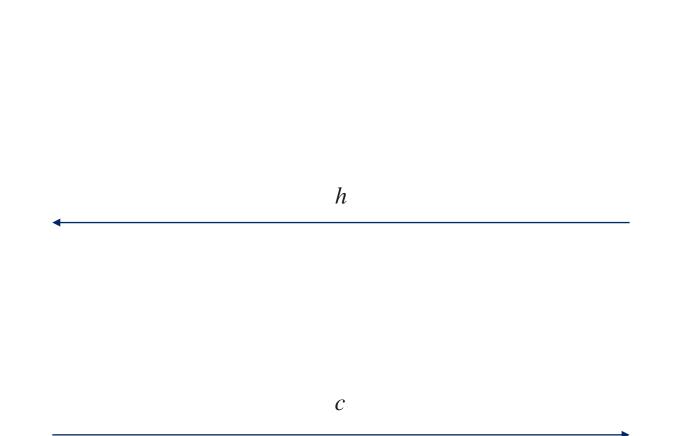
 $Dec(C, c) = x \text{ if } x \in S \text{ otherwise } \bot$

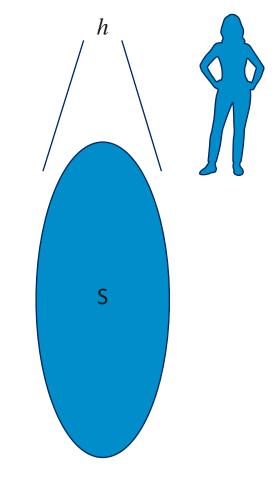
STAINING

Laconic Private Set Intersection (LPSI) [ABDGHP21]

 \mathcal{X}

c = Enc(h, x)



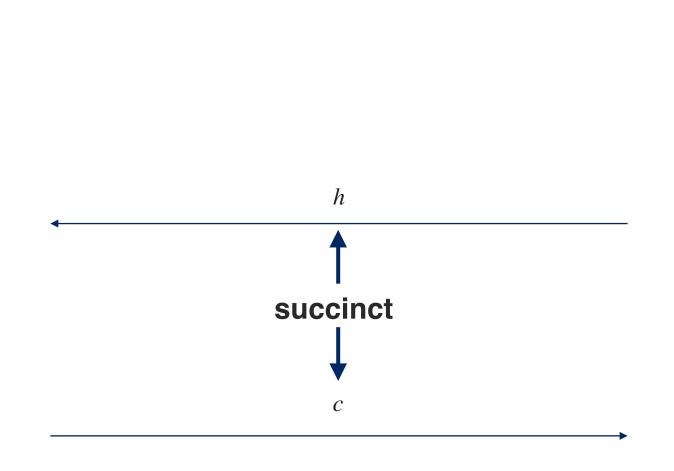


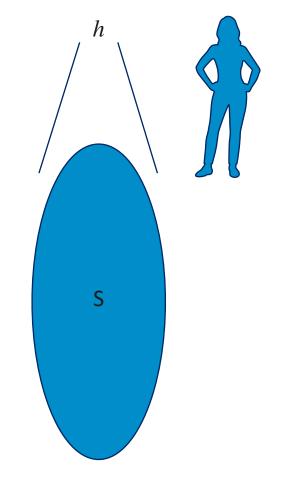
 $Dec(C, c) = x \text{ if } x \in S \text{ otherwise } \bot$

Learns nothing about x if $x \notin S_{28}$

 \mathcal{X}

c = Enc(h, x)





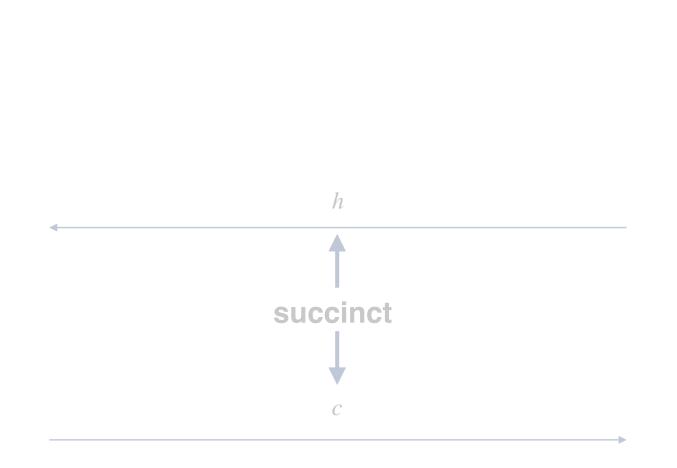
 $Dec(C, c) = x \text{ if } x \in S \text{ otherwise } \bot$

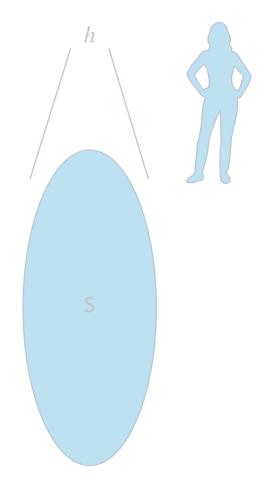
Learns nothing about x if $x \notin S_{28}$

Laconic Private Set Intersection (LPSI) [ABDGHP21]

 χ

c = Enc(h, x)





 $Dec(C, c) = x \text{ if } x \in S \text{ otherwise } \bot$

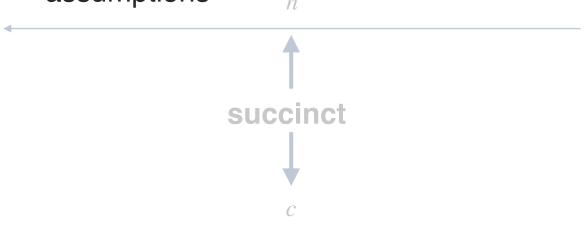
Learns nothing about x if $x \notin S_2$

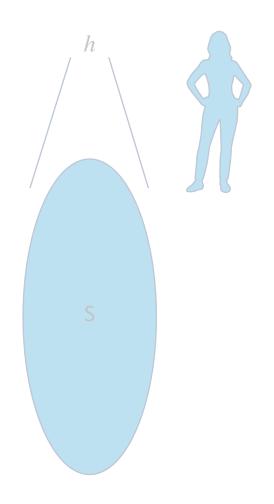
Laconic Private Set Intersection (LPSI) [ABDGHP21]

 \mathcal{X}

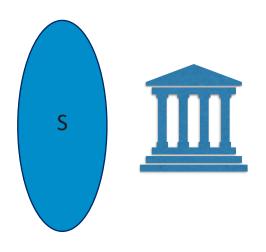
c = Enc(h, x)

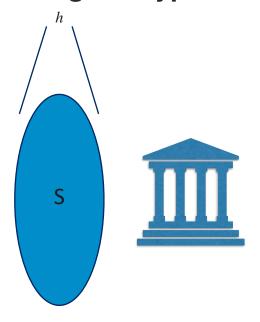
• [ABDGHP21] provides an efficient black-box construction of LPSI from number-theoretic assumptions

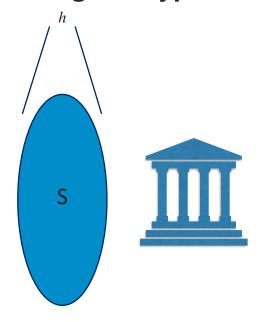


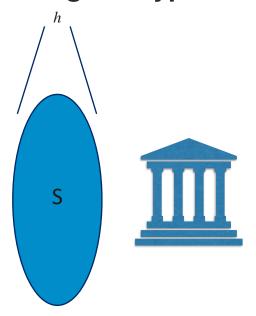


 $Dec(C, c) = x \text{ if } x \in S \text{ otherwise } \bot$

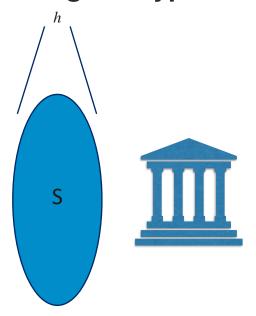






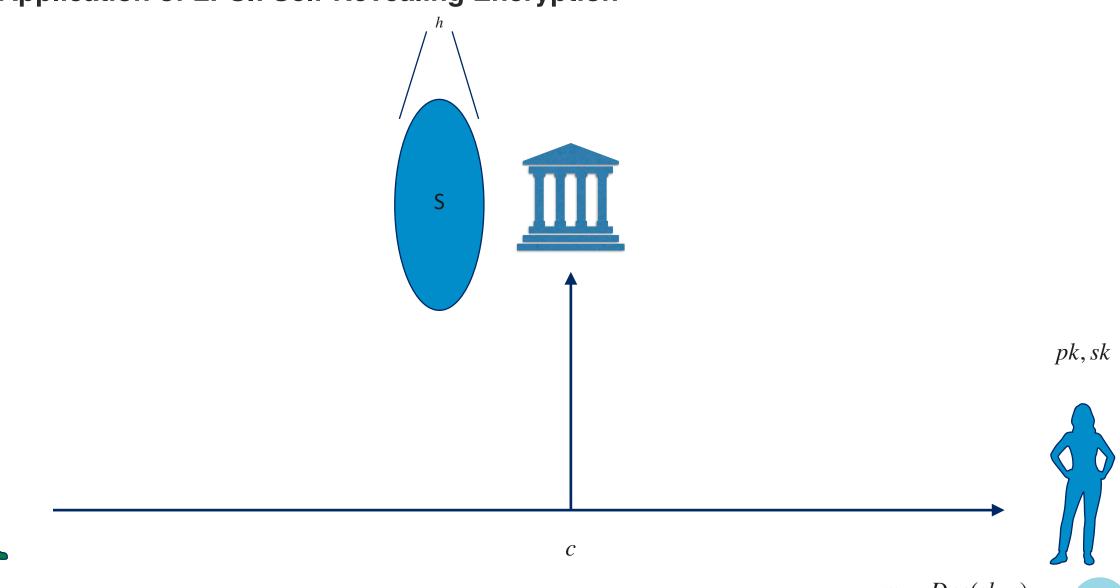


pk, sk



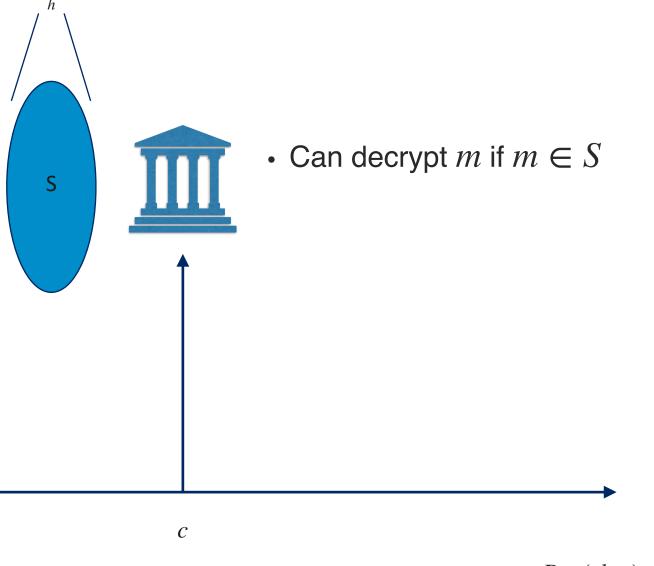
pk, sk

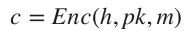
 $\boldsymbol{\mathcal{C}}$



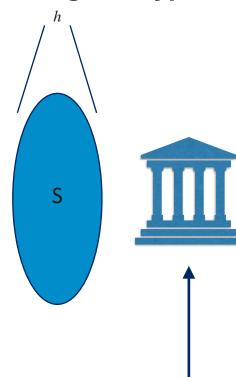
c = Enc(h, pk, m)

m = Dec(sk, c)





pk, sk



- Can decrypt m if $m \in S$
- Otherwise learns nothing about m

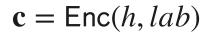
pk, sk

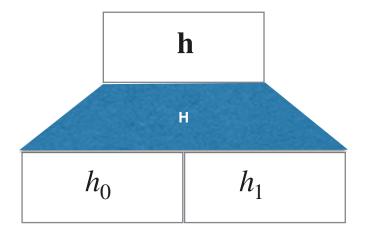
 \mathcal{C}

- [DKLLMR'22]: First Laconic Crypto Schemes without bootstrapping
- Key Insight: Lattice-based re-encryption gadget without intermediate decryption

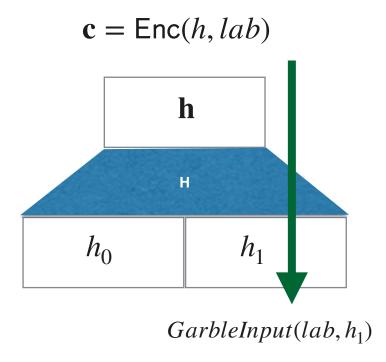
- [DKLLMR'22]: First Laconic Crypto Schemes without bootstrapping
- Key Insight: Lattice-based re-encryption gadget without intermediate decryption
- Practically efficient: Prototype Implementation with Single Digit Millisecond runtimes

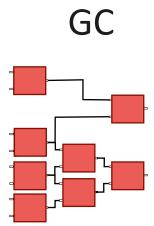
- [DKLLMR'22]: First Laconic Crypto Schemes without bootstrapping
- Key Insight: Lattice-based re-encryption gadget without intermediate decryption
- Practically efficient: Prototype Implementation with Single Digit Millisecond runtimes
- Applications: Registration-based Encryption, Laconic Oblivious Transfer, Private Set Intersection



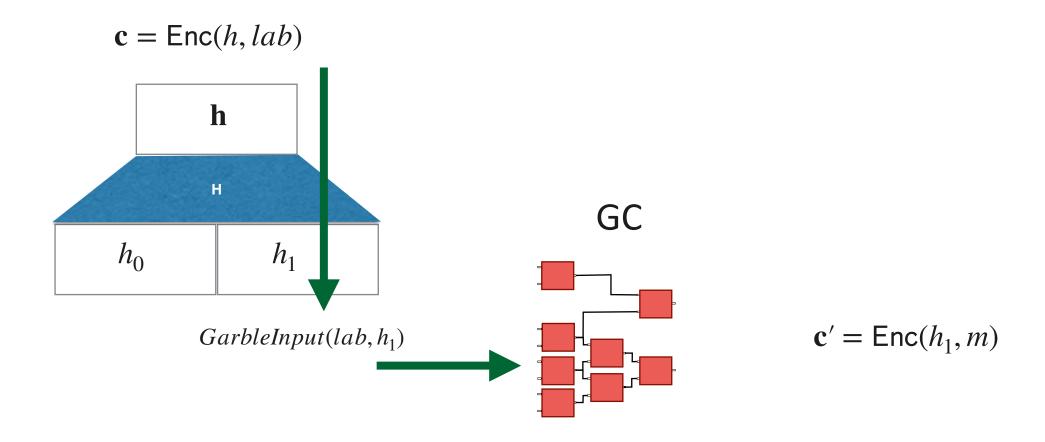


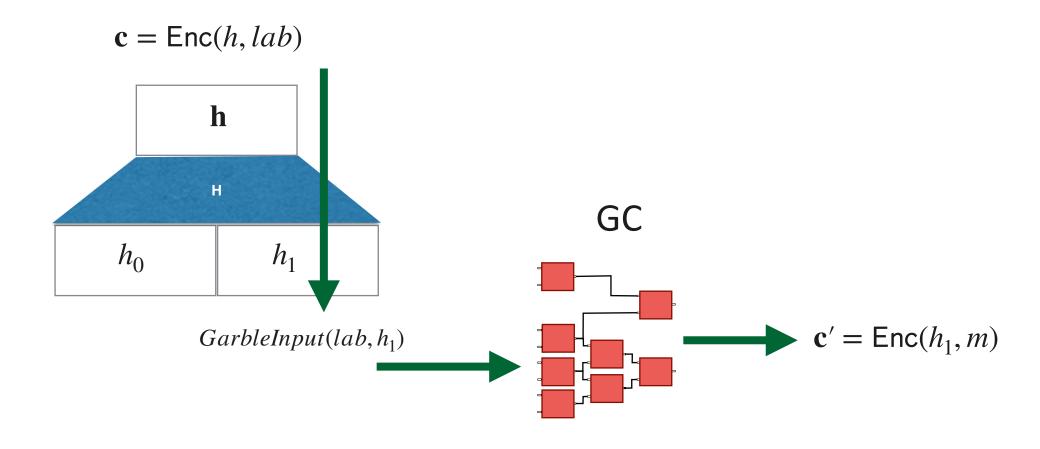
 $GarbleInput(lab, h_1)$

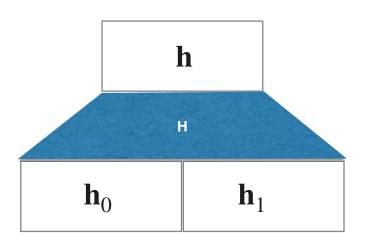




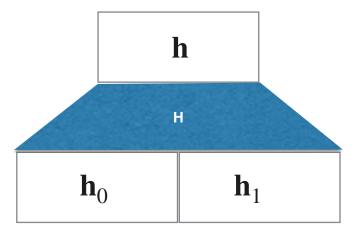
 $\mathbf{c}' = \mathsf{Enc}(h_1, m)$



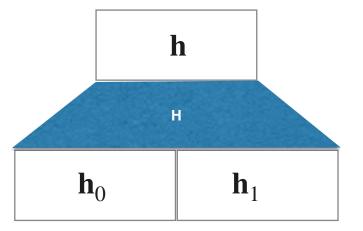




$$H(\mathbf{pk}_0, \mathbf{pk}_2) = \mathbf{h} = \mathbf{A} \cdot \begin{pmatrix} \mathbf{G}^{-1}(\mathbf{h}_0) \\ \mathbf{G}^{-1}(\mathbf{h}_1) \end{pmatrix}$$



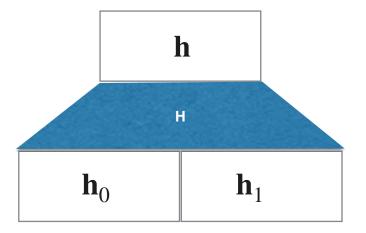
$$H(\mathbf{pk}_0, \mathbf{pk}_2) = \mathbf{h} = \mathbf{A} \cdot \begin{pmatrix} \mathbf{G}^{-1}(\mathbf{h}_0) \\ \mathbf{G}^{-1}(\mathbf{h}_1) \end{pmatrix}$$



$$\mathbf{c} \approx \mathbf{s} \cdot (\mathbf{A} + (\mathbf{G}||0))$$

$$c_1 \approx \mathbf{s} \cdot \mathbf{h} + \frac{q}{2}m$$

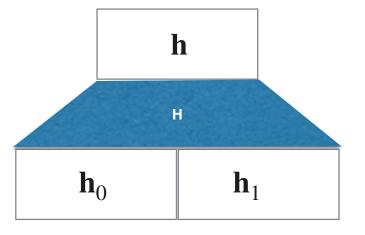
$$H(\mathbf{pk}_0, \mathbf{pk}_2) = \mathbf{h} = \mathbf{A} \cdot \begin{pmatrix} \mathbf{G}^{-1}(\mathbf{h}_0) \\ \mathbf{G}^{-1}(\mathbf{h}_1) \end{pmatrix}$$



$$\mathbf{c} \approx \mathbf{s} \cdot (\mathbf{A} + (\mathbf{G} \| \mathbf{0}))$$

$$c_1 \approx \mathbf{s} \cdot \mathbf{h} + \frac{q}{2}m$$

$$H(\mathbf{pk}_0, \mathbf{pk}_2) = \mathbf{h} = \mathbf{A} \cdot \begin{pmatrix} \mathbf{G}^{-1}(\mathbf{h}_0) \\ \mathbf{G}^{-1}(\mathbf{h}_1) \end{pmatrix}$$



$$\mathbf{c} \approx \mathbf{s} \cdot (\mathbf{A} + (\mathbf{G} \| \mathbf{0}))$$

$$c_1 \approx \mathbf{s} \cdot \mathbf{h} + \frac{q}{2}m$$

$$c_1' = c_1 - \mathbf{c} \begin{pmatrix} \mathbf{G}^{-1}(\mathbf{h}_0) \\ \mathbf{G}^{-1}(\mathbf{h}_1) \end{pmatrix} \approx \mathbf{s} \cdot \mathbf{h}_0 + \frac{q}{2} m$$

Efficient Private Laconic OT

Efficient Private Laconic OT

• Generally: Laconic OT ciphertext c either reveals query index i or decryption has linear complexity

- Generally: Laconic OT ciphertext c either reveals query index i or decryption has linear complexity
- [DHMW24]: Private laconic OT (hiding query index *i*) and polylogerithmic decryption complexity

- Generally: Laconic OT ciphertext c either reveals query index i or decryption has linear complexity
- [DHMW24]: Private laconic OT (hiding query index *i*) and polylogerithmic decryption complexity
- Leverages recent breakthrough on doubly efficient private information retrieval [LMW23]

 Preprocessing model: Sender and receiver compute and store a "correlations" before e.g. sender gets his input

- Preprocessing model: Sender and receiver compute and store a "correlations" before e.g. sender gets his input
- Emerging line of research in sublinear PIR with preprocessing following [CK20].

- Preprocessing model: Sender and receiver compute and store a "correlations" before e.g. sender gets his input
- Emerging line of research in sublinear PIR with preprocessing following [CK20].
- Very efficient, online phase uses only symmetric key crypto

- Preprocessing model: Sender and receiver compute and store a "correlations" before e.g. sender gets his input
- Emerging line of research in sublinear
 PIR with preprocessing following [CK20].
- Very efficient, online phase uses only symmetric key crypto
- [BDHL24]: private laconic OT with preprocessing. Also only using symmetric key crypto in online phase

 Laconic Cryptography: Secure computation on LARGE data with small communication in 2 messages

- Laconic Cryptography: Secure computation on LARGE data with small communication in 2 messages
- Beyond succinct communication: sublinear computation

- Laconic Cryptography: Secure computation on LARGE data with small communication in 2 messages
- Beyond succinct communication: sublinear computation
- Unexpected Applications: IBE, RBE, Self-Revealing Encryption

- Laconic Cryptography: Secure computation on LARGE data with small communication in 2 messages
- Beyond succinct communication: sublinear computation
- Unexpected Applications: IBE, RBE, Self-Revealing Encryption
- Until recently: Mostly theoretical progress

- Laconic Cryptography: Secure computation on LARGE data with small communication in 2 messages
- Beyond succinct communication: sublinear computation
- Unexpected Applications: IBE, RBE, Self-Revealing Encryption
- Until recently: Mostly theoretical progress
- Now: Breaking the wall to practical usefulness, new ideas such as preprocessing