
Combinatorial Testing Metrics for Machine
Learning

Erin Lanus∗, Laura J. Freeman∗, D. Richard Kuhn†, Raghu N. Kacker†
∗Hume Center for National Security and Technology, Virginia Tech, Arlington, VA, USA

{lanus, laura.freeman}@vt.edu
†National Institute of Standards and Technology, Gaithersburg, MD, USA

{kuhn, raghu.kacker}@nist.gov

Abstract—This short paper defines a combinatorial coverage
metric for comparing machine learning (ML) data sets and
proposes the differences between data sets as a function of
combinatorial coverage. The paper illustrates its utility for
evaluating and predicting performance of ML models. Identifying
and measuring differences between data sets can be of significant
value for ML problems, where the accuracy of the model is
heavily dependent on the degree to which training data are
sufficiently representative of data that will be encountered in
application. The utility of the method is illustrated for transfer
learning, the problem of predicting performance of a model
trained on one data set when applied to another.

Index Terms—combinatorial testing, machine learning, oper-
ating envelopes, transfer learning, test-set selection

I. INTRODUCTION

In software and hardware, component systems are often
well designed and tested, but failures occur when compo-
nents are integrated due to unexpected interactions between
components. A survey [1] of empirical data found that nearly
all failures in software were caused by a limited number of
interacting components and concluded that testing interactions
of between four and six components was sufficient to detect
all failures in the software systems considered. The pair of
facts – that interactions between components called factors in
a complex system can drive unexpected behavior if tests do not
adequately account for interactions, yet impactful interactions
typically have limited size – has led to the adoption of
combinatorial testing (CT) for pseudo-exhaustive testing of
software and hardware systems [2].

Testing systems with embedded machine learning using
conventional software approaches poses challenges due to
characteristics such as the large input space, effort required
for white box testing, and emergent behaviors apparent only
at integration or system levels [3], [4]. CT is a black box ap-
proach to testing an integrated system with pseudo-exhaustive
strategy for large input spaces. Thus far, CT has been applied
to test case generation for autonomous vehicle systems with
embedded ML components [5], testing the internal state space
of a neural network [6], feature selection [7], and explainable
ML [8].

In ML the data is fundamental to algorithm performance.
In this paper we leverage CT for testing ML systems through

Research of EL and LJF funded in part by MITRE University Innovation
Exchange program.

comparison of datasets. Consider the following questions.
How can differences between members of two classes lead to
classification decisions? How can differences between datasets
be used to predict whether a model trained on one dataset
will perform as expected on another? Comparing datasets via
combinations is possible at three levels of granularity: 1) the
count of combinations that are present or absent; 2) which
specific combinations are present or absent; 3) the distribution
of combinations.

In this work, we define a new combinatorial coverage metric
for comparing ML datasets in § II focusing on the first level
of granularity (presence/absence of combinations). In § III,
we highlight two distinct applications of the metric. The fault
localization and explainable classification sections show how
the metric is useful based on interpretable features in the data.
The second application use the metrics to describe the oper-
ating envelope of a model. The concept of a model operating
envelope has applications in transfer learning, selection of
training and test datasets, and directing data collection and
labeling efforts. We discuss problems for future work in § IV.

II. METRICS

We treat machine learning features as factors, so each
factor is assigned a particular value for a given data point.
Continuous-valued factors must be discretized prior to apply-
ing CT so that each factor has a corresponding set of values.
A t-way interaction is an assignment of specific values to t
of the factors, or a t-tuple of (factor, value) pairs. If there
are k identified features, each data point then contains

(
k
t

)
interactions.

Combinatorial coverage, also called total t-way coverage, is
a metric from the CT literature [9] to describe the proportion
of possible t-way interactions appearing in a set (Figure 1).
Interactions that appear in the set are covered by the set.
Define a universe with k factors and their respective levels
so that U is the set of all possible datapoints, and let Ut be
the set of possible t-way interactions. If some interaction is not
possible, it is a constraint and can be removed from Ut. Given
a dataset D ⊆ U , define Dt as the set of t-way combinations
appearing in D. (We acknowledge a slight abuse of notation
as D may be a multiset. This does not impact the metrics.)

Fig. 1. CCMt(Dt) describes the proportion of possible t-way interactions
that appear in dataset D.

Fig. 2. Relationships between datasets S and T and corresponding
SDCCMt values. 1) (St ⊂ Tt), 0 < SDCCMt(Tt \ St) < 1; 2)
(St = Tt), SDCCMt(Tt\St) = 0; 3) (St 6⊂ Tt)∧(Tt 6⊂ St)∧(St

⋂
Tt 6=

∅), 0 < SDCCMt(Tt \ St) < 1; 4) (Tt ⊂ St), SDCCMt(Tt \ St) = 0;
5) (St

⋂
Tt) = ∅), SDCCMt(Tt \ St) = 1.

The combinatorial coverage metric of D is

CCMt(Dt) =
|Dt|
|Ut|

where |Dt| denotes set cardinality.
Let S and T be datasets and define St, Tt as the set of t-way

interactions appearing in S, T , respectively. The set difference
Tt \ St is the set of interactions appearing in Tt but not in St.
Then the set difference combinatorial coverage

SDCCMt(Tt \ St) =
|Tt \ St|
|Tt|

is the proportion of t-way interactions appearing in T but not
S. Constraints, or impossible interactions, need not be explic-
itly defined as only interactions present in T are considered.
SDCCMt is a score between 0 and 1 inclusive reflecting
the five cases of relationship between Tt and St depicted in
Figure 2. As a difference metric, higher values indicate that
the set difference is larger.

At the coarsest level of granularity, coverage is represented
as a single score or venn diagram as shown for CCMt and
SDCCMt. To provide more information, the interactions
not appearing in Dt for CCMt and interactions in the set
difference T \ S for SDCCMt are listed or plotted as status
per interaction. A heatmap of relative frequency of interactions
for CCMt and difference in relative frequency for SDCCMt

provides the finest granularity level of analysis.

III. APPLICATIONS

A. Fault localization

Set differencing of t-way interactions has been applied to
the problem of fault localization. A variety of set theoretic
operations can be used in reducing the set of possible failure-
triggering combinations in deterministic software [10]. Run-
ning a test set typically results in a large number of passing
tests and a small number of failing tests, but only a small
subset of combinations in the failing tests will induce a failure.
For Pt = combinations in passing tests and Ft = combinations
in failing tests and Ct = fault-triggering combinations, the first
step in identifying failure-triggering combinations is a basic
elimination rule: compute Ft\Pt, combinations in failing tests

that are not in any passing tests, which for deterministic sys-
tems must contain the fault-triggering combinations Ct. Basic
set operations can also be used to further reduce the possible
combinations involved in a failure. For example, an interaction
continuity rule says that if a particular t-way combination in
Ft is included in all higher strength combinations that contain
the same t parameters, then the t-way combination is sufficient
to detect the error.

B. Explainable Classification

From a certain perspective, the problem of classification in
ML is essentially the same as the fault localization problem
in CT. We seek to identify a small subset of factors that
distinguish the class from instances not in the class. This
process could be viewed as generalizing the fault localization
problem, where the failing tests are the class and passing
tests are non-class members - what combinations of parameter
values are unique to the failing tests?

This simple observation leads to a method of producing
explanations or justifications of ML classifications [11], by
computing Ct \Nt, the set of t-way combinations that appear
in members of the class C which are not in the non-class
members of N , or are more strongly associated with C than
N . For example, applying this method in a database of animal
characteristics produces seven predicates that are unique to
reptiles (within this database): not aquatic AND not toothed
AND four legs egg-laying AND not aquatic AND four legs,
etc. These combinations have an obvious mapping with simple
rules: “if non aquatic AND not toothed AND . . . ”. No single-
factor or 2-way combinations are uniquely associated with
the reptile class, but including 3-way combinations makes it
possible to identify class members.

Previous model induction methods have been developed to
reverse engineer an explanation or model from ML output
[12], [13], using statistical methods to identify characteristics
most closely associated with a class. The combinatorial XAI
method extends this approach by producing combinations of
characteristics for explanation. This distinction is important
because closely associated single factors are not necessarily
contained in identifying combinations. Rule-based expert sys-
tems are often considered easy to explain but generally are not
as proficient as more opaque methods such as neural networks
[14]. The combinatorial approach to XAI provides a natural
mapping to clearly understandable diagnostic rules.

C. Model Operating Envelope

Computer vision includes tasks such as detecting or classi-
fying an object in an image. The complexity of the domain
– all of the variables affecting the production of an image –
leads to high likelihood of interaction effects. Consider the
problem of detecting a white truck in an image. A white
truck against a light background at noon from an overhead
view likely presents a more difficult detection scenario than
a white truck against the same light background in late
afternoon where shadows are present, or from profile such
that the horizon line breaks up the background. The operating

envelope of an ML model describes the contexts in which it is
expected to perform correctly; deploying to contexts outside
of the envelope can lead to unexpected outcomes. An ML
model learns about examples on which it trains, so to perform
as expected in each of these contexts, it is anticipated that
“enough” representative examples must be included in the
training dataset. The challenge is how to define contexts and
measure representativeness of the training examples.

One dimension of the operating envelope of a computer
vision algorithm describes the contexts in which the model
trained as coverage of interactions among features present
in the dataset. These features can be derived directly from
the image data, but there are two benefits of using metadata
such as “Time of Day” or “Location” collected along with the
image acting as a surrogate for contexts present in the image.
metadata is likely easier for human operators; “Time of Day”
as a surrogate for lighting effects in the image is more quickly
understood than presenting values for luminance and contrast.
metadata may be available when image data is not, such as
the case when an event is occurring in the near future in a
new deployment environment for which no images have been
collected. Expected parameters such as “Time of Day” and
“Location” can be extracted from the event profile.

When class labels are available, we describe a special way
of calculating interactions. Label centrism forces all interac-
tions to include the label; that is, a label-centric interaction
includes the label and t−1 of the other features. Label centrism
describes the contexts in which classifiable objects appear.

In the current practice, claiming representativeness of a
training dataset often relies on randomized selection or ensures
that every object type appears in the training set, but may
fail to be representative of larger contexts of the deployment
environment. CCMt applied to a training dataset provides a
measurement of the contexts on which the algorithm trained
given the tunable parameter t. In the case of transfer learning,
a model trained in one environment is deployed to a different
environment, possibly without retraining or fine tuning. Where
CCMt is a measure of coverage by a dataset with respect to
some defined universe, the new metric, SDCCMt, describes
a directed difference between two datasets and is useful for
measuring the distance between a source dataset where the
model is trained and a target dataset T where the model
will be deployed. When multiple source models are available
in a model zoo, the source dataset S with the smallest
SDCCMt(T \S) provides the best coverage of contexts in the
target by the source (Figure 3). Additionally, as interactions
in a set difference describe contexts unseen in the trained
model, the list of interactions in the set difference provides
a mechanism for directing data collection or labeling efforts
to include datapoints containing these interactions.

A use case for the set difference application to operating
envelopes for transfer learning is demonstrated on the “Planes
in Satellite Imagery” Kaggle dataset [15]. The dataset is
intended for binary classification and is comprised of images
that either have a plane or do not have a plane along with
metadata indicating the location as Northern California or

Fig. 3. Metadata interactions expected in the target set can be used to select a
source set from the model zoo with the closest match on metadata interactions

Fig. 4. Covered and uncovered 2-way label-centric interactions in the
Southern and Northern datasets. The Y-axis indexes into combination while
the X-axis indexes into interaction within a combination.

Southern California. When a model is trained on the Southern
subset of data S, a performance drop occurs when transferring
to the Northern subset of data T , indicating a transfer learning
problem; the drop is not noted when the direction of transfer
is reversed. Twelve features are derived from the image data
– the mean and variance each for the red, green, blue, hue,
saturation, and luminance – and each is discretized by forming
three bins encompassing equal-sized ranges. Interactions are
label-centric and t = 2. The Southern set contains 21,151
images and the Northern set contains 10,849 images. The
CCM2(S) = 60

72 = 0.83 and CCM2(T) = 67
72 = 0.93,

meaning that the Northern set covers more of the universe
than the Southern set despite having half as many images.
Figure 4 plots the coverage in the sets side by side.

The utility of CCM for comparing a source and target pair
is limited. Suppose S ′ contained all interactions in the left
half of the plot and none in the right half, while T ′ = U \S ′,
the complement. Both have CCM2 values of 0.5. Suppose
S ′′ = T ′′ and CCM2(S ′′) = 0.25. The relationship between
the respective sets is not apparent through use of CCM ,
which is the limitation for which SDCCM was designed.
SDCCM2(S \ T) = 1

60 = 0.02. SDCCM2(T \ S) = 8
67 =

0.12. For this dataset, SDCCM is correlated with a drop in
performance in transfer learning when no retraining is allowed.
Figure 5 depicts the SDCCM2 plots side by side.

Combinatorial coverage is well studied in testing for de-
terministic failures in software systems where the appearance
of an interaction among components in one test is sufficient

Fig. 5. Set differences of 2-way label-centric interactions. Interactions appear
as cells colored depending set membership.

Fig. 6. The log scale count of each interaction in each set.

to cause a failure; if the components will interact to cause
a failure, it is detected by a test suite that contains that
interaction at least once. Statistical learning does not have this
nice property. We suspect that combinatorical coverage and
set difference combinatorial coverage metrics are useful tools
for constructing operating envelopes as they provide a way to
detect contexts in the target environment that are not likely to
be within the model’s operating envelope. However, as models
are trained by updating weights each time these contexts are
seen, we suspect that distribution of coverage would do more
to describe the operating envelope over metadata. That is,
frequently appearing interactions indicate contexts on which
the model was well trained; they could also indicate instances
of overfitting. Infrequently appearing interactions indicate con-
texts on which the model received less training; they could
present contexts in which the model has difficulty making
classifications. Our work measures and plots this distribution.

D. Test Set Design

Datasets are partitioned into training S, validation, and
testing T sets. When datasets are large and random selection
is applied, the hope is that the test set is representative of
the training set as they are drawn from the same population.
Computing SDCCMt(S\T) and SDCCMt(T \S) provides
assurance against a bad random draw. A simple randomized
algorithm makes several random partitions and keeps the one
with the lowest SDCCM values. This is equivalent to testing
within the operating envelope of the model.

Another testing strategy is identify where the model fails
to generalize to new contexts it has not trained by selecting
test-sets outside of the envelope. In this case, selecting T so
that SDCCMt(T \ S) is as close to 1 as possible creates a
test set that contains as many untrained contexts as possible.
The importance of the reverse direction is not as clear. When
SDCCMt(T \ S) = 1, the sets Tt and St are disjoint and
SDCCMt(S \ T) = 1 necessarily, but when it is only close
to 1, the score also depends on the size of St.

IV. CONCLUSIONS AND FUTURE WORK

This work discussed metrics that provide tools for explain-
ing classification outcomes and defining the domain (operating
envelope) over which ML algorithms can be expected to
operate successfully. Future work is needed to explore the
usefulness of these metrics across multiple ML domains, test
the hypothesis that models trained on source sets with smaller
SDCCMt distances to the target will perform better in the

target environment, explore the impact of label centrism, and
how to choose a “good” interaction size t.

Additionally, the sensitivity of these metrics to fea-
ture/metadata selection is critical. In the classification exam-
ple, the features were directly explainable. In the computer
vision example the research had to first hypothesize reasonable
features. The process of hypothesizing features, conducting
initial screening experiments to select the meaningful features,
and confirming results should be codified to ensure that this
work is not subject to confirmation biases of the research team
or over interpretation of correlations as explanatory variables.

Finally, additional work is needed to exploit the deeper
levels of explainability, that is - which specific interactions are
present or absent and the distribution of those interactions. The
specific interactions present or absent should be explored for
potential explanation of how and why algorithms perform well
or poorly, potential biases introduced into the algorithms, and
predictive capabilities to new operating envelopes. Relative
frequency metrics for the set difference should be developed
and their application to transferability evaluated.

REFERENCES

[1] D. R. Kuhn, D. R. Wallace, and A. M. Gallo, “Software fault interactions
and implications for software testing,” IEEE Transactions on Software
Engineering, vol. 30, no. 6, pp. 418–421, 2004.

[2] C. Nie and H. Leung, “A survey of combinatorial testing,” ACM
Computing Surveys (CSUR), vol. 43, no. 2, pp. 1–29, 2011.

[3] D. Marijan, A. Gotlieb, and M. Kumar Ahuja, “Challenges of testing
machine learning based systems,” in 2019 IEEE International Confer-
ence On Artificial Intelligence Testing (AITest), 2019, pp. 101–102.

[4] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning test-
ing: Survey, landscapes and horizons,” IEEE Transactions on Software
Engineering, pp. 1–1, 2020.

[5] C. E. Tuncali, G. Fainekos, H. Ito, and J. Kapinski, “Simulation-
based adversarial test generation for autonomous vehicles with machine
learning components,” in 2018 IEEE Intelligent Vehicles Symposium
(IV), 2018, pp. 1555–1562.

[6] L. Ma, F. Juefei-Xu, M. Xue, B. Li, L. Li, Y. Liu, and J. Zhao, “Deepct:
Tomographic combinatorial testing for deep learning systems,” in 2019
IEEE 26th International Conference on Software Analysis, Evolution
and Reengineering (SANER), 2019, pp. 614–618.

[7] S. Vilkomir, J. Wang, N. L. Thai, and J. Ding, “Combinatorial meth-
ods of feature selection for cell image classification,” in 2017 IEEE
International Conference on Software Quality, Reliability and Security
Companion (QRS-C), 2017, pp. 55–60.

[8] R. Kuhn and R. Kacker, “An application of combinatorial methods for
explainability in artificial intelligence and machine learning (draft),”
National Institute of Standards and Technology, Tech. Rep., 2019.

[9] D. R. Kuhn, I. D. Mendoza, R. N. Kacker, and Y. Lei, “Combinatorial
coverage measurement concepts and applications,” in 2013 IEEE Sixth
International Conference on Software Testing, Verification and Valida-
tion Workshops, 2013, pp. 352–361.

[10] D. R. Kuhn, R. N. Kacker, and Y. Lei, “Practical combinatorial testing,”
NIST special Publication, vol. 800, no. 142, p. 142, 2010.

[11] D. R. Kuhn, R. N. Kacker, Y. Lei, and D. E. Simos, “Combinatorial
methods for explainable ai.”

[12] M. T. Ribeiro, S. Singh, and C. Guestrin, “” why should i trust you?”
explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and
data mining, 2016, pp. 1135–1144.

[13] F. Shakerin and G. Gupta, “Induction of non-monotonic logic programs
to explain boosted tree models using lime,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, 2019, pp. 3052–3059.

[14] D. Gunning, “Explainable artificial intelligence (xai),” Defense Ad-
vanced Research Projects Agency (DARPA), nd Web, vol. 2, no. 2, 2017.

[15] Rhammell, “Planes in satellite imagery,” Jan 2018. [Online]. Available:
https://www.kaggle.com/rhammell/planesnet

