
Developing multithreaded techniques and improved
constraint handling for the tool CAgen

Michael Wagner, Manuel Leithner and Dimitris E. Simos
SBA Research

A-1040 Vienna, Austria
{mwagner,mleithner,dsimos}@sba-research.org

Rick Kuhn and Raghu Kacker
NIST, Information Technology Laboratory,

Gaithersburg, MD, USA
Email: {d.kuhn,raghu.kacker}@nist.gov

Abstract—CAgen is a state-of-the-art combinatorial test gen-

eration tool that is known for its execution speed. In addition, it

supports an extensive list of features such as constraint handling,

higher-index arrays, and import and export of models/test sets

in various different formats. It is based on the FIPO algorithm,

which can be considered an improved version of the widely

used In-Parameter-Order strategy. In order to further speed up

CAgen, this work first discusses how multithreading can be effec-

tively used to optimally utilize available resources, particularly

for large instances. We evaluate three different multithreaded

variations of the horizontal extension and use the obtained

insights to design the mFIPOG algorithm. In addition, we adopt

methods that have previously been utilized to speed up constraint

handling of CSP solvers in IPO algorithms into a forbidden tuple

approach. In order to evaluate the performance of the improved

tool, we provide results of benchmarks on the instances offered

by the CT competition of IWCT 2022.

I. INTRODUCTION

Combinatorial testing is a methodology that makes it possi-
ble to test large systems efficiently. It utilizes so-called t-way
test sets, which, when executed against a system under test, can
ensure that there is no fault triggered by a combination of up
to t parameters of the input model [1]. This is ensured by the
properties of covering arrays (CAs), the class of combinatorial
designs underlying combinatorial test sets. A CA has the
property that in every t-selection of columns, each possible
t-tuple over the alphabets of the corresponding parameters has
to appear in at least one row. In terms of testing, this means
that each possible t-set of input combinations occurs in at least
one test.

While combinatorial testing can significantly reduce the
number of tests necessary to effectively test a system, gen-
erating such test sets with the smallest number of rows is not
trivial in most cases. As the number of parameters of a system
increases or if a higher strength t is deemed necessary for
testing, the run time and memory demand during generation
of such t-way test sets can rise exponentially. In order to keep
up with the growing demand for such test sets, efficient test
generation algorithms and tools are essential.

The research presented in this paper has been funded in part by the
Austrian COMET K1 program. Moreover, this work was performed partly
under the financial assistance award 70NANB21H124 from U.S. Department
of Commerce, National Institute of Standards and Technology.

One such tool is the combinatorial test generation tool
CAgen [2]. It is written in Rust1, available online as a web
GUI 2 and as a command line tool and has a rich set
of features, such as multiple generation algorithms, efficient
constraint handling and the possibility to generate test sets
of higher index. While the web GUI enables users to easily
create and edit models, generate and output test sets and
help researchers and developers to become familiar with the
concepts of combinatorial testing, the more powerful CLI
version is ideal for complex problem instances. In this work,
we focus on the CLI version of the tool for our discussions
and benchmarks.

The algorithms implemented in this tool are based on the
widely used In-Parameter-Order strategy for combinatorial test
generation [3], which builds a CA incrementally by adding
one column at a time by means of horizontal extension, while
a vertical extension adds rows to the array in order to add
any missing tuples if necessary, see Algorithm 1. The fastest
algorithm implemented in CAgen is the FIPOG algorithm [4],
owing its performance to various improvements on the al-
gorithmic and implementation level. During the horizontal
extension, FIPO iterates the rows of the CA in order and
selects suitable values for the corresponding entries in the
newly added column. This is done in a greedy manner by
calculating the number of newly covered tuples, herein referred
to as coverage gain, for each candidate value and selecting the
value that maximizes this metric. In order to keep track of the
coverage status of every possible t-tuple in each selection of t
columns, a data structure called coverage map is used, which
is explained in depth in [4].

This work is structured as follows. In Section II, we discuss
multithreaded approaches that distribute the workload between
multiple threads. Afterwards, Section III introduces methods
and data structures that help speed up constraint handling in
IPO algorithms using a minimal forbidden tuple approach.
Section IV provides results based on the example benchmarks
of the CT tool competition of IWCT 2022. Finally, we discuss
potential future work in Section V.

1https://www.rust-lang.org/
2https://matris.sba-research.org/tools/cagen

Preprint: International Workshop on Combinatorial Testing, 2022

Algorithm 1 IPOG Algorithm
procedure IPOG

Array cross-product of first t columns
for i t, . . . , k do

HorizontalExtension(i)
if there are uncovered tuples then

VerticalExtension(i)
end if

end for

end procedure

II. A MULTITHREADED FIPOG ALGORITHM

One way to speed up the run time of CA generation
algorithms is to distribute the work between multiple threads.
Finding an efficient way to parallelize the horizontal extension
step, which usually takes up the majority of the execution time,
is of particular interest. First, all selections of t columns need
to be iterated in order to calculate the coverage gain for each
candidate value. Second, after the candidate that maximizes
the coverage gain for a row is selected, the coverage map
needs to be updated accordingly.

Distributing these tasks efficiently between multiple threads
without sacrificing the quality of the obtained solution is no
trivial task. Two different approaches seem most suitable: We
can either divide the workload by assigning a thread for each
candidate value, or we can divide the coverage map into
partitions and make different threads responsible for different
sets of t-way selections of columns.

The former approach was explored by Younis and Zamli
in [5], where they distributed the work of the horizontal and
vertical extension between vi threads, where vi is the number
of values the parameter at index i can assume. While the
work proved that this strategy can provide a speedup for IPO
algorithms, we decided against using it in this work. This is
because one of the most impactful optimizations introduced
in [4], particularly for higher strengths, is the precomputation
of prefixes. In this step, the existing (t � 1) values are
first used to calculate a base integer that can be added to
any of the vi different values, allowing for a fast lookup.
This optimization would not be possible if different threads
compute the scores for different values. Therefore, in this
work, we focus exclusively on techniques that partition the
coverage map. Three such approaches are described herein.

a) Variation 1 - Simplex setup: One approach where the
coverage map is partitioned into several parts was recently
explored in-depth in Antoine Veenstra’s master thesis [6].
Veenstra introduces a parallel version of the horizontal ex-
tension step of an IPO algorithm, splitting the coverage map
into partitions that can be read by different worker threads.
During the horizontal extension, the worker threads compute
the tuples that would be newly covered in their partition of the
coverage map and send pointers to those tuples to the main
thread, which then aggregates the results to select the best
suitable candidate value and update the coverage map. Because

Fig. 1. Schematic of the multithreaded approach based on a simplex setup,
introduced by Veenstra.

the coverage map might not be up to date while the worker
threads calculate their scores, the main thread needs to validate
whether the tuples represented by the received pointers are
still uncovered. A schematic of the task distribution and the
communication between the threads is shown in Figure 1.
Since the task of each worker thread is identical (they just
operate on different partitions of the coverage map), we only
depict one worker thread in the graphic. Note that the worker
threads do not wait for any feedback from the main thread, but
simply continue computing the coverage gains for subsequent
rows in respect to their partition of the coverage map.

A clear advantage of this approach is the minimal commu-
nication between the worker threads and the main thread. The
approach is also quite sophisticated and considers many small
details, such as rotating the partitions of the coverage map that
a thread is responsible for with every new row to compensate
for differences in run time due to don’t care values. However,
this technique has certain drawbacks. First, sending and col-
lecting pointers to uncovered tuples can introduce significant
overhead, especially in terms of memory consumption. This
can become an issue when large instances are concerned.
Further, since the main thread is tasked with aggregating and
validating results as well as updating the coverage map, it
can become a major bottleneck and lead to uneven work
distribution when a larger number of worker threads is utilized.

To mitigate these flaws, we introduce two additional designs
of a multithreaded horizontal extension based on partitioning
of the coverage map. We compare the results with Veenstra’s
approach as well as the single threaded implementation of
FIPOG.

Fig. 2. Schematic of the multithreaded approach based on precomputed
worker updates.

b) Variation 2 - Precomputed worker updates: The first
variation of the algorithm delegates the task of updating the
coverage map to the worker threads, thus preventing the
main/aggregation thread from becoming a bottleneck. Figure 2
visualizes the general workflow. Just like in the original
approach, the worker threads precompute the newly covered
tuples for all values despite a potentially outdated coverage
map. However, instead of sending the results to the main
thread for validation, they are stored locally by each thread.
Whenever the main thread selects a value and notifies the
workers about the decision, each worker thread first updates
the coverage map based on this decision, utilizing the previ-
ously computed list of newly covered tuples. Then, the worker
thread updates its results for the next row (the uncovered
tuples that could be covered by each candidate value) based
on the updated coverage map and sends the coverage gain for
each candidate value to the main thread. While this approach
distributes the work more evenly between worker threads, it
is also more dependent on the communication delay between
threads. Further, since each worker thread updates its own
part of the coverage map, it is not safe to cycle to different
partitions of the coverage map for each new row such as
discussed in the first variation.

c) Variation 3 - Just-in-time (JIT) worker updates:

Since the second variation maintains the same method of

Fig. 3. Schematic of the multithreaded approach based on JIT worker updates.

precomputing and storing newly covered tuples, the potential
drawback of memory (and potentially run time) overhead still
persists. Therefore, we introduce a third, seemingly naive,
variation that entirely forgoes any precomputation. Figure 3
provides an overview of this process flow. The worker threads
simply compute the coverage gain for their partition of the
coverage map and send the results to the main thread (as
integers). The main thread aggregates the results, selects a
candidate value and finally notifies the worker threads about
the decision. Instead of continuing to work on subsequent rows
(as is the case for the previous variations), the worker threads
wait for the response of the main thread. While this sounds
highly inefficient in theory, large problem instances tend to
make the computation of coverage gains more expensive, thus
decreasing the impact of delays in communication.

d) Experimental evaluation: The compare the strengths
and weaknesses of the different approaches presented in this
work, we perform an extensive set of experiments, generating
uniform CAs with 2, 5 and 10 values and 20, 30, 50 and
100 columns respectively. When a multithreaded algorithm is
applied, the same variation of horizontal extension is used
throughout all extension steps. All experiments were con-
ducted on an Intel Xeon E3 processor with 8 logical processors
and 64GB of RAM and the algorithm was allowed to spawn
either 3 or 6 worker threads. The results of the benchmarks
are displayed in Table I, where the time in milliseconds and
the speedup of the different multithreaded variations compared

to the singlethreaded implementation is presented. A speedup
greater than one refers to a faster execution time than the single
threaded implementation.

While some of the results are quite expected, others are
definitely a bit surprising. First, for small instances the single
threaded implementation performs significantly better than all
multithreaded variations. Since the run time for those instances
is so small, the overhead to start new threads as well as
communicate between them dwarfs any potential run time
gains. One interesting thing to note is that each of the tested
configurations performed the best in at least one of the tested
instances. The Simplex variation seems to perform particularly
well for medium-sized binary instances, but does not appear
to scale well with an increased number of threads. The Sim-
plex configuration with 6 threads was the only multithreaded
variation that was slower on average than the single threaded
implementation with an average speedup of 0.8, while also
only performing better than the configuration with 3 threads
in a small set of large instances.

The variation using precomputed worker updates performs
a bit better on average, in particular for larger instances/alpha-
bets. Furthermore, the configuration using 6 threads achieves
a higher average speedup than the configuration with 3 threads
while consistently terminating faster for larger instances. The
biggest surprise was definitely the performance of the JIT
worker update variation. While the approach appears incred-
ibly wasteful in theory, the experiments proves that it can
be quite potent in practice. Not only does it appear to scale
well with an increased number of threads, it performed by far
the best out of the tested configuration for the more difficult
instances.

We believe that this first experimental evaluation nicely
showcases that not only a lot more research is required to
figure out the optimal multithreading techniques to speed up
IPO algorithms for different instances, but also shows that
sometimes approaches that appear to be too naive are worth
taking in consideration.

III. FASTER CONSTRAINT HANDLING

When modeling real-world systems, one must often consider
special relationships and dependencies between components
of the system. The ability to manually specify such rela-
tionships between parameters via constraints is therefore a
crucial feature for any combinatorial test generation tool. For
a comprehensive survey discussing the state of the art in this
area of research, we refer the interested reader to [7].

Aside from the use of SAT or CSP solvers, the minimum for-

bidden tuple (MFT) approach has proven to be very effective
for CA generation with IPO algorithms. CAgen implements
the forbidden tuple approach as follows: First, a set of initial
forbidden tuples is derived from a set of logical formulas.
Then, a set of MFTs is computed, where each MFT can be
represented as a list of parameter/value assignments. They are
minimal in the sense that if any parameter/value assignment
were removed from the tuple, the remaining tuple would be
valid. Thanks to this property, one just has to ensure that

there exists no row where all parameters that occur in some
MFT take the values described by the MFT. For a more
in-depth explanation of the MFT approach as well as the
implementation details on how they are derived in CAgen,
see [8] and [2].

Example 1: Assume we are given constraints in the form of
the logical formula

(Par1 = true & Par3 = false) => Par8 6= 5 (1)

, which specifies that if parameter 1 is true and parameter
3 is false, then parameter 8 must not be equal to 5. In the
form of forbidden tuples, this can be written as the set of
parameter/value assignments [(1,true), (3,false), (8,5)].

In order for constraint handling techniques to be as efficient
as possible, it is of upmost importance to avoid unnecessary
validity checks during generation. In [9], the authors observed
a significant redundancy when checking the validity of candi-
date values in both IPO extension steps. By using constraint
groups to identify constraints that are irrelevant to the current
parameter, they are able to significantly reduce the number of
validity checks and thus the run time of the algorithm. In this
work, we show that these observations and ideas can be easily
integrated into a MFT approach.

The naive approach to confirm the validity of a candidate
value during horizontal extension would iterate all minimal
forbidden tuples and check if any of them occur in the current
row. Of course, this leads to a large number of unnecessary
validity checks, since only MFTs that contain the current
parameter and the current candidate value are relevant. Addi-
tionally, out of this subset of MFTs, only those where all other
parameters were already processed during earlier extension
steps are of interest. Due to the minimality of MFTs, a MFT
that contains parameters for which no value has been selected
yet can not be violated. In order to perform validity checks
in the most efficient way, we introduce a new data structure,
called one-directional MFT map (o-map), which is generated
in a preprocessing step. It is a ragged array that groups MFTs
by the last parameter in the MFT and its value. For instance,
assuming the parameters in Example 1 are processed in order,
the prefix of the considered MFT, [(1,true), (3,false)], would
be accessible at o-map[8][5], where o-map refers to the one-
directional MFT map, 8 is the index of the last processed
parameter and 5 the index of the corresponding value. Figure
4 visualizes this example. The one-directional MFT map thus
contains every MFT exactly once. To determine the validity
of a candidate value vi during the horizontal extension of
column i, it is sufficient to check if any of the parameter/value
assignments specified in o-map[i][vi] occur in the current row.

A similar reduction in the number of validity checks can
be achieved during the vertical extension. Whenever a tuple
is merged into an existing row by means of replacing existing
don’t care values, the algorithm needs to confirm that the
replaced values do not violate any constraints. This can be
checked efficiently by using a bi-directional MFT map data
structure, which is similar to one introduced previously. The
only difference is that in the bi-directional map, we not only

ST
Si

m
pl

ex
-

3
Si

m
pl

ex
-

6
pr

ec
om

pu
te

d
-

3
pr

ec
om

pu
te

d
-

6
JI

T
-

3
JI

T
-

6
in

st
an

ce
t

ro
w

s
tim

e
tim

e
sp

ee
du

p
tim

e
sp

ee
du

p
tim

e
sp

ee
du

p
tim

e
sp

ee
du

p
tim

e
sp

ee
du

p
tim

e
sp

ee
du

p

2
2
0

2
12

0
7

0
8

0
23

0
59

0
21

0
78

0
3

28
0

5
0

4
0

7
0

52
0

23
0

50
0

4
66

3
14

0.
21

30
0.

1
9

0.
33

55
0.

05
19

0.
15

50
0.

06
5

16
4

26
24

1.
08

57
0.

45
2
2

1
.1

8
49

0.
53

25
1.

04
44

0.
59

2
3
0

2
12

0
18

0
6

0
35

0
99

0
31

0
15

2
0

3
36

1
6

0.
16

14
0.

07
42

0.
02

78
0.

01
35

0.
02

93
0.

01
4

81
2
1

26
0.

80
77

0.
27

34
0.

61
92

0.
22

34
0.

61
96

0.
21

5
20

6
25

9
1
0
5

2
.4

6
23

0
1.

12
11

9
2.

17
15

1
1.

71
14

4
1.

79
15

4
1.

68

2
5
0

2
14

1
13

0.
07

31
0.

03
56

0.
01

15
2

0.
01

59
0.

01
15

0
0.

01
3

44
6

30
0.

2
29

0.
20

57
0.

10
17

6
0.

03
62

0.
09

14
1

0.
04

4
10

1
20

1
1
0
9

1
.8

4
23

7
0.

84
13

1
1.

53
21

7
0.

92
13

0
1.

54
21

2
0.

94
5

26
2

41
95

14
14

2.
96

23
82

1.
76

15
07

2.
78

1
3
1
5

3
.1

9
18

29
2.

29
15

80
2.

65

2
1
0
0

2
16

2
31

0.
06

54
0.

03
10

5
0.

02
29

8
0.

01
12

0
0.

01
27

0
0.

01
3

52
5
3

90
0.

58
12

2
0.

43
14

0
0.

37
31

5
0.

16
14

6
0.

36
32

0
0.

16
4

13
2

36
95

1
3
4
3

2
.7

5
25

11
1.

47
14

86
2.

48
13

44
2.

74
16

45
2.

24
15

15
2.

43
5

33
7

18
36

20
63

27
5

2.
90

10
00

48
1.

83
66

13
4

2.
77

5
5
0
2
3

3
.3

3
76

96
8

2.
38

63
23

4
2.

90

5
2
0

2
51

1
4

0.
25

8
0.

12
5

20
0.

05
46

0.
02

19
0.

05
46

0.
02

3
39

3
5

34
0.

14
85

0.
05

30
0.

16
44

0.
11

29
0.

17
24

13
79

3
51

0.
09

4
26

98
13

8
17

4
0.

79
27

2
0.

50
13

1
1.

05
14

6
0.

94
9
1

1
.5

1
12

3
1.

12
5

17
24

5
30

99
20

93
1.

48
24

23
1.

27
14

14
2.

19
13

83
2.

24
12

45
2.

48
1
1
6
4

2
.6

6

5
3
0

2
59

2
17

0.
11

37
0.

05
26

0.
07

93
0.

02
36

0.
05

60
0.

03
3

46
6

2
0

62
0.

32
14

0
0.

14
43

0.
46

10
8

0.
18

40
0.

5
11

7
0.

17
4

33
90

93
5

61
9

1.
51

87
9

1.
06

48
9

1.
91

45
3

2.
06

41
7

2.
24

4
1
4

2
.2

5

5
22

46
9

36
76

5
19

35
2

1.
89

20
02

6
1.

83
15

03
5

2.
44

12
35

4
2.

97
14

00
9

2.
62

1
1
2
7
8

3
.2

5

5
5
0

2
68

3
38

0.
07

11
2

0.
02

48
0.

06
14

1
0.

02
64

0.
04

16
5

0.
01

3
59

0
14

7
17

2
0.

85
34

6
0.

42
12

7
1.

15
23

5
0.

62
1
2
2

1
.2

0
21

1
0.

69
4

44
86

13
67

3
53

34
2.

56
60

24
2.

26
48

98
2.

79
4
0
3
1

3
.3

9
52

03
2.

62
43

05
3.

17
5

30
06

4
20

54
83

3
72

77
60

2.
82

6
1
7
2
9
1

3
.3

2
79

00
18

2.
60

72
62

32
2.

82
91

44
33

2.
24

83
99

68
2.

44

5
1
0
0

2
81

6
95

0.
06

27
1

0.
02

11
5

0.
05

31
3

0.
02

11
0

0.
05

31
1

0.
02

3
76

2
16

76
10

05
1.

66
16

15
1.

03
92

7
1.

80
87

0
1.

92
86

0
1.

94
8
0
4

2
.0

8

4
59

63
34

96
88

13
50

21
2.

58
16

77
82

2.
08

15
15

05
2.

30
12

18
46

2.
86

13
26

45
2.

63
1
0
5
6
9
4

3
.3

0

1
0
2
0

2
22

9
7

25
0.

28
47

0.
14

29
0.

24
76

0.
09

15
0.

46
48

0.
14

3
34

75
15

6
27

4
0.

56
41

5
0.

37
16

2
0.

96
16

5
0.

94
9
6

1
.6

2
12

9
1.

20
4

48
71

2
76

74
54

91
1.

39
69

51
1.

10
42

22
1.

81
37

77
2.

03
31

90
2.

40
2
8
7
0

2
.6

7

5
61

45
70

49
47

20
27

03
71

1.
82

25
65

19
1.

92
24

56
41

2.
01

20
19

08
2.

45
22

75
25

2.
17

1
8
7
9
0
0

2
.6

3

1
0
3
0

2
24

7
4

65
0.

06
11

4
0.

03
42

0.
09

10
7

0.
03

48
0.

08
97

0.
04

3
41

46
49

6
68

7
0.

72
86

8
0.

57
46

2
1.

07
40

9
1.

21
3
0
2

1
.6

4
32

2
1.

54
4

60
44

5
52

29
5

24
72

2
2.

11
29

17
4

1.
79

23
03

4
2.

27
19

05
2

2.
74

19
92

5
2.

62
1
5
4
9
9

3
.3

7

1
0
5
0

2
27

4
1
1

10
2

0.
10

17
3

0.
06

81
0.

13
14

4
0.

07
64

0.
17

15
2

0.
07

3
50

23
27

72
21

04
1.

31
28

34
0.

97
18

03
1.

53
14

75
1.

87
12

58
2.

20
1
1
0
1

2
.5

1

4
75

69
2

77
80

16
33

15
23

2.
34

31
36

38
2.

48
34

44
16

2.
25

26
52

65
2.

93
30

45
49

2.
55

2
5
0
1
8
0

3
.1

0

1
0
1
0
0

2
30

8
7
7

31
4

0.
24

57
7

0.
13

16
4

0.
46

38
3

0.
20

12
7

0.
60

36
4

0.
21

3
62

59
26

72
8

12
65

5
2.

11
15

11
3

1.
76

11
90

0
2.

24
98

89
2.

70
10

03
1

2.
66

8
3
2
9

3
.2

0

TA
B

LE
I

B
E

N
C

H
M

A
R

K
S

FO
R

T
H

E
T

H
R

E
E

M
U

LT
IT

H
R

E
A

D
E

D
V

A
R

IA
T

IO
N

S:
SI

M
PL

E
X

SE
T

U
P

(S
IM

PL
E

X
),

PR
E

C
O

M
PU

T
E

D
W

O
R

K
E

R
U

PD
A

T
E

S
(P

R
E

C
O

M
PU

T
E

D
)A

N
D

JU
ST

-I
N

-T
IM

E
W

O
R

K
E

R
U

PD
A

T
E

S
(J

IT
).

A
SI

N
G

L
E

T
H

R
E

A
D

E
D

(S
T

)I
M

PL
E

M
E

N
TA

T
IO

N
IS

U
SE

D
A

S
A

R
E

FE
R

E
N

C
E

.T
H

E
N

U
M

B
E

R
N

E
X

T
T

O
T

H
E

A
L

G
O

R
IT

H
M

SP
E

C
IF

IE
S

T
H

E
N

U
M

B
E

R
O

F
W

O
R

K
E

R
T

H
R

E
A

D
S

SP
A

W
N

E
D

IN
E

V
E

R
Y

H
O

R
IZ

O
N

TA
L

E
X

T
E

N
SI

O
N

ST
E

P,
R

U
N

T
IM

E
IS

R
E

PO
R

T
E

D
IN

M
IL

L
IS

E
C

O
N

D
S.

variation workers avg. speedup #best
ST 1 0 20

Simplex 3 1.08 3
6 0.80 1

Precomp 3 1.13 1
6 1.17 3

JIT 3 1.21 4
6 1.25 11
TABLE II

SUMMARY OF MULTITHREADED EXPERIMENTS

Fig. 4. The one-directional MFT map helps reduce the number of redundant
validity checks.

add a MFT at the index defined by the last parameter/value in
the MFT, but into all indices defined by any parameter/value in
the MFT. This is necessary for the vertical extension, as values
can be assigned to parameters that have already been processed
in earlier extension steps, rendering the one-directional MFT
map insufficient. While MFTs generally occur more than once
in the bi-directional MFT map, it still helps to reduce the
number of redundant validity checks significantly. A set of
experiments using all implemented optimizations can be found
in Section IV.

IV. BENCHMARK FOR THE CT TOOL COMPETITION OF
IWCT 2022

For the CT tool competition of IWCT 2022 we submit
the multithreaded mFIPOG algorithm. In order to perform
decently for most instances the algorithm changes between
the singlethreaded FIPOG implementation of the horizontal
extension and the multithreaded JIT worker update variation
described in Section II, depending on the number of t-way
selections of columns, the strength t of the test set and the
number of candidate values. With this combination we hope
to combine the unmatched performance of single threading for
small instances with the multithreaded approach that seemed
most promising in terms of scalability. We plan to integrate
the mFIPOG algorithm officially into the tool CAgen after the
competition.

Table III shows the results for all benchmark instances pro-
vided for the competition that do not contain any constraints.
Due to the relatively small instances and in particular the
small number of columns the algorithm mostly relies on the
singlethreaded horizontal extension while the multithreaded
variation helps speed up some of the strength 4 instances.

We also attempted to solve some of the benchmarks with
constraints, but did not manage to complete most of them.
The minimal forbidden tuple approach for constraint solving
works very well for real-world systems with a moderate

instance t rows time(ms)

UNIFORM BOOLEAN 0
2 10 0
3 24 0
4 56 0

UNIFORM BOOLEAN 1
2 10 0
3 22 0
4 54 0

UNIFORM BOOLEAN 2
2 10 0
3 22 0
4 54 0

UNIFORM BOOLEAN 3
2 12 0
3 26 0
4 66 2

UNIFORM BOOLEAN 4
2 8 0
3 18 0
4 38 0

UNIFORM ALL 0
2 146 0
3 1744 45
4 19405 866

UNIFORM ALL 1
2 368 2
3 8369 152
4 161537 6591

UNIFORM ALL 2
2 51 0
3 369 3
4 2415 58

UNIFORM ALL 3
2 333 0
3 7175 12
4 128739 905

UNIFORM ALL 4
2 459 2
3 11554 165
4 250032 8093

MCA 0
2 2296 8
3 116855 1382
4 5397481 350192

MCA 1
2 408 0
3 816 0
4 1632 0

MCA 2
2 518 0
3 4144 0
4 8290 3

MCA 3
2 1366 1
3 27744 67
4 519257 5458

MCA 4
2 1426 1
3 38392 42
4 691407 2400

TABLE III
EXPERIMENTAL RESULTS OF THE MFIPOG ALGORITHM FOR THE

BENCHMARK INSTANCES OF THE CT-TOOL COMPETITION OF IWCT 2022.

number of constraints where a lot of the validation work is
reduced by means of preprocessing in the form of forbidden
tuple computation. At the same time, this preprocessing step
is not feasible anymore when confronted with such a large
number of constraints as provided in the benchmark instances.
Even for the lightest instance where the largest constraint
specification consists of ”only” 21000 characters both the
initial forbidden tuple derivation as well as the minimal
forbidden tuple computation take more than 20 minutes in
our implementation, while the MFT map generation and the
actual test generation finish within seconds. In the future we
plan to examine additional constraint solving techniques to
supplement our existing approach.

V. CONCLUSION AND FUTURE WORK

In this work, we discussed different multithreaded variation
of the horizontal extension of FIPOG algorithms and provided
an extensive set of experimental results to evaluate them
and demonstrate that they a significantly speedup of the test
generation process can be achieved. We made use of the

gained insights to design mFIPOG, an efficient multithreaded
algorithm, which we tested on the benchmark instances for
the IWCT 2022 CT tool competition. Last, we introduced a
more efficient way of applying the minimal forbidden tuple
approach to constrained CA generation.

In future work, we plan to investigate in more detail how
different multithreading techniques perform when a larger
number of threads is available as well as explore how high
performance computing can help accelerate the FIPOG algo-
rithm even further. We also want to speed up different parts of
the generation process with parallel methods. Last, we want to
integrate our novel CPHFIPO [10] and SIPO [11] algorithms
into CAgen, preferably in a parallel variation.
Disclaimer: Products may be identified in this document, but iden-

tification does not imply recommendation or endorsement by NIST,

nor that the products identified are necessarily the best available for

the purpose.

REFERENCES

[1] D. R. Kuhn, R. N. Kacker, Y. Lei et al., “Practical combinatorial testing,”
NIST special Publication, vol. 800, no. 142, p. 142, 2010.

[2] M. Wagner, K. Kleine, D. E. Simos, R. Kuhn, and R. Kacker, “Cagen:
A fast combinatorial test generation tool with support for constraints
and higher-index arrays,” in 2020 IEEE International Conference on

Software Testing, Verification and Validation Workshops (ICSTW), 2020,
pp. 191–200.

[3] Y. Lei and K. C. Tai, “In-parameter-order: a test generation strategy
for pairwise testing,” in Proceedings Third IEEE International High-

Assurance Systems Engineering Symposium (Cat. No.98EX231), Nov
1998, pp. 254–261.

[4] K. Kleine and D. E. Simos, “An efficient design and implementation of
the in-parameter-order algorithm,” Mathematics in Computer Science,
Dec 2017.

[5] M. I. Younis and K. Z. Zamli, “Mc-mipog: a parallel t-way test
generation strategy for multicore systems,” ETRI journal, vol. 32, no. 1,
pp. 73–83, 2010.

[6] A. Veenstra, “Accelerating mixed-level coverage array generation,” Mas-
ter’s thesis, University of Twente, 2021.

[7] H. Wu, C. Nie, J. Petke, Y. Jia, and M. Harman, “A survey of constrained
combinatorial testing,” arXiv preprint arXiv:1908.02480, 2019.

[8] L. Yu, F. Duan, Y. Lei, R. N. Kacker, and D. R. Kuhn, “Constraint han-
dling in combinatorial test generation using forbidden tuples,” in 2015

IEEE Eighth International Conference on Software Testing, Verification

and Validation Workshops (ICSTW), 2015, pp. 1–9.
[9] L. Yu, Y. Lei, M. Nourozborazjany, R. N. Kacker, and D. R. Kuhn,

“An efficient algorithm for constraint handling in combinatorial test
generation,” in 2013 IEEE Sixth International Conference on Software

Testing, Verification and Validation, 2013, pp. 242–251.
[10] M. Wagner, C. J. Colbourn, and D. E. Simos, “In-parameter-order

strategies for covering perfect hash families,” Applied Mathematics and

Computation, vol. 421, p. 126952, 2022.
[11] M. Wagner, L. Kampel, and D. E. Simos, “Heuristically enhanced ipo

algorithms for covering array generation,” in International Workshop on

Combinatorial Algorithms. Springer, 2021, pp. 571–586.

