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Comment period: June 14, 2024 to September 13, 2024 

On June 14, 2024, NIST’s Crypto Publication Review Board initiated a review of SP 800-38C: 
Recommendation for Block Cipher Modes of Operation: the CCM Mode for Authentication and 
Confidentiality. 

The comments that NIST received during the comment period are collected below.  

More information about this review is available from NIST’s Crypto Publication Review Project 
site. 
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1. Comments from Christopher Dickerman, June 21, 2024 

 

Hello, 
 
On page 10 of SP 800-38C Section 6.2, Step 9, there appears to be a typo  
on the index of Y: 
 
Y_j = CIPH_K(B_i \xor Y_{i-1}) 
 
Should be 
 
Y_i = CIPH_K(B_i \xor Y_{i-1}) 
 
where the subscript "j" should be changed to "i". 
 
Best, 
 
Christopher Dickerman  
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2. Comments from Joachim Vandersmissen (atsec information security corporation), 
July 5, 2024 

 
Dear NIST, 
 
Thank you for soliciting feedback from the community regarding the  
proposed changes to SP 800-38C. I personally don't have any preference  
regarding a 64-bit authentication tag size. Regardless of NIST's  
decision, it might be more appropriate if the authentication tag size  
guidelines for all applicable algorithms (CMAC, CCM, HMAC, KMAC, GMAC,  
GCM, ...) are specified in a central place, similar to SP 800-131Ar2.  
This avoids any inconsistencies between the individual algorithm  
standards and provides an easy reference. 
 
In Section 5.3, the standard states "The nonce is not required to be  
random". Could this be clarified by stating "The nonce is not required  
to be unpredictable", to be consistent with the terminology used in SP  
800-38A? 
 
In Section 6.1, the output (ciphertext) is defined as the concatenation 
of the encrypted plaintext and the MAC tag. For consistency with SP  
800-38D, and to match real-world implementations more closely, it would  
be convenient to have the output defined as a tuple consisting of the  
encrypted plaintext and the MAC tag. This would require rewriting the  
algorithm in Section 6.2 too, as the input would now be a tuple of a  
ciphertext and a MAC tag, and the MSB/LSB functions are no longer used.  
Nevertheless, I think these changes could be worthwhile from an  
implementation standpoint. 
 
In Section 6.2, step 9 should state Y_i instead of Y_j. 
 
The last paragraph of Section 6.2 contains a "shall" statement related  
to preventing side-channel attacks. This is a very harsh requirement. In  
my experience, NIST algorithm specifications generally don't include any  
"shall" statements related to side-channel analysis, even where side  
channel attacks can be much more devastating (e.g., ECDSA nonce  
generation). This is not to say that the requirement is invalid, however  
it does seem out of place here. For consistency with other standards (SP  
800-38A, B, D, ...), I suggest that the "shall" statement is changed to  
a "should" statement. 
 
If my suggestion to change the output of the algorithm in Section 6.1 is  
applied, Appendix B.1 should be updated to reflect the change (e.g.,  
"For any purported ciphertext that is at least Tlen bits long, the  
rightmost Tlen bits correspond to an encrypted MAC, and the remaining  
bits correspond to an encrypted payload.") 
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In Appendix E, a few reference links to are broken or redirects: 
[1] redirects to the Modes Development page, but this page does not  
contain a link to the reference. 
[7] should be updated to reflect the fact that SP 800-38B has been  
published. 
 
Kind regards, 
Joachim Vandersmissen 
 
--  
Joachim Vandersmissen 
joachim@atsec.com 
atsec information security corporation 
 
  

mailto:joachim@atsec.com
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3. Comments from Michael Bowler (Synopsys), September 6, 2024 

 

Dear Crypto Publication Review Board, 

Please see attached document for comments from Synopsys on the SP 800-38C publication. 

Best regards, 

Michael Bowler 
Security HW and System Architect 
Synopsys Inc. 

  



Dear Crypto Publication Review Board, 

Synopsys would like to thank NIST for the opportunity to register our comments with 
respect to SP 800-38C (The CCM Mode for Authentication and Confidentiality). 

We find the lack of explicit specification of the formatting function and counter generation 
functions within SP 800-38C problematic.  SP 800-38C gives examples of compliant 
formatting and counter generation functions, however the actual implementation is left up 
to the user.  Generic implementations of CCM (for example, a hardware IP core) either have 
to make assumptions of the target use case or offload these functions to the integrator.  
Integrators may not have sufficient security expertise, resulting in misunderstanding and 
misuse.  Misunderstanding of the CCM specification has resulted in numerous support 
cases from users of our AES-CCM hardware IP cores.  Misuse can result in real world 
security issues. 

Contrast SP 800-38C to SP 800-38D (GCM).  GCM defines the input formatting and counter 
generation functions explicitly.  The user simply provides inputs of Key, IV, additional 
authentication data, and plaintext/ciphertext data.  The algorithm produces the result.  The 
user is not required to understand the specification, other than some simple rules with 
respect to input length constraints.  With CCM the user is given a complex task to pre-
format the input data with “an algorithm of their choice” that meets the security 
requirements outlined in SP 800-38C chapter 5.4, and concurrently come up with a 
counter generation function that does not cause a counter collision with B0 (rule #3 of 
chapter 5.4). 

Our suggestions: 

1) Define the input formatting function explicitly. 
a. The example in Appendix A of SP 800-38C (or alternatively RFC-3610) is a 

good start. 
b. We suggest the values of q and n are restricted to a small subset of approved 

values.  e.g. {q, n} inside the set of {{2,13}, {4, 11}} would be a good 
compromise to support existing standards (e.g. IEEE 802.11, which uses {q, 
n} == {2, 13}, and future use with larger packets where {q, n} == {4, 11}) 

c. We believe the constraint of max(q) == 4, corresponding to 2^32 bytes of 
payload, should not be overly restrictive for implementations of packet-
based protocols.  Quoting from chapter 3 of SP 800-38C: “CCM is intended 
for use in a packet environment, i.e., where all data is in storage before CCM 
is applied” 



d. With n >= 11, use of a key would be limited to at least 288 packets, which we 
believe is sufficient for to all real-world applications of packet-based 
protocols. 
 

2) Define the counter generation function explicitly. 
a. The example in Appendix A of SP 800-38C is a good start. 
b. Applying the constraint of q <=4, allows CCM to share the same counter 

increment function as GCM, which is useful for hardware implementations 
which implement both standards. 

 

Best regards, 

Michael Bowler 
Security HW and System Architect 
Synopsys Inc. 
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4. Comments from John Preuß Mattsson (Ericsson), September 14, 2024 

 

Dear NIST, 

Thanks for your continuous efforts to produce well-written open-access security documents. 
Please find attached our comments on [SP 800-38B and] 800-38C. 

Best Regards, 
John Preuß Mattsson, 
Expert Cryptographic Algorithms and Security Protocols 



 
  

 
 
 
 
Date: September 14, 2024  

 

 
 

 Ericsson AB 
Group Function Technology 
SE-164 80 Stockholm 
SWEDEN  
 

 
 
Comments on SP 800-38B “The CMAC Mode for Authentication” and 
SP 800-38C “The CCM Mode for Authentication and Confidentiality” 
 

Dear NIST, 
 
Thanks for your continuous efforts to produce well-written, user-friendly, and open-access security 
documents. 

Please find below our feedback on the guidance for authentication tag lengths: 
 
As explained in [1], short tags have many important applications in various industries. For instance, 
32-bit tags are standard in most radio link layers including 5G, 64-bit tags are widely used in transport 
and application layers of the Internet of Things (IoT), and 32- and 64-bit tags are common in media 
protection applications. Although GMAC and GCM are not suitable for short tags [2], CMAC and CCM 
are perfectly suitable in these scenarios. For many applications, short tags provide substantial benefits 
and are secure in practice: 
 
– Audio packets are small, numerous, and ephemeral, so on the one hand, they are highly sensitive 

to cryptographic overhead, and on the other hand, forgery of individual packets is not a big concern 
as it typically is barely noticeable. Real-time audio codecs commonly encodes only 20 ms of audio 
in each packet. 
 

– Constrained radio networks are not only characterized by very small frame sizes in the range of 
tens of bytes transmitted a few times per day at ultra-low speeds, but also high latency, and severe 
duty cycle constraints. In multi-hop networks, the already small frame sizes are further reduced for 
each additional hop [3]. To achieve a 50% chance of a single forgery using a 64-bit ideal MAC, an 
attacker would need to transmit one billion packets per second for 300 years. This is completely 
unfeasible for constrained radio systems and the chance of this happening is negligible compared 
to the risk of data corruption due to hardware failure or cosmic rays [4]. 

 
– In lockstep protocols like EDHOC [5], where the session is terminated if verification fails, security 

against online attacks is given by the sum of the strength of the verified MACs. I.e., 𝑛 64-bit tags 
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provide the same security as a single 64𝑛-bit tag. Similar more complex uses of short tags are 
common in IoT and known as aggregate, compound, or cumulative MACs, see e.g., [6]. 

 
– In 5G user plane [7], encryption provides confidentiality for 5G Voice and privacy-sensitive 

metadata such as IP addresses and domain names. Integrity protection provides IND-CCA 
confidentiality and protects IP addresses from modification. 32-bit tags offer sufficient protection 
in this case. Applications with sensitive data use end-to-end over-the-top protection with strong 
security protocols like TLS.  

 
After careful analysis of the risks, we think short tags should be allowed for:  
– Real-time audio packets, where a few single forgeries do not alter the meaning. 
– Layer 2 in networks where sensitive data is already protected on higher layers. 
– Protocols where the security is given by the sum of the tag lengths. 
– Constrained radio networks, where the low bandwidth preclude many repeated trials. 
 
We therefore do not think the CMAC and CCM publications should require that all authentication tags 
meet a minimum threshold, such as 64 bits, but requiring at least 32-bit tags would be acceptable. For 
all applications of short tags it is essential that the MAC behaves like an ideal MAC, i.e., the forgery 
probability is ≈ 2!"#$%, even after many generated MACs, many forgery attempts, and after a 
successful forgery, where 𝑇𝑙𝑒𝑛 is the bit length of the authentication tag. This implies that the expected 
number of forgeries is ≈ 𝑣	 ⋅ 2!"#$%, where 𝑣 is the number of verification queries. CMAC and CCM 
behave like ideal MACs when the tag length is much shorter than the block size and the number of 
queries are limited. 
 
Tag length alone is not an accurate measure of security, as standardized MAC algorithms deviate from 
an ideal MAC in various ways. Rather than recommending a tag length of 64-bits, NIST should 
recommend constrains that ensure an effective tag length of 64 bits, i.e., security equal to or stronger 
than that of a 64-bit ideal MAC. This provides high security in almost all applications and implies that 
the expected number of forgeries is ≤ 𝑣	 ⋅ 2!&'. BSI states that using an ideal MAC with 96-bit tag 
length is acceptable [8] but achieving this level of security with AES-CMAC, AES-CCM, AES-GMAC, or 
AES-GCM is almost impossible since the security is limited by the narrow 128-bit block size in AES and 
the 128-bit digest size in GHASH. For untruncated tags, the forgery probability in all four algorithms 
depends on both the message length and the block length; in CMAC and CCM, the integrity advantage 
is quadratic in the number of queries, and all four algorithms offer zero reforgeability resistance. 

Please find below our comments on SP 800-38B (CMAC): 
 
- The specification states that CMAC provides assurance of authenticity. The revision should 

explain in more detail what assurances CMAC provides, for example that it does not provide key 
commitment. Most readers of SP 800-38B cannot be expected to know exactly what properties a 
message authentication code (MAC) algorithm typically provides. Users and implementors of 
cryptography are known to assume non-existing properties like key commitment, leading to 
practical vulnerabilities. We strongly agree with NIST’s guidelines that cryptographic standards 
should be chosen to minimize the demands on users and implementers as well as the adverse 
consequences of human mistakes and equipment failures [9]. 
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- The revision should specify that CMAC provides Strong Existential Unforgeability under Chosen-
Message Attack (SUF-CMA) and shortly explain what this means. 

 
- The specification defines the term least significant bit and the symbol LSBs(X), but they are never 

used. The revision should remove them. 
 

- The revision should explain that CMAC offers very different security properties depending on 
whether the tags are truncated or not. For truncated tags with a small number of generation 
queries 𝑞, CMAC behaves like an ideal MAC and therefore provides reforgeability resistance. In 
this case, the integrity advantage and the expected number of forgeries are both linear in 𝑣. For 
non-truncated tags, where 𝑇𝑙𝑒𝑛	equals the block size 𝑏, the integrity advantage is quadratic in 𝑞, 
the expected number of forgeries is cubic in the number of queries, and CMAC does not offer any 
reforgeability resistance. 
 

- Following the withdrawal of TDEA [10], the revision should remove TDEA and 64-bit blocks. Given 
that NIST will hopefully approve Rijndael-256-256 in the near future [11], the revision should 
define the bit string 𝑅()& and discuss constraints for 256-bit block sizes. The security of AES-CMAC 
is severely limited by the narrow 128-bit block size in AES. The limitation does not only restrict the 
output length [12], but also affects collision attack complexity, integrity advantage, expected 
number of forgeries, and reforgeability resistance. 

 
- Section 5.3 states that: “Any intermediate value in the computation of the subkey, in particular, 

CIPHK(0 b), shall also be secret.” . This gives the impression that using e.g., E*(0101… ) as a Key 
Check Value (KCV) might be ok, even if there is no reason to believe that such use is secure. 
 
The CMAC generation function described in Section 2.1 can be written as the equation 

 
𝑇	 = 	𝐸+(𝐸+(…𝐸+(𝐸+(𝑀,) 	⊕	𝑀()	…	⊕	𝑀%!,) 	⊕	𝑀% 

 
Assume an attacker knows 𝑋,, 𝑋(, …		𝑋- and  𝐸+(𝑋,), 𝐸+(𝑋()…	𝐸+(𝑋-) and let 
 

𝑌./ 	= 	𝐸+(𝑋.)⊕	𝑋/ 		
𝑍. 	= 	𝐸+(𝑋.) 	⊕ 	𝐵		

 
where 𝐵 is any chosen block. Then the messages  

 
𝐵 ||	𝑆,   𝑋. 	||	𝑍. 	||	𝑆,   	𝑋. 	||	𝑌./ 	||	𝑍/ 	||	𝑆,  	𝑋. 	||	𝑌./ 	||	𝑌/0 	||	𝑍0 	||	𝑆,  … 

 
where 𝑖, 𝑗, 𝑘, … ∈ {0,1, … ,𝑚} and 𝑆 is a suffix of any length (not necessarily complete blocks) have 
identical tags. Making any 𝑋, 𝐸+(𝑋) pair public completely breaks the security of CMAC. 
Furthermore, making 𝑠 bits of any 𝑋, 𝐸+(𝑋) pair public lowers the security of untruncated tags 
with 𝑠 bits. There is nothing particular with 𝐸+I01J. The attack above is a significant improvement 
of [13]. We plan to soon publish this result on IACR ePrint. 
 
The revision should state that making (part of) any 𝑋, 𝐸+(𝑋) pair public breaks the security of 
CMAC. 
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- Decrypting each side of the CMAC equation 𝑚− 1 times while moving the 𝑀/  operands to the left-
hand side, rearranging, and letting 𝑖	 = 	𝑛 − 𝑚, we can write any message block as a function of 
the other message blocks and the tag 
 

𝑀. = 𝐸+(𝐸+(…𝐸+(𝐸+(𝑀,) ⊕	𝑀()	…	⊕	𝑀.!() ⊕	𝑀.!,) 	⊕ 
						𝐷+(𝐷+(…𝐷+(𝐷+(𝑇) 	⊕	𝑀%)	…	⊕	𝑀.2() 	⊕	𝑀.2,)	 

 
With access to adaptive encryption and decryption oracles, an attacker can freely choose a prefix 
𝑃	 = 	𝑀,	|| …	||	𝑀.!, and a suffix 𝑆	 = 	𝑀.2,	|| …	||	𝑀%

∗  and then calculate 𝑀.  so that the message 
produces a chosen tag 𝑇. The attacker can control all bits except for the random-looking  𝑀. . This 
is a significant improvement of the attack by Amazon described in SP 800-108 [14] and shows 
that CMAC does not offer any preimage or collision-resistance when the key is known. We plan to 
soon publish this result on IACR ePrint. As acknowledged by NIST [14], lack of preimage or 
collision-resistance creates problems when used as a KDF [12,14] or as an entropy conditioning 
function [15], since a party controlling the inputs might be able make keys predictable or 
(partially) identical [14,16,17]. We think collision- and preimage-resistance should be a 
requirement for a Key Derivation Function (KDF). The potential solution to the Amazon attack 
described in SP 800-108 [14] is promising but seems ad-hoc and does not come with any 
motivation. We do not think CMAC should be used as a KDF or as an entropy conditioning function 
unless it can be proven that a specific construction and formatting of the inputs ensures collision 
resistance and preimage resistance.  
 
The revision should state that with a known key, CMAC does not offer any preimage or collision-
resistance and is therefore unsuitable as a KDF. 
 

- The revision should address Rogaway’s comments in Section 8.6 of [18]. 
 

- “The length of T, denoted Tlen, is a parameter that shall be fixed for all invocations of CMAC with 
the given key.” 
 
This kind of formulation should also be added to 800-38C and 800-38D, but a much better 
formulation would be that a minimum length of T should be fixed for all invocations. There is no 
problem with variable length tags as long as a minimum length is enforced. See e.g., Robust AE 
(RAE) [19] for an excellent use of variable length tags. 
 

- The specification discusses tag length and message span in different appendixes as if they were 
independent. Let 𝑇𝑙𝑒𝑛 be the tag length in bits, 𝑏 be the block size in bits, ℓ the message length in 
blocks, 𝑞 the number of generation queries, and 𝑣 the number of verification queries. Then based 
on [20] and ignoring constant factors, our understanding is that the integrity advantage is 
bounded by ≈ 𝑣	/	2"#$% + 𝑞(	/	21 + 𝑞ℓ(	/	21, where the terms 𝑣	/	2"#$% and 𝑞(	/	21 correspond to 
known attacks and are tight. The security is therefore a function of both the tag length and the 
message span 𝑞 and the revision should discuss them together. 
 

- Appendix A.1 discusses guessing attacks and states: 
 

”In particular, if the attacker selects a MAC at random from the set of strings of length Tlen 
bits, then the probability is 1 in 2Tlen that the MAC will be valid. Consequently, larger values of 
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Tlen provide greater protection against such an event. Of course, an attacker may attempt to 
systematically guess many different MACs for a message, or for different messages, and 
thereby increase the probability that one (or more) of them will be accepted as valid. For this 
reason, a system should limit the number of unsuccessful verification attempts for each key. 

 
This recommendation is lacking for several reasons. For many tag lengths and message spans, a 
guessing attack is not the best-known attack, and larger tags do not provide better security. The 
stated probability 2!"#$% might make readers believe that CMAC behaves like an ideal MAC. NIST 
does not state what the system should do when the limit is reached. Not accepting more 
verification attempts makes the system vulnerable to denial-of-service attacks and lowers the 
availability of the system. Rekeying does not help at all against the attack NIST describes as the 
forgery probability for each attempt would remain 2!"#$%. We suggest that the revision removes 
the quoted text and all other text on guessing attacks. Any text on limits should describe exactly 
what to do when the limit is reached and how this increases security. 
 
As long as ℓ( ≤ 𝑞 our understanding is that the integrity advantage is ≈ 𝑣	/	2"#$% + 𝑞(	/	21 and 
as a full tag collision lets an attacker create an unlimited amount of forgeries [21], the expected 
number of forgeries is ≈ 𝑣	/	2"#$% + 𝑣𝑞(	/	21. An ideal MAC would have integrity advantage 
𝑣	/	2"#$% and expected number of forgeries 𝑣	/	2"#$%. AES-CMAC with 32-bit tags and small 𝑞 as 
used in 4G and 5G always behaves like an ideal MAC. AES-CMAC with 128-bit tags never behaves 
like an ideal MAC. We note that Rijndael-256-256 with 128-bit tags would behave like an ideal 
MAC. The revision should describe that CMAC only behaves like an ideal MAC when 𝑞( ⋅ 2"#$% <
21. 
 
For narrow block sizes, larger values of 𝑇𝑙𝑒𝑛 only provides greater assurance for small values of 
𝑞. For AES-CMAC with 𝑞	 = 	2'4, which NIST recommends, the integrity advantage for 𝑇𝑙𝑒𝑛	 = 	32 
and	𝑇𝑙𝑒𝑛	 = 	128 are approximately the same. The revision should explain this. 
 

- Appendix A.2 states: “A value of Tlen that is less than 64 shall only be used in conjunction with a 
careful analysis of the risks of accepting an inauthentic message as authentic.”. The revision 
should mention that there are protocols where the security is given by the sum of the tag lengths. 
 

- Appendix A.2 states: 
 

“a value of Tlen smaller than 64 should not be used unless the controlling protocol or system 
sufficiently restricts the number of times that the verification process can return INVALID, 
across all implementations with any given key. For example, the short duration of a session.” 
 
“Tlen should satisfy the following inequality: Tlen ≥ lg(MaxInvalid / Risk)” 

 
Ensuring a high security per key is a theoretical simplification that does not reflect practical 
security. Rekeying based on MaxInvalid does not increase practical security as an attacker will 
just continue to attack subsequent keys. Not accepting more verification attempts without 
rekeying enables denial-of-service attacks on the system. Similarly, ensuring a high security for a 
single session does not help if there are many sessions. The formula does not consider that Risk 
depends on the message span 𝑞	and the block size 𝑏. In the revision we think Appendix A and 
Appendix B should be merged and much of the content rewritten. 
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- Appendix  B states that: 

 
“an attacker may be able to exploit a collision to produce the valid MAC for a new message” 

 
This seems to severely underestimate the problems with collision attacks and multiple forgeries. 
Given a collision, an attacker can trivially forge any number of new messages with probability 1. 
See the analysis of McGrew and Fluhrer [21]. Suggestion: 
 

“an attacker can exploit a collision to produce the valid MAC for any number of new messages” 
 
- Appendix  B states that: 

 
“For general-purpose applications, the default recommendation is to limit the key to no more 
than 248 messages when the block size of the underlying block cipher is 128 bits, as with the 
AES algorithm, and 221 messages when the block size is 64 bits, as with TDEA. Within these 
limits, the probability that a collision will occur is expected to be less than one in a billion for 
the AES algorithm, and less than one in a million for TDEA” 
 

This recommendation is lacking for several reasons. Collisions are not interesting for readers and 
there is no reason to switch from binary to decimal. The interesting property for users and 
developers is forgeries and the forgery probability can be much higher that the collision 
probability. If the message span is 𝑞, the collision probability is ≈ 𝑞(	/	21, the forgery probability 
is ≈ 𝑀𝑎𝑥𝐼𝑛𝑣𝑎𝑙𝑖𝑑	/	25 + 𝑞(	/	21, and the expected number of forgeries are ≈ 𝑣𝑞(	/	21. The 
specification does not recommend any restriction on the number of verification queries, but even 
if both 𝑞 and 𝑣 is limited to 248, the expected number of forgeries on AES-CMAC is ≈216. We suggest 
that 𝑞 and 𝑣	are severely limited. If we compare CMAC with an ideal MAC, the effective tag length 
is ≈ log((21/	𝑞(). We do not know if the term ≈ 𝑞ℓ(	/	21 corresponds to concrete attacks and if it 
can be used for reforgeability. We think NIST in all algorithm specifications should recommend 
parameters giving an effective tag length of at least 64 bits. As a comparison, the effective tag 
length of AES-GMAC is ≈ log((2,(4/	𝑣ℓ). 
 

- Appendix C states that a protocol or application may protect against replay attacks. This is weaker 
that the text in SP 800-38C that says that a protocol or application should protect against replay 
attacks. We think replay protection should be a strong requirement unless careful analysis of the 
whole system shows that replay protection is not needed in some specific part. Users and 
developers expect replay protection and higher layer protocols are often designed with the 
expectation that the security protocol provides replay protection. One example where no replay 
protection might be acceptable is 0-RTT in TLS 1.3 [22], but only after very careful analysis by the 
server on what kind of data to accept. Systems without replay protection often leads to surprising 
attacks and are hard to analyze. It is not a coincidence that Section 8 and E.5 in RFC 8446 [22] 
spends many pages analyzing security considerations for replayable 0-RTT data. 
 
If an upper layer was designed with the expectation of replay protection in a lower layer, using a 
security protocol without replay protection in the lower layers can compromise confidentiality, 
integrity, and availability in the higher layer, i.e., the whole infosec CIA triad. Practical and serious 
vulnerability due to the lack of replay protection has been common in both standardized and 
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proprietary systems. It is sometimes argued that replay protection can be turned off in a lower 
layer as it is handled in a higher layer. This might be correct for the current configuration but often 
leads to security vulnerabilities when the higher layers are updated or changes. One recent 
example is DTLS 1.3 [23] where the post-handshake messages were designed with the 
expectation that replay protection is provided by the record layer and it was forgotten that DTLS 
allows turning of record layer replay protection. IETF is discussing updating DTLS 1.3 to forbid 
turning off replay protection. 
 
The revision should mandate replay protection unless careful analysis of the whole system shows 
that replay protection is not needed in some specific part. 

Please find below our comments on SP 800-38C (CCM): 
 

- Many of our comments on SP 800-38B also apply to 800-38C. Below are additional comments. 
 

- Rogaway states in [18] that: 
 
“I question NIST’s decision to “isolate” the formatting and counter-generating functions to a 
non-binding appendix; as ungainly as these functions may be, I believe that their selection 
must, in the interest of interoperability and assurance, be considered as an intrinsic part of the 
standard, something that is fixed and mandated in any follow-on standardization” 
 
“to the best of my knowledge, no formatting or counter-generation functions other than the 
canonical pair have ever been specified or used. In addition, all of the other standards 
specifying CCM, including RFC 3610 [204], fold the definition of the canonical formatting 
function and counter-generation function directly into the scheme that they too name CCM. In 
general, given the relatively complex requirements that the (Format, Count) pair must satisfy, 
given the complex engineering-tradeoffs implicit in selecting a definition for these objects, 
given the easy opportunity for error, and given that the goal of interoperability that is one of 
the aims of a cryptographic standard, I find it untenable to think that CCM is ever going to be 
used with anything other than the canonical formatting function and counter-generation 
function.” 

 
We agree with Rogaway, the revision should mandate the formatting and counter-generating 
functions and move them to the body of the specification.  
 

- Section 5.3 states “The nonce is not required to be random”, suggesting that random nonces is 
allowed. If CCM is used with random nonces, the security against ciphertext-only collision attacks 
compromising confidentiality is only ≈	 |𝐼𝑉| 	+ 	1	 −	 log( 𝑛 where |𝐼𝑉| can be as low as 56 and 𝑛 
can be as large as ≈ 259, see Table 1 and Section 3.1 of [24].  Unlike 800-38D, 800-38C does not 
mandate any specific nonce constructions, maximum collision probabilities, or maximum number 
of invocations. 
 
As stated in Section 11.9 of [18], Rogaway and Fergusson suggest that “The nonce is not required 
to be random” should be interpreted as the nonce need not be unpredictable. It is likely this was 
NIST’s intention. However, we believe that developers and users are unlikely to interpret the 
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statement in this way. In fact, the official documentation of many cryptographic libraries 
exemplifies the use of AES-CCM with random nonces and the widely-used Python package 
PyCryptodome [25] defaults to 11-byte random nonces with AES-CCM, resulting in only 89	 −
	𝑙𝑜𝑔( 𝑛  bits of security. 
 
The revision should explicitly forbid random nonces. If random nonces are allowed they should at 
least have the same restriction as in GCM, where the random field is at least 96 bits and the 
number of GCM invocations is restricted to 232. Note that we do not think a 96-bit random field 
provides acceptable security and should be forbidden. Rogaway makes the same 
recommendation “I also recommend that randomly-chosen IVs be explicitly disallowed”  [18]. 
 

- Section 5.1 states that “The total number of invocations of the block cipher algorithm during the 
lifetime of the key shall be limited to 261” 
 
As written this this limit apply to the total number of invocations in the encryption and decryption 
function. This is not very useful for users and developers. The revision should state independent 
limits for the encryption and decryption function. As described by Rogaway in Section 11.8 of [18] 
the relation between the number of block cipher invocations and the number of CCM invocations 
is complicated. For simplicity, implementations might want to limit the number of CCM invocations 
instead of block cipher invocations. The revision should give guidance to users and developers 
that are limiting the number of CCM invocations. 

Best Regards, 
John Preuß Mattsson, 
Expert Cryptographic Algorithms and Security Protocols 
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