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Abstract We briefly review properties of explainable AI proposed by vari-
ous researchers. We take a structural approach to the problem of explainable
AI and examine the feasibility of these aspects by extending them where ap-
propriate. Afterwards, we review combinatorial methods for explainable AI
which are based on combinatorial testing-based approaches to fault localiza-
tion. Last, we view the combinatorial methods for explainable AI through
the lens provided by the properties of explainable AI that are elaborated in
this work. We pose resulting research questions that need to be answered and
point towards possible solutions, which involve a hypothesis about a potential
parallel between software testing, human cognition and brain capacity.
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1 Introduction

Artificial intelligence (AI) systems have improved rapidly, with their perfor-
mance now surpassing human abilities in many or most domains, especially
vision and image recognition applications, but also in more safety-critical tasks

SBA Research
Vienna A-1040, Austria
E-mail: lkampel@sba-research.org

SBA Research
Vienna A-1040, Austria
E-mail: dsimos@sba-research.org

National Institute of Standards & Technology
Gaithersburg, MD, USA
E-mail: kuhn@nist.gov

National Institute of Standards & Technology
Gaithersburg, MD, USA
E-mail: raghu.kacker@nist.gov



2 Ludwig Kampel et al.

such as autonomous vehicles [13], [26]. The increase in numbers of AI appli-
cations, and their integration into everyday life, has created a public demand
for understanding the behavior and decisions of AI systems. This demand has
led to the research field of explainable AI (XAI) that has the goal of making
AI systems or their decision-making humanly understandable.

Many researchers around the globe are actively working on bringing the
“X” to the “AI”. The approaches are as diverse as there are AI systems,
reaching from self explaining systems, externally explained systems, global
explainable AI algorithms (e.g. SHAP [14]) and per-decision explainable AI
algorithms (e.g. LIME [20]). These and other developments on XAI can be
found in a recent survey [1].

In this paper, we briefly review recently introduced properties for XAI in
Section 2 and examine their feasibility in Section 3. Thereafter, we review com-
binatorial methods for XAI, which are based on combinatorial testing-based
approaches to fault localization (CT-FLA), in Section 4. Last, we reflect on
these in Section 5, where we hypothesize about potential parallels amongst
computer science (software testing) and psychology (human cognition and
brain capacity).

2 Properties of XAI

First, we want to have a look at AI and XAI. It is presently difficult to give
a generally accepted and detailed definition of AI. There exists a plurality of
approaches on how to define AI, for example being centred around human
performance or rather around thought processes and reasoning, see [21] and
references therein. On top of that the understanding of AI is controversial and
may also change over time - just think of Deep Blue defeating Garry Kasparov
[10].

However an AI system may appear, today we see various realizations of AI,
the majority using Bayesian networks, deep learning or symbolic approaches.

We point out these different understandings and realizations of AI, be-
cause we believe that it has a heavy impact on the explanations that we can
expect to get or produce for the respective AI. A full understanding of XAI
will require extensive human factors research, but the topic of explanation
has been studied in psychology for decades, and much of this work can be
adapted to the problem of explainability in AI [5], [17], [24], [27]. One useful
categorization of the human factors aspects essential for explanations, whether
machine or human-generated, is provided in Ehsan et al. [6], who studied how
psychological research on understanding can be applied to machine-generated
explanations. They consider the following dimensions in order to rate the en-
dorsement of explanations:

– Confidence: This rationale makes me confident in the character’s ability to
perform it’s task.

– Human-likeness: This rationale looks like it was made by a human.
– Adequate justification: This rationale adequately justifies the action taken.
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Ehsan et al. [6] Proposed Properties
Understandability Existence
Human-likeness Clarity
Adequate justification Adequate justification
Confidence Trust

Table 1 Mapping between the four dimensions given in Ehsan et al. [6] and the properties
considered in this work.

– Understandability: This rationale helped me understand why the agent
behaved as it did

For the purpose of this work, we adopt these properties from [6] and modify
them as follows:

1. Existence: For each output an explanation is provided that helps to under-
stand why this output was generated.

2. Clarity : The explanations can be understood comprehensible by humans/users.
3. Adequate justification: The explanations adequately justifies the system’s

output or its process for generating the output.
4. Trust : In the system to accurately generate the output based on a descrip-

tion of events and its environment.

Together, the first three properties aim for ensuring that generated expla-
nations are plausible to humans. We want to mention that there is a fundamen-
tal difference between the output that a system generates and how (the) output
is generated. We therefore need to be precise with regards to our demands to
XAI: do we want an explanation for the output of an AI-based system, or an
explanation of the underlying process? We will elaborate on this and similar
questions in the rest of the paper.

3 Remarks related to the Development of XAI

We first want to propose a classification of XAI as an adaptation and adden-
dum to the works cited above. We believe it is worthwhile to explicitly mention
distinctive features of XAI as these will help to reason about it, especially with
regard to what we can expect and demand from explanations.

3.1 Classifications of XAI

For example, the general characteristics of plausible explanations (clarity and
adequate justification) must take into account that explanations may need
to be varied for different users, who have different levels of knowledge and
expectation. However, as Hilton [8] writes: “The verb ’to explain’ is a three-
place predicate: Someone explains something to someone”. Thus, not only the
receiver of the explanation is crucial in this differentiation, but also the mat-
ter that is being explained, i.e. the AI system, its input and output. In the
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following, we give some dimensions and criteria along which we can differen-
tiate XAI. We do not claim completeness or even correctness and leave it to
future investigations to revise or improve them. However, we believe it is an
important step in understanding where specific explanations can be applied
(to which AI) and for whom they are produced (the user or receiver of the
explanation). In the following discussions, we refer to these two entities as the
human and the AI.

Who receives the explanation? It is generally accepted that we need to
distinguish explanations according to who asks for them, with the expert ver-
sus non-expert example being the most prominent one. One possible way is
to differentiate a number of groups that differ in the quality and quantity of
information they demand or expect.

– Non-experts: They want to know the key reasons why a specific output is
produced - details are not needed, or even desired.

– Experts: They want to have detailed reasons why a specific output is pro-
duced, however these need not or should not be dependent on the AIs
implementation.

– Developers: They want many details that can or should be implementation
dependent, in order for the explanation to guide his or her debugging or
development process.

– Algorithms: They require details in a machine readable format, where re-
quirements can be formally specified.

We can see in the last group, that the human (i.e. the explanation receiving
part) can also be an AI, or an algorithm more general, e.g. an algorithm that
is rating the quality of explanations.

Who gives the explanation? We can differentiate XAI systems according
to where the explanation comes from:

– Self-explainable models/systems: These are AI systems that provide the
needed explanation themselves; these can be systems where the underlying
algorithm itself represents the explanation, e.g. AI systems based on de-
cision trees or ones that provide explanations without giving algorithmic
details, such as class activation mappings [28].

– External explanation models/systems: In this case the explanation of the
AI’s output is produced by a separate algorithm.

What is being explained? The subject of explanation can be differentiated
in manifold ways:

– Decision vs decision process: Is the output explained or the process that
leads to the AI system’s output?

– Global explanations vs per-decision explanations: Is a single output ex-
plained or a set of outputs?

– Kind of AI system: For example a classifier/decider, an AI system per-
forming tasks like driving a car or an automated theorem prover.
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– What is the input to the AI : The explanation for an output has to relate
to the input (black-box case). An AI algorithm also starts with the input,
hence an explanation for the AI relates to the input.

– Black-box vs white-box model : Is the internal mechanism of the AI system
accessible or not?

Again, we do not claim that this list of categories is complete. Further,
we consider also that the above categories are not necessarily excluding each
other and may very well be mutually influenced as there exist some causalities
between them. For example, when we ask for an explanation of the decision
process of an AI system, then the system is generally a white-box model, as we
need to have access to its internal working mechanism in order to explain it.
Furthermore, self-explaining systems already provide such insights. Another
example is that a global explanation could be used to generate a per-decision
explanation or any black-box approach can be also applied to a white-box AI
system.

3.2 Solution Processes to NP-Complete Problems may be too Difficult to
Explain

In this section we focus on the comparison of explaining AI output generation
processes versus explaining outputs of AI systems.

The ”adequate justification” component of explanations can encompass
how the system came to its conclusion, and the system’s ”output” itself. Of
course, an explanation for an output process can yield an explanation for the
resulting output itself, but it can be significantly more difficult to explain an
output process compared to an output, as set out below.

From basic computational complexity notions we know that finding a so-
lution to a problem and verifying a solution as such can result in significant
difference of computational effort. The well known P versus NP problem, in-
cludes the question whether the solution to an NP-complete problem can be
found as easily as it can be verified. Let us assume that P 6= NP, how does
this influence the explainability of AI? For NP-complete problems the length
of the solution derivation would not be bound by any polynomial function in
the length of the input, while for the solution verification there would be such
a bound.

This analogy to computational complexity is not too far off compared to
the explainability of AI: Assume we have developed an AI system that (op-
timally) solves routing problems, such as TSP. Asking for a meaningful and
accurate explanation of the decision process, means asking for an understand-
able (somewhat short) and correct explanation of the lengthy solution process
to an NP-complete problem [19]. To give another example, lets consider a con-
straint satisfaction problem (CSP) solver as an instance of an AI system. The
decision process to a query itself can be extremely lengthy, but once a decision
is made, it can be verified fairly easy in some cases. For example, provided the
correct formulation, we can query a CSP solver whether a map can be colored
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with only three different colors, which is an NP-complete problem [23]. The
derivation process itself can be extremely lengthy and difficult to follow, but
when a solution is found and the answer is ’yes’, then this can be easily ex-
plained by providing the three-coloring of the map, something very accessible
to human beings. These remarks beg the question whether there is an ana-
logue notion to NP-completeness in explainable AI, i.e. a solution process that
requires significantly more effort to be explained compared to the explanation
of the solution.

Clarifying if solution processes and solutions to NP-complete problems are
an example of this is one way to address this question. Solution processes can
appear in the form of a decision or a search algorithm. A related research
question is: Does the length of a solution process, here we mean the formal
length of the derivation, make an explanation more difficult to generate?

3.3 Explaining AI Systems and Distinguishers between Computers and
Humans

The authors of [22] consider computers and humans together for solving prob-
lems, and as a result they propose a theory towards AI-completeness. In par-
ticular, they define human-assisted Turing machines in order to examine com-
putations that can be split between humans and computers. Formally this is
done by extending Turing machines with human oracles, see [22] for details.
By putting computers and humans in the same context the computational
complexity is generalized via capturing how often a human oracle is called. By
defining an appropriate measure for algorithmic complexity, this work presents
the means to formally reason about questions such as “How much human in-
teraction is required to solve a specific problem (more or less efficient)?”. As
the authors mention in [22], this investigation can also lead to a set of prob-
lems that one can use to distinguish computers from humans. There already
exist work on such problems that are easy to solve for humans, but difficult for
computers, e.g. CAPTCHA problems given in [2]. Such CAPTCHA problems
provide a distinguisher to tell humans and computers apart, which can be used
practically as a Turing test.

Based on the above, it is intriguing to ask the following question: Is the
problem of producing humanly understandable explanations for the output
(generation processes) of AI systems solvable without human input? We are
aware that this question most likely cannot be answered generally but needs to
be examined on a case-by-case basis, especially considering the problem that
is solved by an AI system.

4 CT-FLA for XAI

The work in [12] presents combinatorial methods that are inspired by ideas
and methods from CT-FLA for explaining classifications and decisions made
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by AI systems. The justification of the assignment of an object to a specific
class is given by the identification of feature combinations that are present
in the object and in members of the assigned class, while being absent (or
rare) in objects of other classes. A related black-box approach for per-decision
explanations of AI systems is presented in [20].

We briefly outline the connection between CT-FLA and classification sys-
tems. The idea of CT is to test a system under test (SUT) against misbehaviour
caused by interactions of its input parameters based on optimized test sets
that cover all demanded interactions. Applying CT requires an input param-
eter model (IPM) of the SUT, which consists of parameters with respective
values. There is empirical evidence [11] that software faults are triggered by
input parameter-value interactions up to a certain strength. The fundamen-
tal idea of CT-FLA is to automatically recover the fault causing interactions
provided only the test set and a pass/fail assignment to them. There exist
statistical and deterministic methods [4], [7] for CT-FLA. For more details on
CT-FLA see [9], [11].

To apply CT-FLA to explain classifications generated by AI systems, we
need to correspond the notions of AI classification systems with the respective
ones related to CT:

– The input to a classification system as the equivalent to a test vector in
CT,

– The assigned class to an object as the equivalent of the resulting pass/fail-
assignment of the test vector execution,

– The identified feature combination as the equivalent of the failure inducing
parameter-value interaction.

Provided this mapping of notions, in order to search for an explanation why an
AI system classifies a specific object o to a class c, we simply map class c to fail
and all members of c to the failing tests. Once a failure inducing interaction of
the comprised test set is identified, we have found a feature combination that
is present in the members of class c while not present in any other class.

We visualize this mapping in Table 2 where we present a part of the exam-
ple given in [12], featuring a database of animals with attributes. On the right
hand side of Table 2 we see a snippet of a database with animal records; due to
space limitations only five (of originally 16) attributes are shown. The classi-
fication of Testudo as a reptile is explained by the feature combination triplet
(non-aquatic,toothless,four-legged) that is unique to reptiles and present in
Testudo. This triplet represents a counterfactual explanation: if Testudo had
6 legs, it would be an insect. This concludes the review of [12] which shows
how methods for CT-FLA can be used to produce counterfactual explanations
for AI classification systems.

As an additional remark, we want to mention the notion of minimal fail-
ure inducing t-way interactions [18], which are parameter-value combinations
that when being reduced or deviated, do not necessarily cause tests to fail any
more. Translated to the field of XAI, these allow the derivation of counterfac-
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test p1 p2 p3 p4 p5 result class hair aquatic egg-laying toothed nlegs object
t1 = 0 0 1 0 3 pass ←→ insect no no yes no 6 Mantis

t2 = 0 0 1 0 2 fail ←→ reptile no no yes no 4 Testudo (Turtle)

t3 = 0 1 1 0 3 pass ←→ insect no yes yes no 6 Water scorpion
t4 = 0 1 1 1 1 pass ←→ bird no yes yes yes 2 Penguin

t5 = 0 0 1 1 2 fail ←→ reptile no no yes yes 4 Crocodile

t6 = 0 0 1 0 3 pass ←→ insect no no yes no 6 dung beetle

Table 2 Analogy between CT (left) and explanations for an AI system which produces
classifications (right).

tual cores, which when being modified yield different classifications of the AI
algorithm and hence serve as source for counterfactual explanations.

5 Reflection of CT-FLA methods for XAI

Having revisited XAI through the four principles and CT-FLA methods, we
want to examine where the latter can be applied and to which degree we can
apply the combinatorial lever.

Research Question: How can CT-FLA methods for XAI be catego-
rized?

Answer: Processing the described categories proposed in Section 3.1 bottom
up, we can categorize combinatorial methods for XAI as:

– Black-box : not relying on AI system internals
– Input : systems where the input is modelled via an IPM
– Kind of AI system: classifier and decision systems
– Per-decision explanations: primarily per-decision
– Decisions: are being explained, not decision processes
– External explanation: explanation is independent of the AI system’s inter-

nals and provided by an external source
– Explanation receiver : explanations produced are suited for non-experts,

experts and potentially other algorithms.

Note that, CT-FLA methods are primarily suited to produce per-decision
explanations, but they can also characterize whole classes and thus not only
explain an individual object. Thus, in how far counterfactual cores give a global
explanation for an AI system is debatable. Devising the required IPM can be
straightforward, e.g. when the input is already given as a list of attributes; or
can require to additionally model the input space to the AI system.

Now, we consider again the four properties from [6] in conjunction with
CT-FLA:

Existence. Translated for CT-FLA methods applied to XAI, especially classi-
fiers, this property requires that for each object that is classified as a member
of a specific class, there must be at least one characteristic feature-combination
that can be identified for this object and members of its assigned class. Oth-
erwise, the description is clearly inaccurate, and a user cannot trust it, as it
has failed to identify any characteristic features.
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Research Question: Can decisions of systems that classify input that
is modelled via an IPM always be explained via feature-combinations
of the input?

Answer: It is up to further investigation whether this question can be answered
in the same style as for software faults [11].

Clarity. We outlined how CT-FLA methods provide explanations via feature-
combinations.

Research Question: Are explanations generated from CT-FLA for
XAI humanly understandable?

Answer: The feature-combinations generated by CT-FLA methods serve as
counterfactual explanations. We outlined previously (Section 4) how minimal
failure inducing t-way interactions can yield counterfactual cores. There ex-
ist several studies that suggest that counterfactual explanations suit the hu-
man way of casual explanations, see e.g. the work of Hilton [8] and references
therein, [15]. Further, some works investigate the role of counterfactual ex-
planations in the realm of XAI [3], [17], [25]. This leads us to consider the
following:

Research Question: How complex or lengthy can counterfactual ex-
planations become and still be humanly understandable? Further, is
the length independent from the classification process?

Answer. A potential answer to this question can be found in the well known
observation, by the psychologist Miller [16], states that the capacity of the hu-
man brain in terms of short-term memory is limited to about 7±2 chunks, i.e.
information units. Such or similar insights might translate to an upper bound
on the strength of feature-combinations that need to be identified as class
characteristic by combinatorial methods, as any feature-combination beyond
this upper bound is not easily processable by the human brain. This would be
a natural bound for the applicability of CT-FLA methods for XAI, and thus
present a psychological equivalent of the empirical study conducted by NIST
[11], that suggests that it is (largely) sufficient to consider parameter-value
combinations of up to six parameters for combinatorial software testing.

Adequate Justification. One cannot expect that ”short” feature-combinations
can explain all AI decisions, e.g., automated theorem proving or SAT solving,
where the results likely depend on the entire input.

Research Question: Are the explanations produced by CT-FLA
methods adequate to explain AI decisions?

Answer: This question could be answered (partly) by a case study, comparing
explanations from self-explaining classification system with those generated by
CT-FLA methods in order to evaluate the explanations. Such a comparison
may reveal cases where CT-FLA methods are suited, and others where they
are not suited for generation explanations to AI systems.
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Trust. This aspect primarily concerns AI systems, rather than (external) ex-
planation systems, however it raises the following question.

Research Question: Does the absence of a characteristic feature-
combination imply an inaccurate action in the given situation?

Answer. This can be reasonably addressed, only once the previous research
questions have been addressed, especially we need to know whether decisions
within the knowledge limits of the system can lead to characteristic feature-
combinations.

6 Conclusion

A number of researchers (see Section 2) have considered the application of
psychological research on explanation quality to the problem of XAI. We in-
vestigated the applicability of combinatorial methods to XAI considering these
general characteristics of explanation quality and formulated open research
questions, providing answers where possible. We can only hope that fully an-
swering them, can lead to a further improvement of combinatorial methods
and advance XAI.
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