
Preprint:  Chandrasekaran, J., Feng, H., Lei, Y., Kacker, R., & Kuhn, D. R. (2020, August). Effectiveness of dataset reduction in testing 
machine learning algorithms. 2020 IEEE International Conference On Artificial Intelligence Testing (AITest) (pp. 133-140). IEEE. 

 

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Effectiveness of dataset reduction in testing 
machine learning algorithms 

 

Jaganmohan Chandrasekaran, Huadong 
Feng  

Department of Computer Science & 
Engineering 

The University of Texas at Arlington  
Arlington, USA 

{jaganmohan.chandrasekaran,   
huadong.feng}@mavs.uta.edu 

Yu Lei  
Department of Computer Science & 

Engineering 
The University of Texas at Arlington  

Arlington, USA 
ylei@cse.uta.edu 

Raghu Kacker, D. Richard Kuhn  
Information Technology Lab  

National Institute of Standards and 
Technology  

Gaithersburg, USA 
{raghu.kacker, d.khun}@nist.gov 

Abstract— Many machine learning algorithms examine 
large amounts of data to discover insights from hidden patterns.  
Testing these algorithms can be expensive and time-consuming.  
There is a need to speed up the testing process, especially in an 
agile development process, where testing is frequently 
performed. One approach is to replace big datasets with smaller 
datasets produced by random sampling. In this paper, we report 
a set of experiments that are designed to evaluate the 
effectiveness of using reduced datasets produced by random 
sampling for testing machine learning algorithms. In our 
experiments, we use as subject programs four supervised 
learning algorithms from the Waikato Environment for 
Knowledge Analysis (WEKA). We identify five datasets from 
Kaggle.com to run with the four learning algorithms. For each 
dataset, we generate reduced datasets of different sizes using 
two random sampling strategies, i.e., pure random and stratified 
random sampling. We execute our subject programs with the 
original and the reduced datasets, and measure test effectiveness 
using branch and mutation coverage. Our results indicate that 
in most cases, reduced datasets of even very small sizes can 
achieve the same or similar coverage achieved by the original 
dataset. Furthermore, our results indicate that reduced datasets 
produced by the two sample strategies do not differ 
significantly, and branch coverage correlates with mutation 
coverage. 

Keywords— Testing classifiers, Random sampling, Reduced 
datasets, Testing machine learning, Branch coverage, Software 
testing.  

I. INTRODUCTION 
Many machine learning algorithms examine large 

amounts of data to discover insights from hidden patterns. 
Testing machine learning algorithms can be expensive and 
time-consuming. There is a need to speed up the testing 
process, especially in an agile development process, where 
testing is frequently performed. One approach is to replace big 
datasets with smaller datasets produced by random sampling. 
One natural question to ask about this approach is the 
following: How does a reduced dataset compare to the original 
dataset in terms of effectiveness from a testing perspective? 

In this paper, we report a set of experiments that are 
designed to evaluate the effectiveness of using reduced 
datasets for testing machine learning algorithms. We measure 
test effectiveness using both branch coverage and mutation 
coverage. In our experiments, we use as our subject programs 

four supervised learning algorithms from the Waikato 
Environment for Knowledge Analysis (WEKA), which is a 
widely used machine learning workbench written in Java [1]. 
We identify five datasets, each of which represents a different 
application domain, from Kaggle.com to run with these 
algorithms. Kaggle.com is an online data science community 
that maintains a repository of public datasets.  

After we identify subject programs and datasets, we first 
execute each subject program with each of the five datasets 
and measure test effectiveness in terms of branch coverage 
and mutation coverage.  Second, we create two groups of 
reduced datasets. The first group is generated using pure 
random sampling, i.e., in a purely random manner. The second 
group is generated using stratified random sampling, i.e., in a 
random manner that maintains the class distribution. In 
another word, a reduced dataset produced by stratified random 
sampling has the same class distribution as the original 
dataset. In the rest of the paper, we will refer to pure random 
sampling as random sampling and stratified random sampling 
as stratified sampling. Third, we execute the reduced datasets 
with subject programs and measure branch and mutation 
coverage. Finally, we compare the coverage results achieved 
by the reduced datasets to the coverage results achieved by the 
original datasets. 

The major findings from our experiments are summarized 
as follows: 

• In most cases, reduced datasets of even very small 
sizes achieve coverage identical or similar to the 
original datasets. In our experiments, the original 
datasets have the number of instances ranging from 
142,193 to 999,999. The reduced datasets are of four 
sizes, i.e., 100, 200, 400, and 800, which are a fraction 
of the original dataset size. However, 522 out of 800 
reduced datasets achieved the same coverage as the 
original datasets. Also, 112 out of 800 reduced 
datasets achieved more than 90% of the coverage 
achieved by the original datasets.   

• One might expect that stratified sampling can be more 
effective than random sampling. However, in our 
experiments, the coverage results of the reduced 
datasets produced by the two sampling strategies are 
very similar. In particular, 628 out of 800 reduced 
datasets produced by the two sampling strategies 



 

 2 

achieved the same coverage.  It is interesting to note 
that in several cases, random sampling achieved 
higher coverage than stratified sampling. The reason 
is that when the sample size is small, and when the 
dataset is skewed in terms of class distribution, 
stratified sampling may produce no instances for a 
particular class, which could significantly reduce 
coverage.  

• In most cases, branch coverage correlates with 
mutation coverage. Since mutation testing is quite 
expensive to perform, this suggests that branch 
coverage could be used as a practical alternative in 
place of mutation coverage for testing machine 
learning algorithms. 

The rest of the paper is organized as follows. In Section II 
we present the design of our experiments, including the 
research questions, subject programs, datasets and metrics 
used in our experiments, and discussion about the generation 
of reduced datasets. Section III presents the results of our 
experiments, including branch and mutation coverage results 
for original and reduced datasets as well as implications of 
these results. Section IV discusses potential threats to validity, 
including both internal and external threats. Section V reviews 
existing work that is related to ours. Section VI provides 
conclusion remarks and a few directions for the future work 

II. EXPERIMENTAL DESIGN 
In this section, we present how we design our experiment, 

including the research questions, the selection of subject 
programs and datasets, the sampling approaches used to 
generate reduced datasets, and the metrics used to measure 
the effectiveness of the dataset executions.  

A. Research Questions 
Our main objective is to investigate the effectiveness of 

using a reduced dataset (in terms of volume, i.e., number of 
instances in a dataset) to test machine learning algorithms. 
We formulate the following research questions: 

• How effective is it to test machine learning 
algorithms using reduced datasets, in 
comparison with the original datasets? 

• How do the two sampling strategies, i.e., random 
sampling and stratified sampling, compare to 
each other? 

• In testing machine learning algorithms, can 
branch coverage be used as a substitute for 
mutation coverage?  

B. Subject Programs 
Waikato Environment for Knowledge Analysis (WEKA) 

is a machine learning workbench developed by University of 
Waikato. WEKA has a collection of supervised and 
unsupervised algorithms implemented in Java. Using WEKA, 
a user can perform tasks such as classification, regression, 
clustering and association rule mining. Four supervised 
algorithms from WEKA are used as our subject programs.   

In WEKA, classification algorithms are categorized into 
seven different groups. We select one algorithm from each of 
the following four groups, bayes, meta, rules and trees. When 
we choose one algorithm from a group, we only consider 
algorithms that satisfy two conditions: (1) they support 
datasets with nominal class labels and (2) they generate a 

model at the end of its training phase. When there are multiple 
algorithms that satisfy the two conditions, we randomly 
choose one from these algorithms. The reason for condition 
(1) is that we use WEKA`s built-in filter to generate smaller 
datasets for stratified sampling. This filter is applicable only 
to datasets with nominal class labels. The reason for condition 
(2) is that during mutation testing, we need expected output to 
determine if a mutant is killed by comparing against the actual 
output. If an algorithm generates a model, then the model can 
be used as expected output during mutation testing. 

For example, WEKA lists eight algorithms under the trees 
category. However, one of the eight algorithms, M5p, does not 
work on a nominal class label. Hence we exclude M5P. 
Similarly, of the remaining seven algorithms, random forest 
works on a nominal class label dataset, but at the end of its 
training phase, the model is not accessible to the user with 
default configuration options. Hence, we exclude random 
forest. From the remaining six algorithms, we randomly select 
j48 as one of our subject algorithms.  

Among different categories of classifiers listed in WEKA, 
we selected four algorithms namely NaiveBayes classifier 
[27], AdaBoost1 classifier [28], OneR classifier [29] and J48 
classifier [30]. Table I lists our subject algorithms and some 
information about these algorithms, including package/class 
information, and number of branches and mutants. Each 
algorithm is executed with its default configuration values (as 
provided in WEKA) using command line interface (CLI). 

Table I also lists information about an algorithm called 
DecisionStump. Classification accuracy of simple learning 
algorithms (weak learners), e.g., decision trees, naïve bayes, 
can be affected by potential bias in the training dataset. Thus, 
ensemble classifiers are used to improve their classification 
accuracy. AdaBoost1 belongs to a class of ensemble 
classifiers (boosting) that help to improve the classification 
accuracy of weak learners by training them iteratively, with 
different sets of weights assigned to class labels in each 
iteration.  WEKA’s default configuration of AdaBoost1 
implements a meta classifier that improves the accuracy of the 
model built using DecisionStump, a tree-based classifier 
(weak learner).  

A
LG

O
R

IT
H

M
 

S U
BJ

EC
T 

PR
O

G
R

A
M

S 

N
U

M
BE

R
 O

F 
BR

A
N

C
H

ES
 

N
U

M
BE

R
 O

F 
M

U
TA

N
TS

 

j48 weka.classifiers.trees.j48* 750 3796 

NaiveBayes weka.classifiers.bayes.NaiveBayes.
java 203 1075 

AdaBoost1 weka.classifiers.meta.AdaBoost1.ja
va 90 491 

DecisionStump weka.classifiers.trees.DecisionStum
p.java 128 921 

OneR weka.classifiers.rules.OneR.java 88 510 

TABLE I – INFORMATION ABOUT SUBJECT PROGRAMS 

C. Datasets 
We identify suitable datasets from Kaggle.com, which 

provides access to public databases. By default, dataset search 
results on Kaggle.com are sorted by hotness, a measure 
indicative of the amount of interests and recency of datasets 
on their platform [9]. Other methods of sorting include New, 
Recently Active, Most Votes, Updated and Relevance. As 
Kaggle.com does not release the hotness calculation formula 



 

 3 

to the public [10], we are not completely clear of how the 
hotness of datasets is computed. Hence, we sort the search 
results by Most Votes, which sorts datasets based on the most 
popular datasets of all time. Then, the results are further 
filtered with the following two criteria: (a) size – 10 MB to 
1GB and (b) File types – CSV. Next, we inspect each dataset 
in the order sorted by Kaggle.com and select datasets that 
require no cleaning and can be executed in WEKA.  

We identified five datasets from different application 
domains, including AustralianWeather [23], ForestCover 
[24, 25], Crime [26], SupplyChain [21] and VideoGames 
[22].  The ForestCover dataset is a multi-label classification 
dataset with seven different class labels. The remaining four 
datasets consist of binary class labels. Table II lists the 
datasets and their information. 

We selected datasets such that data preprocessing is 
minimal. No modification was required for 
AustralianWeather and SupplyChain as their respective class 
labels were nominal by default. The class labels of the 
remaining three datasets, i.e. ForestCover, Crime and 
VideoGames were converted from numeric to nominal using 
WEKA’s built-in filter.   

DATASET # OF CLASS 
LABELS 

# OF 
INSTANCES 

# OF 
ATTRIBUTES 

ForestCover 7 581,012 55 

AustralianWeather 2 142,193 23 

Crime 2 284,807 31 

SupplyChain 2 580,251 5 

VideoGames 2 999,999 56 

TABLE II – DATASET INFORMATION 

D. Generation of Reduced Datasets  
For each original dataset in Table II, two groups of 

smaller datasets are generated. Group 1 consists of reduced 
datasets generated using pure random sampling, whereas in 
Group 2, reduced datasets are generated using stratified 
sampling. Recall that stratified sampling maintains the 
overall class distribution of the original datasets. For each 
group, we generate samples of four different sizes, i.e., 100, 
200, 400, 800. Also, in order to reduce variations in random 
sampling, we generate five samples for each sample size by 
using different random seeds. Thus, each dataset has 20 
samples per group and a total of 40 samples in the two groups.  

WEKA provides a set of pre-processing filters that allow 
users to modify datasets. Reduced datasets in Group 1 
(random sampling) are generated using WEKA’s pre-
processing filter weka.filters.unsupervised.instances. 
Resample. Reduced datasets in Group 2 (stratified sampling) 
are generated using pre-processing filter 
weka.filters.supervised.instances.Resample. These filters 
allow the user to select the sample size, usually specified as a 
percentage of the original dataset. Note that both filters 
perform a volumetric reduction, i.e. the number of instances 
in the dataset is reduced whereas the number of attributes will 
remain unchanged.  

For example, consider a dataset of 100,000 data instances 
with four class labels, A, B, C and D. Assume that their class 
distribution is as follows: 30% instances belong to Class A, 
40% instances belong to Class B, 10% instances belong to 
Class C and the remaining 20% belongs to Class D. 

Generating a smaller dataset with 100 instances using 
stratified sampling (Group II) will consists of 30 instances 
belonging to Class A, 40 instances belonging to Class B, 10 
instances belonging to Class C and 20 instances belonging to 
Class D. In contrast, samples generated using random 
sampling (Group I) does not necessarily maintain the class 
label distribution.  

The Crime dataset (284,807 instances) has the following 
class distribution: 99.82% instances belong to Class 0 
(284,315 instances), and 0.18% instances belong to Class 1 
(492 instances). When generating a reduced dataset with 800 
instances using WEKA’s pre-processing filter, it is highly 
likely that random sampling fails to produce a reduced dataset 
that include instances in both Class 0 and Class 1. Instead, it 
is likely that all of the 800 instances belong to Class 0.  A 
developer might face the above said scenario when s/he 
generates a reduced dataset using random sampling from a 
class-imbalanced (or skewed) dataset. As a workaround, a 
developer can create a reduced dataset while preserving the 
original class distribution. This is our motivation to use two 
different groups of samples and to investigate their impact in 
testing supervised learning algorithms.  The original datasets 
and their reduced versions are made publicly available at 
[32]. 

E. Metrics  
 We use both branch coverage and mutation coverage to 

measure test effectiveness. Branch coverage is recorded using 
JaCoCo [18]. Mutation coverage is obtained using PITest 
(PIT), which is a widely used mutation testing framework 
[19]. PIT can automatically seed one fault at a time into SUT 
and execute the mutated code against the unit test(s) 
specified. In our experiments, we have thirteen mutation 
operators including all the default mutators (seven), three 
experimental mutators and three optional mutators [20, 31].  

The machine we used for our experiments is a workstation 
with two Xeon E5- 2630V3 8 core CPUs @ 2.40GHz, 64GB 
DDR4 2133 MT/s memory, and a Samsung 850 EVO 500GB 
SSD.  

III. EXPERIMENTAL RESULTS 
In this section, we present our experimental results and 

discussion about our results. In Section III.A, we present the 
branch coverage results achieved by the original datasets. 
These results are considered to be the baseline results. In 
Section III.B, we present the branch coverage results 
achieved by the reduced datasets. These results are compared 
to the baseline results. In Section III.C, we present the 
mutation coverage results achieved by both of the original 
and reduced datasets. 

A. Branch Coverage of the Original Datasets 
Table III presents the branch coverage achieved by 

algorithms with original datasets. Among the datasets, 
SupplyChain consistently achieve higher coverage for all the 
algorithms. We observe that across algorithms, a 
considerable number of methods, and their branches were not 
executed, and thus the overall branch coverage appears to be 
considerably lower (<= 50%). This, however, can be 
explained as follows. Consider the branch coverage results of 
the OneR algorithm. The SupplyChain dataset achieves the 
highest branch coverage (57%), i.e., 51 out of 88 total 



 

 4 

branches. Among the missing 37 branches, 18 branches 
missed due to default configuration options. Seven branches 
are related to error handling, such as missing attribute values, 
and the remaining 12 branches cannot be covered as cross-
validation is not performed while building models using the 
command-line interface (CLI).  

To our surprise, AustralianWeather covers a significantly 
smaller number of branches (17) compared to the rest. This 
can be explained as follows: Among the five datasets, all the 
attributes of AustralianWeather belong to the nominal data 
type. All the attributes of ForestCover, VideoGames, and 
Crime belong to the numeric data type. In the case of 
SupplyChain, 3 out of 4 attributes belong to the numeric data 
type, and the remaining attribute belongs to the nominal data 
type. When executing the OneR algorithm with 
AustralianWeather, a method, newNumericRule(), was 
missed that has 36 branches and handles numeric attributes. 
Hence, AustralianWeather achieves a significantly lower 
branch coverage, whereas SupplyChain achieves the highest 
branch coverage, as it covers branches related to both 
numeric and nominal data types.  

In our experiments, we executed the algorithms using 
WEKA’s default configuration options only. This could 
cause branching conditions that are specific for other 
configuration options to be missed. As shown in [2], 
executing different configuration options could significantly 
increase branch coverage. Also, the branches related to error 
handling and GUI are not covered as we run our tests with 
clean datasets using the CLI. 

 We emphasize that, although branch coverage achieved 
by original datasets is not high, this does not affect the 
purpose of our experiments, which is to determine whether 
reduced datasets could achieve the same or similar coverage 
as the original dataset. 

 

D
A

TA
SE

TS
 

A
LG

O
R

IT
H

M
S 

# 
O

F 
B

R
A

N
C

H
ES

 
C

O
V

ER
ED

 

T
O

TA
L 

N
U

M
BE

R
 

O
F 

BR
A

N
C

H
ES

 

B
R

A
N

C
H

 
C

O
V

ER
A

G
E  

AustralianWeather 

j48 

180 

750 

24% 
ForestCover 202 26% 
SupplyChain 201 26% 
VideoGames 202 26% 
Crime 195 26% 
AustralianWeather 

Naïve Bayes 

73 
 

203 
 
 

35% 
ForestCover 77 37% 
SupplyChain 99 48% 
VideoGames 79 38% 
Crime 78 38% 
AustralianWeather 

AdaBoost1 

28  
 

90 
 
 

31% 
ForestCover 17 18% 
SupplyChain 28 31% 
VideoGames 28 31% 
Crime 28 31% 
AustralianWeather 

DecisionStump 

50 

 
128 

 

39% 
ForestCover 47 36% 
SupplyChain 71 55% 
VideoGames 48 37% 
Crime 48 37% 
AustralianWeather 

OneR 

17 

88 

19% 
ForestCover 44 50% 
SupplyChain 51 57% 
VideoGames 45 51% 
Crime 45 51% 

TABLE III - BRANCH COVERAGE FOR ORIGINAL DATASETS 

B. Branch Coverage of Reduced Datasets  
In this section, we present the branch coverage results 

achieved by reduced datasets. For each dataset, we generate 
reduced datasets using two different approaches: random 
sampling and stratified sampling; we generate reduced 
datasets in four different sizes: 100 instances, 200 instances, 
400 instances, and 800 instances, as discussed in Section II-
D. Due to limited space, we present the median branch 
coverage achieved by each size relative to their baseline 
coverage.  

Tables IV and V present the branch coverage results of 
reduced datasets generated using random sampling and 
stratified sampling, respectively. All the coverage results 
presented here are relative to their corresponding baseline. 
i.e., a relative branch coverage of 1.0 suggests that a reduced 
dataset achieves a branch coverage identical to the original 
dataset. Note that, in Tables IV and V, 39 out of 50 reduced 
datasets of size 800 produced by both random and stratified 
sampling, achieved branch coverages identical to the 
baseline; for the remainder of the cases, we notice the 
coverages do not significantly vary among different sample 
sizes. Therefore, in our experiments we did not consider 
sample size larger than 800 instances. 

The results indicate that, for the j48 algorithm, reduced 
datasets of size 800 instances produced by both random and 
stratified sampling of ForestCover, SupplyChain, and 
VideoGames can retain their baseline branch coverage. For 
the NaiveBayes algorithm, the reduced versions of all five 
datasets can retain their branch coverage achieved by their 
respective original datasets and in some cases, reduced 
datasets achieving even higher branch coverage. Similarly, 
for the remaining three algorithms namely AdaBoost1, 
DecisionStump, and OneR, the reduced versions of all 
datasets except Crime, in most cases either retain their 
respective baseline branch coverage (1.0) or in some cases 
achieve a branch coverage closer to its baseline (0.9<=branch 
coverage<1.0).  

For the reduced datasets of Crime, we observe that three 
out of five algorithms (j48, AdaBoost1, One-R) suffer from a 
loss in branch coverage.  In particular, consider the case of 
j48 (Row 5 in Tables IV and V), which suffers from a 
significant loss in branch coverage. This is attributed to the 
class imbalance problem. The Crime dataset consists of 
284,807 instances with two class labels: (0, 1); 99.82% 
instances belonging to Class 0 and remaining 0.18% 
belonging to Class 1. Due to class imbalance, chances of 
drawing all hundred samples (at random) that belong to Class 
0 is higher.  

In our experiments, for the reduced datasets of size 100 
produced by random sampling, four out of five samples have 
all their instances belonging to Class 0, and they achieve a 
relative median branch coverage of 0.12. On the contrary, 
three out of five reduced datasets of size 200 produced by 
random sampling have representation from both of the class 
labels, and they achieve a higher branch coverage 
comparatively (0.35). We notice that, in the case of j48, if a 
reduced dataset consists of a single label, there is a significant 
loss in branch coverage.  

Next, we compare the coverage results of random 
sampling and stratified sampling. Our results indicate that, in 



 

 5 

most cases, the datasets reduced using both random and 
stratified sampling can achieve the same branch coverage. 

 
DATASETS ALGORITHMS 

SIZE OF THE REDUCED 
DATASET 

100 200 400 800 
AustralianWeather 

j48 

0.75 0.75 0.71 0.71 
ForestCover 1.00 1.00 1.00 1.00 
SupplyChain 0.81 0.73 0.92 1.00 
VideoGames 0.96 0.96 0.96 1.00 
Crime 0.12 0.35 0.12 0.35 
AustralianWeather 

Naïve Bayes 

1.00 1.00 1.00 1.00 
ForestCover 1.03 1.03 1.03 1.03 
SupplyChain 1.00 1.00 1.00 1.00 
VideoGames 1.00 1.00 1.00 1.00 
Crime 1.00 1.00 1.00 1.00 
AustralianWeather 

AdaBoost1 

1.00 1.00 1.00 1.00 
ForestCover 1.78 1.67 1.00 1.00 
SupplyChain 1.00 1.00 1.00 1.00 
VideoGames 1.00 1.00 1.00 1.00 
Crime 0.65 0.65 0.65 0.65 
AustralianWeather 

DecisionStump 

0.95 0.95 0.95 0.95 
ForestCover 1.00 1.00 1.00 1.00 
SupplyChain 1.00 1.00 1.00 1.00 
VideoGames 1.00 1.00 1.00 1.00 
Crime 0.97 1.00 0.97 1.00 
AustralianWeather 

OneR 

0.95 0.95 0.95 0.95 
ForestCover 1.00 1.00 1.00 1.00 
SupplyChain 0.96 0.96 0.96 0.96 
VideoGames 1.00 1.00 1.00 1.00 
Crime 0.76 0.92 0.76 1.00 

TABLE IV – RELATIVE BRANCH COVERAGE OF REDUCED DATASETS (RANDOM SAMPLING) 

 
DATASETS ALGORITHMS 

SIZE OF THE REDUCED 
DATASET 

100 200 400 800 
AustralianWeather 

j48 

0.75 0.75 0.71 0.71 
ForestCover 1.00 1.00 1.00 1.00 
SupplyChain 0.81 0.92 0.96 1.00 
VideoGames 0.92 0.96 1.00 1.00 
Crime 0.12 0.12 0.12 0.35 
AustralianWeather 

Naïve Bayes 

1.00 1.00 1.00 1.00 
ForestCover 1.03 1.03 1.03 1.03 
SupplyChain 1.00 1.00 1.00 1.00 
VideoGames 1.00 1.00 1.00 1.00 
Crime 1.00 1.00 1.00 1.00 
AustralianWeather 

AdaBoost1 

1.00 1.00 1.00 1.00 
ForestCover 1.78 1.67 1.78 1.67 
SupplyChain 1.00 1.00 1.00 1.00 
VideoGames 1.00 1.00 1.00 1.00 
Crime 0.65 0.65 0.65 1.00 
AustralianWeather 

DecisionStump 

1.00 1.00 1.00 1.00 
ForestCover 1.00 1.00 1.00 1.00 
SupplyChain 1.00 1.00 1.00 1.00 
VideoGames 1.00 1.00 1.00 1.00 
Crime 0.97 0.97 0.97 1.00 
AustralianWeather 

OneR 

0.95 0.95 0.95 0.95 
ForestCover 1.00 1.00 1.00 1.00 
SupplyChain 0.96 0.96 1.00 1.00 
VideoGames 1.00 1.00 1.00 1.00 
Crime 0.76 0.76 0.76 0.92 

TABLE V – RELATIVE BRANCH COVERAGE OF REDUCED DATASETS (STRATIFIED SAMPLING) 

In the cases of AustralianWeather, SupplyChain and 
VideoGames, the datasets reduced using both random and 
stratified sampling achieves identical branch coverage. This 
can be explained by the fact that all reduced datasets have a 
good class label representation. For example, all five sample 
datasets of AustralianWeather of size 100 that are reduced 
using stratified sampling have the following class label 
distribution: 78 instances belong to No, and 22 instances 
belong to Yes. In the case of random sampling, amongst five 
samples, sample 5 consists of 86 instances belong to No and 

14 instances belongs to Yes whereas, Sample 3 consists of 74 
instances belong to No and 26 instances belongs to Yes. 

Our results indicate that the reduced datasets of 
ForestCover generated using both random and stratified 
sampling achieve the same branch coverage as the original 
datasets across all algorithms. In comparison, the reduced 
datasets generated from AustralianWeather, SupplyChain, 
VideoGames, and Crime suffer from a minimal to moderate 
coverage loss in at least one of the five algorithms. This may 
be attributed to the fact, ForestCover is a multilabel dataset 
(7 class labels), whereas the rest of the four datasets are 
binary label dataset. More experimental data is required to 
obtain a better understanding. Also, our results indicate that 
in the case of the AdaBoost1 algorithm, the reduced datasets 
achieve a better branch coverage compared to the baseline, 
i.e., the original datasets. To some extent, this result is 
surprising, given the significant increase in branch coverage. 
This is possible because the reduced datasets may trigger 
execution scenarios that are different than the original 
datasets. 

In the case of the Crime dataset, three algorithms suffer 
from a coverage loss. In particular, consider the coverage 
achieved by the reduced datasets of Crime produced by both 
random and stratified sampling.  Row 5 in Tables IV and V 
indicates that the reduced dataset of size 200 produced by 
random sampling achieves a higher branch coverage (0.35) 
compared to the reduced dataset produced by stratified 
sampling of the same size (0.12). This can be attributed to the 
representativeness of the class label. On examination of 
reduced datasets, we observe that three out of five samples 
generated using random sampling have instances belonging 
to two class labels (Class 0 and Class 1). However, in the case 
of datasets reduced using stratified sampling, all instances 
belong to a single class (Class 0). Hence, subject programs 
achieve lower coverage while executing with stratified 
samples as they fail to trigger the execution of certain 
branches. The branch coverage results of the OneR algorithm 
suggest a similar pattern, i.e., the reduced dataset of size 200 
produced by random sampling achieves a higher coverage 
(0.92) compared dataset reduced using stratified sampling of 
the same size (0.76). 

This behavior of stratified sampling, i.e., all the instances 
of a reduced dataset belonging to a single class, is expected 
as it draws samples in a way that maintains the class 
distribution of the original dataset. Recall that the Crime 
dataset consists of 284,807 instances with two class labels: 
(0, 1); 99.82% instances belonging to Class 0 and remaining 
0.18% belonging to Class 1. To generate a reduced dataset of 
size 200 instances using stratified sampling, instances are 
drawn in the following way (99.82% * 200) > 199 (instances) 
belonging to Class 0 and (0.18% * 200) < 1 (instances) 
belonging to Class 1. Hence, all the instances belong to Class 
0 and thus, the reduced dataset suffers from lack of class 
representativeness.  

For the Crime dataset, a minimum of 556 instances is 
required to guarantee that a reduced dataset (stratified 
sampling) consists of instances belonging to both classes (0 
and 1). Among four different sizes (100, 200, 400, and 800) 
of reduced datasets generated using stratified sampling, in 
three groups (100,200 and 400), all instances belong to class 
0 and thus achieve a low branch coverage (0.12). In the case 
of reduced datasets of 800 instances, all five samples consist 



 

 6 

of instances of both classes and thus achieve a relatively 
higher branch coverage (0.35). 

Our results indicate that approximately 80% of the 
reduced datasets achieve coverage identical or similar to the 
original datasets. In another word, the volume of a dataset 
does not directly attribute to branch coverage. Instead, factors 
such as lack of representativeness of class labels in a reduced 
dataset could impact branch coverage. The results suggest 
that in most cases, reduced datasets do not suffer from branch 
coverage loss. In this respect, they can be used in place of the 
original datasets to speed up the testing process.  

Among the two sampling approaches, the results indicate 
that in most cases (around 75%) reduced datasets generated 
using both random and stratified sampling exhibit identical 
behavior. However, when a tester decides to use stratified 
sampling, he/she should choose the size of the reduced 
dataset (minimum number of samples) based on the original 
class distribution such that each class label is represented in 
the reduced dataset. 

C. Mutation Coverage of Reduced Datasets 
In this section, we present the mutation coverage results 

achieved by algorithms while executing with reduced 
datasets.  

Given the size of the datasets and the number of mutants 
generated for SUT, the overall execution time can be between 
a few hours to several days. Due to time constraints, our 
experiments have an execution time limit of 48 hours (chosen 
arbitrarily). If a dataset takes more than 48 hours to complete, 
then we kill the test execution and use a relatively smaller 
dataset (10000 instances) as our baseline.  Out of 20 baseline 
test executions, one baseline execution, j48 algorithm with 
the VideoGames dataset executed for more than 2 days. 
Hence, we generated five smaller samples of VideoGames 
dataset with 10000 instances each and used their median 
coverage as a baseline. 

 
DATASETS ALGORITHMS 

SIZE OF THE REDUCED 
DATASET 

100 200 400 800 
AustralianWeather 

j48 

0.50 0.50 0.44 0.50 
ForestCover 0.96 0.96 0.96 1.00 
SupplyChain 0.64 0.57 0.71 0.79 
VideoGames 0.88 0.88 0.92 0.96 
Crime 0.14 0.24 0.14 0.24 
AustralianWeather 

Naïve Bayes 

0.94 0.94 0.94 0.94 
ForestCover 1.00 1.00 1.00 1.00 
SupplyChain 1.00 1.00 1.00 1.00 
VideoGames 1.00 1.00 1.00 1.00 
Crime 1.00 1.00 1.00 1.00 
AustralianWeather 

AdaBoost1 

1.00 1.00 1.00 1.00 
ForestCover 1.92 1.38 1.00 1.00 
SupplyChain 1.00 1.00 1.00 1.00 
VideoGames 1.04 1.00 1.00 1.00 
Crime 0.50 0.54 0.50 0.54 
AustralianWeather 

DecisionStump 

1.00 1.00 1.00 1.00 
ForestCover 1.03 1.00 1.00 1.00 
SupplyChain 1.00 1.00 1.00 1.00 
VideoGames 1.00 1.00 1.00 1.00 
Crime 0.85 0.94 0.85 0.94 
AustralianWeather 

OneR 

0.93 0.93 0.93 0.93 
ForestCover 0.97 1.00 1.00 1.00 
SupplyChain 1.07 1.07 1.07 1.07 
VideoGames 0.97 0.97 1.00 1.00 
Crime 0.66 0.77 0.66 0.89 

TABLE VI - RELATIVE MUTATION COVERAGE OF REDUCED DATASETS (RANDOM SAMPLING) 

 

DATASETS ALGORITHMS 
SIZE OF THE REDUCED 

DATASET 
100 200 400 800 

AustralianWeather 

j48 

0.50 0.50 0.50 0.50 
ForestCover 0.92 0.96 1.00 0.96 
SupplyChain 0.64 0.71 0.79 0.79 
VideoGames 0.54 0.88 0.96 0.96 
Crime 0.14 0.14 0.14 0.24 
AustralianWeather 

Naïve Bayes 

0.94 0.94 0.94 0.94 
ForestCover 1.00 1.00 1.00 1.00 
SupplyChain 1.00 1.00 1.00 1.00 
VideoGames 1.00 1.00 1.00 1.00 
Crime 1.00 1.00 1.00 1.00 
AustralianWeather 

AdaBoost1 

1.00 1.00 1.00 1.00 
ForestCover 2.00 1.38 2.00 1.38 
SupplyChain 1.00 1.00 1.00 1.00 
VideoGames 1.00 1.00 1.00 1.00 
Crime 0.50 0.50 0.50 1.00 
AustralianWeather 

DecisionStump 

1.00 1.00 1.00 1.00 
ForestCover 1.03 1.00 1.03 1.00 
SupplyChain 1.00 1.00 1.00 1.00 
VideoGames 1.00 1.00 1.00 1.00 
Crime 0.85 0.85 0.85 0.97 
AustralianWeather 

OneR 

0.93 0.93 0.93 0.93 
ForestCover 1.00 1.00 1.00 1.00 
SupplyChain 1.07 1.07 1.13 1.07 
VideoGames 0.97 1.00 0.97 1.00 
Crime 0.66 0.66 0.66 0.77 

TABLE VII-RELATIVE MUTATION COVERAGE OF REDUCED DATASETS (STRATIFIED 
SAMPLING) 

Tables VI and VII present the mutation coverage results 
of the reduced datasets. All the coverage results presented 
here are relative to their corresponding baseline. The results 
from Tables VI and VII suggest that the j48 algorithm 
performs poorly with the reduced datasets of 
AustralianWeather and SupplyChain. Similarly, the reduced 
datasets of Crime result in a mutation coverage decrease for 
all the algorithms except Naive Bayes. The rest of the reduced 
datasets generated using both random and stratified sampling 
can retain their baseline mutation coverage. 

We report that the majority of the mutation coverage 
results (except reduced datasets of SupplyChain on j48) 
mirrors with their respective branch coverage results (Table 
IV & V; Table VI & VII). 

 

 
FIGURE 1 – CORRELATION GRAPH – RANDOM SAMPLING 

 



 

 7 

 
FIGURE 2 – CORRELATION GRAPH – STRATIFIED SAMPLING 

 
Figures 1 and 2 present a correlation graph of branch 

coverage vs. mutation coverage for random sampling and 
stratified sampling, respectively. In Figures 1 and 2, x-axis 
indicates branch coverage, and the y-axis indicates mutation 
coverage. For the datasets reduced via random sampling, 
branch vs. mutation coverage has a Pearson correlation 
coefficient of 0.944148, whereas the datasets reduced via 
stratified sampling has a fractionally lower Pearson 
correlation coefficient of 0.939506. The result suggests that 
in most cases, mutation coverage has a strong positive 
correlation with the branch coverage. To our surprise, the 
mutation results of j48 using the SupplyChain dataset reduced 
using stratified sampling does not appear to correlate well 
with branch coverage, and we plan to investigate this further 
as part of our future work.  

IV. THREATS TO VALIDITY 
Threats to internal validity are factors that may be 

responsible for experimental results, without our knowledge. 
To reduce human errors in the experimental procedure, we 
tried to automate our experiments as much as possible. In 
particular, we wrote scripts to automatically execute tests, 
measure code and mutation coverage, and generate coverage 
reports. Further, the results generated from samples of each 
dataset were verified manually, whenever possible. 

Threats to external validity occur when the experimental 
results could not be generalized to other subjects. Using a 
single dataset for our experiments might impact the validity 
of our results due to lack of representativeness. To mitigate 
this threat, we used four supervised learning algorithms from 
WEKA that belong to different groups and five datasets from 
different application domains. More experiments using other 
learning algorithms, including both supervised and 
unsupervised algorithms, and other datasets, can further 
reduce the threats to external validity. 

V. RELATED WORK 
First, we review existing work reported on testing 

machine learning algorithms. One challenge in testing 
machine learning algorithms is how to deal with the test 
oracle problem. Murphy et al. [4,5] proposed a metamorphic 
testing technique to test machine learning algorithms. They 
developed metamorphic properties for three machine 
learning algorithms, including MartiRank, SVMLight, and 
PAYL.  Similarly, Nakajima et al. [7] proposed a systematic 
approach to derive metamorphic properties and translation 
functions for testing a special class of classifiers known as 
Support Vector Machines (SVM). Xie et al. [11] proposed a 
metamorphic testing approach to test supervised learning 

algorithms, namely Naïve Bayes classifier and k-nearest 
neighbor classifier. Our work differs from these works in that 
we focus on evaluating the effectiveness of using smaller 
datasets in testing supervised learning algorithms. 

Second, we review existing work on dataset reduction for 
testing big data applications. Such work is relevant because 
many machine learning algorithms are big data applications 
in that they are designed to learn from large amounts of data. 
Ur Rehman et al. [13] reviewed existing data reduction 
techniques such as compression-based data reduction 
method, dimension reduction techniques for big data 
applications. Czarnowski et al. [14] proposed an agent-based 
population learning algorithm for data reduction. Their 
algorithm aims at finding a subset of the original dataset that 
can be used to build a classifier that is similar to the classifier 
built using the original dataset. This is different from our 
work, which tries to find a subset of the original dataset that 
preserves test effectiveness. 

We mention that a significant amount of work is reported 
on data reduction techniques in terms of dimensionality 
reduction and feature space [3, 6, 8, 16, 17].  In contrast, our 
work focuses on volume reduction, i.e., reducing the number 
of instances in a big dataset. To the best of our knowledge, 
our work is the first to investigate the effectiveness of volume 
reduction in testing machine learning algorithms. 

VI. CONCLUSION AND FUTURE WORK 
In this paper, we report a study that investigates the use of 

reduced datasets in testing machine learning algorithms. We 
used four supervised learning algorithms from WEKA as our 
subject programs. Five publicly available datasets from 
Kaggle.com were chosen as subject datasets. For each 
dataset, we generated reduced datasets in four different sizes 
using random and stratified sampling. Then, we executed the 
algorithms with the original and the reduced datasets and 
measured test effectiveness in terms of branch and mutation 
coverage. Our results indicate, in most cases, reduced 
datasets of very small sizes (e.g. 800 instances) can retain 
branch and mutation coverage of the original, big datasets 
(e.g., >100,000 instances). This suggests that reduced 
datasets can be used to effectively test machine learning 
algorithms. Our results also indicate a high correlation 
between branch coverage and mutation coverage. Thus, 
branch coverage can be used when mutation testing is 
prohibitively expensive.  

This is the first step in our larger effort to speed up testing 
machine learning algorithms. We plan to continue our work 
in the following directions. First, we plan to investigate the 
reduction of even bigger multi-label datasets (> 1 GB) and its 
effect on testing machine learning algorithms. Second, we 
plan to expand our study to include unsupervised learning 
algorithms. Compared to supervised learning algorithms, 
unsupervised learning algorithms learn from unlabeled 
datasets and thus could be harder to validate its output. Third, 
our experiments show that there exists a high correlation 
between branch and mutation coverage. However, some 
recent work reports that traditional code coverage measures 
such as branch coverage may not be adequate for testing deep 
learning algorithms. We believe that this has to do with the 
nature of the algorithms and also the types of fault that may 
exist in the algorithms. We plan to study this further by 
conducting experiments on deep learning algorithms. Finally, 



 

 8 

we plan to develop new methods, i.e., methods other than 
random sampling, for dataset reduction. For example, how to 
perform equivalence partitioning among instances in a big 
dataset, and then choose one or more representatives from 
each equivalence group. 

VII. ACKNOWLEDGEMENT 
This work is supported by research grant 

(70NANB15H199) from Information Technology Lab of 
National Institute of Standards and Technology (NIST). 
 

Disclaimer: Certain software products are identified in 
this document. Such identification does not imply 
recommendation by the NIST, nor does it imply that the 
products identified are necessarily the best available for the 
purpose. 
REFERENCES 
[1] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter 

Reutemann, and Ian H. Witten (2009). The WEKA Data Mining 
Software: An Update. SIGKDD Explorations, Volume 11, Issue 1. 

[2] Chandrasekaran, Jaganmohan, et al. "Applying combinatorial testing 
to data mining algorithms." 2017 IEEE International Conference on 
Software Testing, Verification and Validation Workshops (ICSTW). 
IEEE, 2017. 

[3] Feldman, Dan, Melanie Schmidt, and Christian Sohler. "Turning big 
data into tiny data: Constant-size coresets for k-means, pca and 
projective clustering." Proceedings of the twenty-fourth annual ACM-
SIAM symposium on Discrete algorithms. Society for Industrial and 
Applied Mathematics, 2013. 

[4] Murphy, Christian, Gail E. Kaiser, and Marta Arias. "An approach to 
software testing of machine learning applications." (2007). 

[5] Murphy, Christian, Gail E. Kaiser, and Lifeng Hu. "Properties of 
machine learning applications for use in metamorphic testing." (2008). 

[6] Kira, Kenji, and Larry A. Rendell. "The feature selection problem: 
Traditional methods and a new algorithm." Aaai. Vol. 2. 1992. 

[7] Nakajima, Shin, and Hai Ngoc Bui. "Dataset coverage for testing 
machine learning computer programs." 2016 23rd Asia-Pacific 
Software Engineering Conference (APSEC). IEEE, 2016. 

[8] Khalid, Samina, Tehmina Khalil, and Shamila Nasreen. "A survey of 
feature selection and feature extraction techniques in machine 
learning." 2014 Science and Information Conference. IEEE, 2014. 

[9] https://www.kaggle.com/docs/datasets. 
[10] https://www.kaggle.com/general/39290 
[11] Xie, Xiaoyuan, et al. "Testing and validating machine learning 

classifiers by metamorphic testing." Journal of Systems and 
Software 84.4 (2011): 544-558. 

[12] Zhang, Zhiyi, and Xiaoyuan Xie. "Towards testing big data analytics 
software: the essential role of metamorphic testing." Biophysical 
reviews 11.1 (2019): 123-125. 

[13] ur Rehman, Muhammad Habib, et al. "Big data reduction methods: a 
survey." Data Science and Engineering 1.4 (2016): 265-284. 

[14] Czarnowski, Ireneusz, and Piotr Jędrzejowicz. "An Approach to Data 
Reduction for Learning from Big Datasets: Integrating Stacking, 
Rotation, and Agent Population Learning 
Techniques." Complexity 2018 (2018). 

[15] Czarnowski, Ireneusz, and Piotr Jędrzejowicz. "Stacking and rotation-
based technique for machine learning classification with data 
reduction." 2017 IEEE International Conference on INnovations in 
Intelligent SysTems and Applications (INISTA). IEEE, 2017. 

[16] Liu, Qingzhong, et al. "Mining the big data: The critical feature 
dimension problem." 2014 IIAI 3rd International Conference on 
Advanced Applied Informatics. IEEE, 2014. 

[17] Wold, Svante, Kim Esbensen, and Paul Geladi. "Principal component 
analysis." Chemometrics and intelligent laboratory systems 2.1-3 
(1987): 37-52. 

[18] M. Hoffmann, B. Janiczak, E. Mandrikov and M. Friedenhagen. Jacoco 
code coverage tool. Online , 2016  

[19] H. Coles. Pit mutation testing. http: //pitest.org/, 2016.  
[20] Coles, Henry, et al. "Pit: a practical mutation testing tool for 

java." Proceedings of the 25th International Symposium on Software 
Testing and Analysis. ACM, 2016. 

[21] https://www.kaggle.com/rtatman/lego-database#inventory_parts.csv 
[22] https://www.kaggle.com/paololol/league-of-legends-ranked-

matches#stats1.csv 
[23] https://www.kaggle.com/jsphyg/weather-dataset-rattle-package 
[24] As Bache, K. & Lichman, M. (2013). UCI Machine Learning 

Repository. Irvine, CA: University of California, School of Information 
and Computer Science 

[25] https://www.kaggle.com/c/forest-cover-type-prediction/overview 
[26] https://www.kaggle.com/mlg-ulb/creditcardfraud 
[27] John, George H., and Pat Langley. "Estimating continuous 

distributions in Bayesian classifiers." Proceedings of the Eleventh 
conference on Uncertainty in artificial intelligence. Morgan Kaufmann 
Publishers Inc., 1995. 

[28] Freund, Yoav, and Robert E. Schapire. "Experiments with a new 
boosting algorithm." icml. Vol. 96. 1996. 

[29] Holte, Robert C. "Very simple classification rules perform well on 
most commonly used datasets." Machine learning 11.1 (1993): 63-90. 

[30] Salzberg, Steven L. "C4. 5: Programs for machine learning by j. ross 
quinlan. morgan kaufmann publishers, inc., 1993." Machine 
Learning 16.3 (1994): 235-240. 

[31] https://pitest.org/quickstart/mutators/ 
[32] https://1drv.ms/u/s!AjZ3W-

Mz9wPKhtlLoWUU2zZKzm4bRg?e=QT8Oko 
 
 

 


