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. Size of ciphertext ¢ depends on depth of circuit C, but
not on size
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- [ABDGHP21] provides an efficient black-box
construction of LPSI from number-theoretic
assumptions
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New Directions

- [DKLLMR’22]: First Laconic Crypto
Schemes without bootstrapping

- Key Insight: Lattice-based re-encryption
gadget without intermediate decryption

- Practically efficient: Prototype
Implementation with Single Digit
Millisecond runtimes

* Applications: Registration-based
Encryption, Laconic Oblivious Transfer,

Private Set Intersection
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- Generally: Laconic OT ciphertext ¢
either reveals query index i or
decryption has linear complexity

- [DHMW24]: Private laconic OT
(hiding query index 1) and
polylogerithmic decryption complexity

* Leverages recent breakthrough on

doubly efficient private information
retrieval [LMW23]
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™" Private Laconic OT with Preprocessing

* Preprocessing model: Sender and
receiver compute and store a
“correlations” before e.g. sender gets his
iInput

- Emerging line of research in sublinear
PIR with preprocessing following [CK20].

- Very efficient, online phase uses only
symmetric key crypto

- [BDHL24]: private laconic OT with
preprocessing. Also only using
symmetric key crypto in online phase
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- Laconic Cryptography: Secure

computation on LARGE data with
small communication in 2 messages

* Beyond succinct communication:
sublinear computation

- Unexpected Applications: IBE, RBE,
Self-Revealing Encryption

- Until recently: Mostly theoretical
progress

* Now: Breaking the wall to practical
usefulness, new ideas such as
preprocessing




