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Outline

* Why current safety-critical testing won’t work
* Assurance based on input space coverage,

* Explainable Al as part of validation, and

* Transfer learning

Short overview of assured autonomy,
and NIST focus (measurement and test) in this area
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(Slide from Darryl Ahner, US Air Force Institute of Technology)

Defense Science Board Study

STAT T&E COE: Scientia Prudentia et Valor mmmmmmn

DSB 2012 The Role of Autonomy in DoD Systems Studxlrecommends:
“USD(AT&L) to create developmental and operational T&E

techniques that focus on the unique challenges of autonomy (to include

developing operational training techniques that explicitly build trust in

autonomous systems).”

Recommendation:

USD(AT&L) establish developmental and operational

T&E techniques that focus on the unique challenges of

autonomy The Role of Autonomy in DoD Systems

. Coping with the difficulty of enumerating all

conditions and non-deterministic responses

. Basis for system decisions often not apparent
to user
. Measuring trust that the autonomous system

will interact with its human supervisor as intended
Leverage the benefits of robust simulation

9
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Software safety assurance is already very expensive

Consumer level software cost:
about 50% development, V&V cost and Certification

50% verification

o _ o For FAA compliant DO-178B Level A software, the

For aviation life-critical, industry usually spends 7 times as much on verification
0 (reviews, analysis, test). So that's about 12% for

12% dev.e.loprnent, development and 88% for verification.

88% verification

. Level B reduces the verification cost by approximately
o
(SOftwa re is about 30% of 15%. The mix is then 25% development, 75% verification.

cost for new civilian aircraft,
higher for military)

Randall Fulton
FAA Designated Engineering Representative
(private email to L. Markosian, July 2008)

Autonomy makes the
problem even harder!

13 April 2010 NFM 2010 10
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Autonomy makes the problem even more expensive!

11:171)  Assurance for Autonomous Systems is Hard

Traditional testing will require exorbitant time and money:
11B miles, 500 years, $6B
- Driving to Safety, RAND Corp. Report, 2016

Table 1. Examples of Miles and Years Needed to Demonstrate Autonomous Vehicle Reliability

How many miles (years®) would (A) 1.09 fatalities per (B) 77 reported (C) 190 reported
autonomous vehicles have to be 100 million miles? injuries per 100 crashes per 100
£ driven... million miles? million miles?
& | (1) without failure to demonstrate with 95% 275 million miles 3.9 million miles 1.6 million miles
é confidence that their failure rate is at most... (12.5 years) (2 months) (1 month)
T (2) to demonstrate with 95% conlidence their 8.8 billion miles 125 million miles 51 million miles
5 failure rate to within 20% of the trve rate of... (400 years) (5.7 years) (2.3 years)
v!b (3) to demonstrate with 95% confidence and 11 billion miles 161 million miles 65 million miles
80% power that their failure rate is 20% better (900 years) (7.3 years) (3 years)
than the human driver failure rate of...
GBSD Program o
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DPA Illustrating the challenge

bl e e e eeass:  Components of
autonomous
B i bl systems can’t
use
conventional
A T safety
o 'S assurance
Adaptive Control

Vision Sensor (e.g. learning system dynamics)

Safety assurance Safety assurance
can be provided can NOT be provided

GBSD Program 6



Why can’t we use same

processes as other safety-critical

software ?

* Nearly all conventional software

testing is based on structural

coverage — ensuring that statements,

decisions, paths are covered in

testing

e Life-critical aviation software

requires MCDC testing, white-box
criterion that cannot be used for
neural nets and other black-box

methods

GBSD Program
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Program objectives High level DARPA Goals

« Increase scalability of design-time assurance
« What is the baseline capability of the proposed methods, in terms of the hybrid
state-space and number and complexity of learning-enabled components
« How do you plan to scale up by an order of magnitude?
« How will you characterize the tradeoffs between fidelity of your modeling
abstractions and scalability of the verification approach.

« Reduce overhead of operation-time assurance

« What is the baseline overhead of the operation-time assurance monitoring
techniques?

« How do you plan to minimize it to be below 10% of the nominal system resource
utilization?

« Scale up dynamic assurance

« What is the size and scale of dynamic assurance case that can be developed and
dynamically evaluated with your tools?

Reduce trials to assurance
+ How will your approach quantifiably reduce the need for statistical testing? .



Code coverage works well - for conventional software

Annatated Scurce Listing
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complexitys(int L, int 1) _
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if |1 >0 &5 5 =01 |
while (3 = 10 |
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Can we use code coverage for machine learning?

* Much of A|/|V||_ depends Input layer Hidden layer Output layer
on various neural nets ‘
* Algorithm and code ot ‘#
stays the same \V"_‘
. G
e Connections and Input #2 ‘ é{’ ‘ Output
weights vary /A"\‘

* Behavior changes e “\~

depending on inputs
used in training

GBSD Program 10



114:¥'Y) Key Insight

DARPA approach

Monitor and guard

Non-Learning System

Formal Verification
s‘y;sgg:: =)  Simulation based Testing
System Testing

Learning-Enabled System

New New Formal Verification

System - New Simulation based Testing

Models New System Testing

MNictribv iHan Cratamant "AY” fAnnravad fanre Dithlice Dalasca Dictrilv itianm | inlimitard )

the non-deterministic,
unpredictable region
of input space

Monitor &

Guard

Safety-aware ,7
. ’
Learning _.¢

--------

Assurance(_~_) : i
Measure 2 Yoo g

E: evidence
GBSD Program  g" conditional evidence 1
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To monitor and guard input space, need to measure

* Gold standard of assurance and verification of life-critical software
can’t be used for much of new life-critical autonomy software

* We can measure “neuron coverage”, but indirect measure and not clear how
closely related to accuracy and ability to correctly process all of the input
space

Nobody at the
wheel ...

* Measure the input space
directly

* Then see if the Al system
handles all of it correctly

GBSD



Outline

* Why current safety-critical assurance won’t work
* Assurance based on input space coverage
*Explainable Al as part of validation, and
*Transfer learning



Major DoD investment in assured autonomy

“The notion that autonomous systems can be fully tested is becoming increasingly infeasible as higher levels of self
governing systems become a reality...the standard practice of testing all possible states and all ranges of inputs to the
system becomes an unachievable goal. Existing TEVV methods are, by themselves, insufficient for TEVV of
autonomous systems; therefore a fundamental change is needed in how we validate and verify these systems."

- OSD TEV&V Strateqy Report, May 2015

(Note that "testing all possible states and all ranges of inputs” was
already unachievable, but the point holds.)

GBSD Program 14




NewScientist It doesn’t take much

Scientists have trained rats to drive intelligence to drive a
tiny cars to collect food car. Even rats can do it!
00POOOO

22 October 2019
By Alice Klein

— T
e ) S /

But can they do it under
all kinds of conditions ?

The problem is
harder outside of a
constrained
environment

GBSD Program 15



Things get tricky as the scene becomes complex

* Multiple conditions involved in accidents

* "The camera failed to recognize the white truck
against a bright sky”

* "The sensors failed to pick up street signs, lane
markings, and even pedestrians due to the angle of
the car shifting in rain and the direction of the sun”

e We need to understand what combinations of
conditions are included in testing

GBSD Program 16




Combinatorial value coverage - review

Comkination values Coverage

0 0 0 0 ab 00, 01, 10 75
0 1 1 0 ac 00, 01, 10 .75
1 0 0 1 ad 00, 01, 11 75
bc 00, 11 50
0 1 1 1
bd 00, 01, 10, 11 1.0

/ 00, 01, 10, 11 1.0

100% coverage of 33% of combinations
75% coverage of half of combinations
50% coverage of 16% of combinations

19 combinations
included in test set

Kuhn, D. R., Mendoza, I. D., Kacker, R. N., & Lei, Y. (2013).

Combinatorial coverage measurement concepts and

applications. 2013 IEEE Sixth Intl Conference on Software NlSl'

Testing, Verification and Validation Workshops GBBipirogem .......".:."‘?‘..':‘r'...“"'.'.“..’::,‘ L



Combination values | Coverage

ab
ac
ad
bc
bd
cd

00, 01, 10
00, 01, 10
00, 01, 11
00, 11

00, 01, 10, 11
00, 01, 10, 11

Rearranging
the table:

00
01
10
11
bd

00
01
10
11
cd

Total possible 2-way

combinations = 22 (

‘ZL)=24

S, = fraction of 2-way
combinations covered =

19/24

=0.79
00 00 00
01 01 01 00
10 10 11 11
ab ac ad bc

18



Graphing Coverage Measurement

00 00

w4y 01 01 00 00 00

10 10 01 01 01 00
1 1 10 10 11 1M1
bd cd ab ac ad bc

Completeness

1.0
0.8 -
-l
D
L3
S
£ 0.6 -
S
= S, = M,
= > = area under
B S curve
=
= =0.79
S
. 0.2
o-o v T b v v T . . A T . v . T . v .
0.0 0.2 0.4 0.6 O. 1.0
Fraction of parameter combination
100% coverage of .33 of combinations Bottom line:
75% coverage of .50 of combinations All combinations covered to at
50% coverage of .16 of combinations least .50

GBSD Program
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What else does this chart show?

1 - S, = Untested combinations
(look for problems here)

S, = Tested combinations => code works for these
GBSO PrSBram
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What levels of input space coverage are seen
in practical ML data sets?

Examples from WEKA data mining demo set
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Combinations
Combinations
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Opportunity?

Goal:
enumerating
all conditions
that matter

o 1 |
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Research questions

* Practical ML examples don’t seem to have very high input space
coverage (previous slide)

* Can we improve results with better input space coverage?

* Empirical data show that small numbers of factors are involved in
system failures (generally 1 to 6).

* Is this also true of autonomous systems?

* How are input space coverage and classification/prediction
accuracy related?

* Can we apply some of these methods to temporal aspects?
(sequence covering arrays)



Outline

* Why current safety-critical testing won’t work
* Assurance based on input space coverage
*Explainable Al as part of validation, and
*Transfer learning



What is the explainability problem?

* Al systems are good, but sometimes make mistakes, and human users
will not trust their decisions without explanation or justification
— assurance and explainability are closely tied

* There is a tradeoff between Al accuracy and explainability: the most accurate
methods, such as convolutional neural nets (CNNs), provide no explanations;
understandable methods, such as rule-based, tend to be less accurate

* The black-box nature of these systems that makes explanation difficult
also makes assurance and testing even harder

* Life-critical aviation software requires MCDC testing, white-box criterion
that cannot be used for neural nets and other non-explainable methods

GBSD Program 24



Explainability — what’s current state of the art?

DARPA

Explainable AI — What Are We Trying To Do?

Today

“EET.8B » Why did you do t.hat?
5‘.:5' * Why not something else?
S.%EEQEE Learning This is a cat « When do you succeed?
SMA~E S Process (p=.93) + When do you fail? .
HE~<A~0r » When can | trust you?
EEERRER * How do | correct an error?
Training Learned Output User with
Data Function a Task
m— * | understand why
N S This Is a cat: + | understand why not
o L™ hdasl’”" Whiskers, « | know when you'll succeed
Learning o0 goon | SNCCEWS. : + | know when you'll fail
Ercacs Sl bl | it has this feature: = b
A Ab b @b » | know when to trust you
ALkl F b m u + | know why you erred
Training Explainable  Explanation User with
Data Model Interface a Task
Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)
GBSD Program

Black-box statistical
predictions are
inadequate

Explanations must
be understandable
to non-specialist

25



Tradeoff:

Input
layer

How does this vehicle
move?

sk va-u[ Track

You are on
a siegh

How marry wheels does
it have?

You ae in
atank

‘\

2]4]Lew

Does # have
an engine?

Does it have
an engne?

o | ™

V.[M

Youare ina
bus

\ N

Youaeona
motorcycle

You are on
a bicycle

Youaena
motor car

Youamona

, Hidden ]

- OR -

DEEP NEURAL NETWORK

>

layer

Hidden

Hidden
layer 2 ’ ayer 3 }

GBSD Program

Expert system:
Good for explanations,
not so good for accuracy

Neural nets:
Good for accuracy,
not so good for explanations

How do we get the
best of both worlds?

26



What has been tried?

* Interpretable models — e.g. rule-based expert systems: “if patient has
symptoms A and B, or has B with C and D, then illness is X”

* best for explanations
* hard to find rules
* |less accurate than other approaches

* Modify neural nets etc. to add explanations
* reduces accuracy, complicates the system
* explanations still not very understandable

* Model induction - infer explainable model from black-box
* flexible for application, good explanations using only input, output
* hard to produce the explainable model

 Our approach —derive rule predicates from inputs and outputs to
CNNs and other black-box functions



Fault location — identify fault-triggering input

Given: a set of tests that the SUT fails, which
combinations of variables/values triggered the failure?

variable/value combinations
In passing tests

variable/value combinations
in failing tests

Combinations in failing but
not in passing tests
These are the ones we want

GBSD Program 28



Relevance to explainable Al

* | understand why

This is a cat: « | understand why not
*It has fur, whiskers, . ;
R | know when you'll sgcceed Non-class
* | know when you'll fail

+It has this feature:
‘ « | know when to trust you feature

« | know why you erred combinations

Explanation User with

Interface a Task aquatic,

venomous, 6 legs,

Class feature combinations -
brown & furry, black & furry, whiskers,

Individlal

feature
claws, ...not aquatic, not venomous, combinations —
not 6 legs, brown & furry, Animal shares features
whiskers, claws, with cat class
not aquatic, not ,
Jenomous ’not : Animal does not share
Kuhn, D. R., Kacker, R. N., Lei, Y., & Simos, D. E. (2020). ’ .
Combinatorial methods for explainable Al. In 2020 IEEE Intl legs features with non-cat
Conference on Software Testing, Verification and Validation GBSD Program classes 29

Workshops (ICSTW)



Clazz File [Clc:: e rep.cav: rows=1; colz=16

W h I S t h I S Nominal File i(Nomndfle notreptile.cav; rows=96; colsw16 | 2-way: 120 3way 560 4-way 1820 Sway 4358  GSway 8,008 I n pUt CO nflgu ratlo n 2 6
y Clazz File Contentz: [haw featherz  eggs b aibome  aquatic predator  toothed backbone  breathez  venomouz  fine nlegs tal domestic cé;.az}s

creature

0053 occurrences = 2 - i
recognized as a 007¢ ccourrances =[0 75 of casen fesiners =G
0055 occurrences — S - i
. 0055 occurrences = 0.573 of cases, milk = 0
reptlle? 0072 occurrences = 0.750 of cases, alirborne = 0
006l occurrences = 0.835 of cases, aquatic = 0

.459B of cases, predator = [
.406 of cases, toothed = 0
.813 of cases, backbone = 1

0044 oocurrences
0039 occurrences
0078 occurrences

0076 occurrences = 0.792 of cases, breathes = 1
0090 occurrences = [0.938 of cases, wvenomous = [
= 0.823 of cases, fins = 0

No single feature is sufficient 0079 accurrences

003& occurrences

explanation — shares features with 0070 occurrences

0083 occurrences

non-reptlles 00423 occurrences =

.3720 of cases, nlegs = 4
.729 of cases, tail = 1
.865 of cases, domestic = 0
.448 of cases, catsize = 1

I
= =) =] (=) == =l (=) = = =) (=== =

No pair of features sufficient — |2202 eccurrences

0005 ooccurrences H
Shares 2_Way COmbInatIOHS 0005 occurrences f .052 of cases, milk,nlegs i p,&
DO00& ceccurrences = 0.0632 of cases, eggs,nlegs = 1,4
toothed, catsize = 0,1

W/ nOn-rept”es » |0008 oececurrences

0011l ooccurrences
0012 ooccurrences
0013 cescumpmnces

imlmlal = el e e bR - e T = =]

.115 of cases, milk,catsize 0,1
.125 of cases, eggs,catsize = 1,1
a5 al

.135 of cases, hair,catsize

4 == = ds = == e ., . T e A |

Il
S OO0OO0oo0o0opo
=]
o
L
o
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N
o
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i
[
-



3-way combinations produce rules to explain
recognition of Testudo as a reptile

00000 ececurrences = [0.000 of ca: aquatic, toothed,nlegs = 0,0, 4
00000 occurrences 0 : egqgs, agquatic, nlegs = .

00000 ooccurrences

.000 of cases, hair,nlegs,catsize =

00000 ooccurrences
00000 ooccurrences

0,4,1
000 of cases, milk, aquatic,nlegs 0,0,4
.000 of cases, milk,nlegs,catsize = 0,4,1

s = 0
1,4,1

00000 ooccurrences
00000 ooccurrences
00001 occurrences

predator, toothed, nleg
010 of cases, eggs,nlegs,catsize = .

00001 ooccurrences

Il

v s v s
O
O
O
[
rHh
0
Tl
i
L
(i
-

.010 of cases, eggs,predator,nlegs = 1,0,4

00001 occurrences = .010 of cases. fteathers. toothed. backbone il diap- gl

Only reptiles have these combinations of features:

Non-rept|les in the not aquatic AND not toothed AND four legs
database do not have egg-laying AND not aquatic AND four legs
these 3-way not hairy AND four legs AND cat size

not milk-producing AND not aquatic AND four legs
not milk-producing AND four legs AND cat size

nob predator AND not toothed AND four legs =

combinations



Mapping combinations to expressions

* Report identifies t-way combinations that distinguish the predicted class
from others

* Combinations can be mapped to expressions to produce a rule-based
type of explanation

if (not aquatic AND not toothed AND four legs)
OR (egg-laying AND not aquatic AND four legs)
OR (not hairy AND four legs AND cat size)
OR (not milk-producing AND not aquatic AND four legs)
OR (not milk-producing AND four legs AND cat size)
OR (not predator AND not toothed AND four legs)
then reptile;
else not reptile;

As noted, none of the single factors above is sufficient for explanation

GBSD Program 32



e TN s

Clazs File: |Class file @1.cav; rows=1; colz=5
e Morminal File: Mominal file empty.cav; rows=7703; colz=5 |  Z-way: 10 3-way: 10 4war: 5  Sway 1l Gway 0
Example: empty e |
Class File Contents: | Temperature  Humidity Light coz2 HumidityR atio

B3 B3 B2 B2 B4

VS. occupied
rooms, using

sensor data

v Enabled

Combinations = 10, Settings = Z10

Why do we conclude this room is occupied? 0016 occuUrrences fd
001l& occurrences 0.
003& occcurrepsps Syl e S —
Ws = 0.005 of cases, CO_.,Hum_LdJ.tyRat.Lo = BZ, B4
/ 043 occurrences = 0.006 of cases, Light, HumidityRatio = BZ, B4
00534 eccurrences — 0.007 ef cases, Temperature,COZ = B3, B2
These levels of humidity and lighting are strong 0078 occurrences = 0.010 of cases, Humidity,CoZ = B3, B2
indication 0205 occurrences = 0.027 of cases, Temperature, HumidityRatio = E3, E4
0247 occurrences = 0.032 of cases, Temperature, Humidity = B3, B3
0495 occurrences = 0.064 of cases, Humidity, HumidityRatio = E3, B4
ConSidering levels of I|ght|ng, CO2, and 0523 occurrences = 0.068 of cases, Temperature = B3
humidity ratio provide even stronger evidence: a1 sosHorenees B Llua SR eed e BT UL b S 0E
D083 occurrences = 0.011 of cases, Light = BZ
Emptv rooms donlt have these IeVGIS 0534 occurrences = 0.0&8%9 of cases, COC2 .=.B: .
2180 ecececurrences = [0.2B4 of cases, HumidityRatioc = B4

00003 occurrences =j§0. cases, nght Cod,HUMLdltyRatlD = B2,
00005 oeccurrences . ;

00008 ooccurrences

Slollal epE ot M e e nght co2 = B3,B2,B2
001 of cases, Humldlty,nght %Pm@altyRatLD = B3,BZ, B4 33
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Cla:

File Infarmation

Class File: |C|ass file mall.csv; rows=1; colz=18

A different example:
Iymph nOde pathology_ J 2 1 . 1 : 1
why is this classified as

malignant not metastatic? ‘o

Combinations = 153, Settings = 1358

0.000 of cases, chnode,disloc = 4,1

|Nominal file meta.cav: rows=81; colz=18 || Z-way: 153  3-way: 816 4-way: 3.060 S-way: 8568

0000 occurrences
0000 ooccurrences
oann

= 413 | L. LI i) === e, L1] = '.__,
H M 0000 occcurrences = A0 ef eases;, ehnede,spee = 4,1
* These combinations are G o e = HLTA 5 B &
. . 0000 ooccurrences = .000 of cases, extravas,chnode = 1,4
r] 'f | r] r] 0000 occcurrences = .000 of cases, lymphatic,chnode = 4,4
C araCterIStIC O ymp Oma t at 0001 occcurrences = 012 of cases, bypass, chnode = 1,4
. . . 0001 occcurrences = D12 of cases, chang,chnede = 2,4
arlses In Iymph nOde Instead Of 0001 occcurrences = 012 of cases, chnode, exclu = 4,2

GBSD Progranu
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0
0
0
0
[
0.
0.
HHITSeeenssenees = SONITENaES enis e s lhymeliehnaee =]
H D001 occcurrences = 0.01Z2 of cases, lymphatic, spec = 4,1
metaStat|C that Spread to nOde D002 occurrences = 0.0Z5 of cases, lyms, chnode = 1,4
000Z occurrences = 0.0Z5 of cases, affere,chnode = 2,4
from Somewhere else 0D0Z oceccurrences — 0.0Z25 of cases, dimin, chnode = 1,4
D002 oeccurrences = 0.025 of cases, esarlyup,chnode = 2,4
0002 occurrences = 0.0Z5 of cases, enlar,chnode = 2,4
0002 oeccurrences = 0.02Z5 of cases, regen,chnode = 1,4
0002 eecurrences — 0.025 of cases, sSpec,num = 1,2
0003 occurrences = 0.037 of cases, lymphatic,disloc = 4,1
D004 occcurrences — 0.0489 of cases, chstru,spec = 8,1
D004 occurrences = 0.049 of cases, lymphatic,chstru = 4,8
D005 occurrences = 0.068Z2 of cases, lymphatic,chang = 4,2
000& occurrences = 0.074 of cases, chstru,num = 8,2

34



Summary - explainable Al

* Combinatorial methods can provide explainable Al

* We have prototype that applies this approach

* Determine combinations of variable values that differentiate an example from other
possible conclusions

=>» Feature combinations present shared with class
=» Feature combinations not shared with class not present

* Method can be applied to black-box functions such as CNNs

* Present explanation in the preferred form of rules,
“if A& B, or Cwith D & E, then conclusion is X”
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Outline

* Why current safety-critical testing won’t work
* Assurance based on input space coverage
*Explainable Al as part of validation, and
*Transfer learning



Transfer learning — what is the problem?

* Differences inevitably exist between training data sets,
test data sets, and real-world application data

* Further differences exist between data from two or
more different environments

* How do we predict performance of a model trained on
one data set when applied to another?
* New environment
» Changed environment
» Additional possible values
* etc.

Lanus, E., Freeman, L. J., Kuhn, D. R., & Kacker, R. N. (2021, April). Combinatorial
Testing Metrics for Machine Learning. In 2021 IEEE Intl Conference on Software
Testing, Verification and Validation Workshops (ICSTW)



Transfer learning — conventional practice

« Randomized selection — but will randomization be
sufficient, especially with smaller data sets”?

* Ensure at least one of each object type — but this may
not be representative of object attribute distributions

* Interactions are critical to consider in most ML
problems, especially for safety, but conventional
practice does little to ensure data sets are adequately
representative of interactions

GBSD Program 38



Example —

Image analysis

* Planes in satellite imagery — Kaggle ML data set —
determine if image contains or does not contain an

airplane

* Two data sets — Southern California (SoCal, 21,151
images) or Northern California (NorCal, 10,849

images)

« 12 features, each discretized into 3 equal range bins
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Transfer learning problem

Train model on one set, apply to the other set

Problem —

* Model trained on larger, SoCal data applied to
smaller, NorCal data - performance drop

* Model trained on smaller, NorCal data applied to
larger, SoCal data > NO performance drop

This seems backwards!
Isn’t it better to have more data?
Can we explain this and predict it next time?
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Density of combinations in one but not the
other data set, 2-way

Interactions in Southern \ Northern Interactions in Northern \ Southern
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Image from Combinatorial Testing Metrics for Machine Learning, Lanus, Freeman, Kuhn, Kacker, IWCT 2021

For C = SoCal, N = NorCal, The NorCal data set has fewer “never seen”

|C\N| / |C| =_0-02 ==l combinations, even with half as many
IN\C| / [N] =0.12 observations
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Summary — Transfer learning

Current approaches to estimating success for transfer
learning are largely ad-hoc and not highly effective

Combinatorial methods show promise for improvements —
measurable quantities directly related to determining if one
data set is representative of the field of application

Much additional work is needed to evaluate this idea, and to

understand the link between combinatorial difference values
and prediction accuracy

Empirical studies planned



Assured autonomy — more questions than answers

* How to classify bug types —in learning systems that are
programmed by their inputs, continuously

* Are they mostly aging-related bugs?
* Or something else not yet defined?

* Interactions of learning components with programmed
components — especially replacing humans

* Changes the nature of system failures

* More like failures involving human factors issues?
© Turing test for bugs! Distinguish between human-
triggered and Al-triggered system failures?



Assured autonomy — key points & current state

* For capa

oility and cost reasons, autonomous components

are becoming routine in software engineering

* Many, or most, methods used in high assurance
conventional systems do not apply to many autonomous

components

 Structural coverage — not for neural nets, and others
* Formal proofs — for some parts but limited

* How to deal with learning, dynamic changes in system,
routine non-determinism?

* Developing appropriate measures of test adequacy



Where are we going?

* Need new approaches in:
* Design
e Simulation
 Validation
 Formal verification
* Testing
e Explainability

e Security — much bigger problem than safety assurance — solvable?

* All the old vulnerabilities apply — with greater consequences
P AL RN “Yield Sign”

* And new vulnerabilities W “Stop Sign
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Leadlng to AI Vs. AI Authentic Adversarial Adversarial
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Please contact us
if you’re interested!

Rick Kuhn, Raghu Kacker, M.S. Raunak
{kuhn, raghu.kacker, raunak}@nist.gov

http://csrc.nist.gov/acts

GBSD Program

NIST

National Institute of
Standards and Technology
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