

On the practical cost of Grover for AES key recovery

Sarah D. UK NCSC

Aims

- Assess impact of Grover on AES for near-term quantum hardware.
- Estimate logical implementation and parallelisation overheads on any hardware. igodotLogical qubit-cycles.
- Estimate error correction overheads when using planar surface code. ightarrowSurface code cycles and physical qubit count.

Grover's algorithm

- Quantum algorithm to solve the unstructured search problem. igodot
- Can be applied to key recovery for AES with key size k. ullet
- Succeeds with high probability after $(\pi/4)\sqrt{2^k}$ quantum AES queries. ightarrow
 - For AES-128, Grover takes around 2⁶⁴ quantum AES queries compared with 2¹²⁷ classical queries for brute force exhaustion.

Grover's algorithm

- However, the square-root speed-up headline neglects significant details: •
 - The cost of quantum AES implementations. ullet
 - The fact that the AES queries must be sequential. ullet
 - The overheads from quantum error correction. ullet

Oracle implementation

- Different implementations optimise for different metrics. ullet
- We use Jang et al. "Quantum analysis of AES", IACR ePrint 2022/683:
 - Minimises (circuit depth)² x (number of qubits). ullet

AES Key Size	Depth	Qubits	Depth ² x Qubits
128	731	3428	2 ^{30.8}
192	874	3748	2 ^{31.4}
256	1025	4036	2 ^{32.0}

Maximum depth

Max donth	Cycle time			
	1µs	200ns	1ns	
240	12.7 days	2.55 days	18.3 mins	
2 ⁴⁸	8.92 years	1.78 years	3.26 days	
2 ⁵⁶	2,280 years	457 years	2.28 years	
264	585,000 years	117,000 years	585 years	

Parallelisation

- Limiting maximum depth limits number of iterations that can be performed. ightarrow
- Reducing number of iterations by a factor of S reduces success probability by S². ightarrow
- Alternatively, we can split the search space into subsets of size N/S^{2.} ightarrow
- Either way, S^2 quantum processors are needed to cover the same search space. ullet
- Overall costs (compute cost x time taken) have increased by a factor of S. ightarrow

Costing Methodology – When Parallelisation Is Required

- 1. Calculate number of AES iterations per run from the implementation depth and MAX DEPTH choice. $N_{iter} = \frac{D_{max}}{D_{AFS}}$
- 2. Calculate the number of quantum processors needed, i.e. find S such that. $N_{iter} = \left(\frac{\pi}{4}\right) \frac{2^{k/2}}{\sqrt{s}}$
- 3. Calculate the total number of logical qubits required. $W_{tot} = SW_{AES}$
- 4. Calculate the cost in terms of number of logical qubit cycle $C_{tot} = W_{tot} D_{max} = SW_{AES} D_{max} = \left(\frac{4}{2^{k/2}\pi} N_{iter}\right)^{-2}$

es.
²

$$W_{AES}D_{max} = 2^k \left(\frac{\pi}{4}\right)^2 \frac{D_{AES}^2 W_{AES}}{D_{max}}$$

This information is exempt under the freedom of Information Act 2000(FOIA) and may be exempt under other UK information legislation. Refer any FOIA queries to ncscinfoleg@ncsc.gov.uk. All material is UK Crown copyright ©.

AES-128 logical costs

Using logical qubit-cycles accounts for the non-trivial cost of idle qubits. ullet

Max depth	Grover iterations	Parallel instances	Logical qubits	Logical qubit-cycles
2 ⁴⁰	2 ^{30.5}	2 ^{66.3}	2 ^{78.1}	2 ^{118.1}
2 ⁴⁸	2 ^{38.5}	2 ^{50.3}	2 ^{62.1}	2 ^{110.1}
2 ⁵⁶	2 ^{46.5}	2 ^{34.3}	2 ^{46.1}	2 ^{102.1}
2 ⁶⁴	2 ^{54.5}	2 ^{18.3}	2 ^{30.1}	2 ^{94.1}
\sim	2 ^{63.7}	1	2 ^{12.7}	2 ^{85.9}

Quantum error correction

- Important to distinguish between perfect logical qubits and noisy physical qubits. ightarrow
- Logical qubits are built from many physical qubits using quantum error correction. ightarrow
- The planar surface code is currently the best studied QEC scheme. ightarrow
 - Exponentially suppresses errors as code distance d increase. ullet
 - Uses $2d^2 1$ physical qubits to produce one logical qubit. \bullet

Quantum error correction

- All error correction schemes have quantum gates that cannot be applied directly. \bullet
- These can instead be applied by producing "magic states", which can be ightarrowcombined with basic gates to produce the desired non-basic gate.
- Creating high accuracy magic states will be done via magic state distillation, ulletwhich creates them by combining many lower accuracy states.
- Magic state distillation requires additional quantum hardware, known as magic ulletstate factories or distilleries.

AES-128 surface code costs

	10 ⁻⁴ physical error		10 ⁻⁶ physical error	
Maximum depth	Physical qubits	Surface code cycles	Physical qubits	Surface code cycles
2 ⁴⁰	2 ^{97.1}	2 ^{128.7}	2 ^{91.6}	2 ^{125.0}
2 ⁴⁸	2 ^{81.7}	2 ^{120.9}	2 ^{76.7}	2 ^{117.4}
2 ⁵⁶	2 ^{66.3}	2 ^{112.8}	2 ^{62.9}	2 ^{111.5}
2 ⁶⁴	2 ^{51.1}	2 ^{105.3}	2 ^{48.1}	2 ^{104.2}

AES-128 overheads

•	Logical implementation:	31 bits	
•	Parallelisation:	8 - 32 bits	(de
•	Error correction:	6 - 10 bits	(de
	Distillation:	1 - 3 bits	(ind

These are not entirely independent: less parallelisation needs more error correction.

This information is exempt under the freedom of Information Act 2000(FOIA) and may be exempt under other UK information legislation. Refer any FOIA queries to <u>ncscinfoleg@ncsc.gov.uk</u>. All material is UK Crown copyright ©.

pending on maximum depth)

pending on physical error rate)

cluded in error correction overhead)

Potential cost reductions

- Smaller AES implementations.
- Faster cycle times.
- Better physical error rates.
- More efficient error correcting codes.

Conclusions

- The practical security impact of Grover with existing techniques on plausible ulletnear-term quantum hardware is limited.
 - Bounding the length of time an adversary is prepared to wait introduces unavoidable overheads from parallelisation.
 - Error correction adds further overheads, but these are less significant.
 - Early post-quantum migration efforts should focus on traditional public-key algorithms.

Thank you.

AES-128: Physical qubits

AES-128: Surface code cycles

