From: Kirk Fleming <kpfleming@mail.com>

Sent: Monday, November 9, 2020 8:35 PM

To: pgc-comments

Cc: pgc-forum

Subject: ROUND 3 OFFICIAL COMMENT: Classic McEliece

There is a strong possibility that NIST intend to standardize Classic McEliece at the
end of Round 3 as a conservative option. Their Status Report on the Second Round
expressed confidence in its construction and said that they believed it could be ready
for standardization if selected. Standardizing Classic McEliece, however, also means
standardizing at least some of the parameter sets proposed by the submitters.

I am filing this comment to request that the Classic McEliece submitters justify the
claimed security categories for their parameters.

The Round 3 submission does not include any concrete analysis of the security provided
by the proposed parameter sets. There is a lot of hype about the asymptotic result from
Canto Torres and Sendrier but this is ultimately irrelevant for any finite choice of
parameters. The only firm statement contained in the submission is:

"[Bernstein, Lange and Peters. 2008] reported that its attack uses 2°266.94 bit
operations to break the (13,6960,119) parameter set. Subsequent ISD variants
have reduced the number of bit operations considerably below 2~256."

The submission argues that any reduction in classical security from improved ISD attacks
will be offset by the increased memory requirements. While this may be true for some ISD
variants such as BJMM, they provide no analysis to back this up. It also ignores other

ISD variants such as Stern that need significantly less memory. In this case the finite
regime analsysis from the LEDACrypt team gives the following estimates of computational
and memory costs for the pre-merger Classic McEliece and NTS-KEM parameters:

Parameter Set Compute Memory Target

mceliece-3488-064 152.51 34.68 143
mceliece-4608-096 194.36 35.66 207
mceliece-6688-128 270.46 37.48 272
mceliece-6960-119 271.18 47.58 272
mceliece-8192-128 306.63 67.64 272

nts-kem-4096-064 166.76  35.60 143

nts-kem-8192-080 248.01 77.63 207

nts-kem-8192-136 313.52 67.50 272
By this analysis:

- The mceliece-4608-096 parameters are about 13 bits below Category 3 with an attack
that needs slightly over 6 GiB of memory.

- The mceliece-6688-128 parameters are borderline Category 5 with an attack that needs
slightly over 22 GiB of memory.

- The mceliece-6960-119 parameters are borderline Category 5 with an attack that needs
around 24 TiB of memory.

If Classic McEliece is to be standardized as a conservative option then the parameter sets
that are standardized with it should also be chosen conservatively. The NTS-KEM parameters
were. Three out of the five Classic McEliece parameters were not.

Kirk


https://2^266.94
mailto:kpfleming@mail.com

From: Kirk Fleming <kpfleming@mail.com>

Sent: Wednesday, November 11, 2020 12:20 PM

To: pgc-forum

Cc: pgc-comments

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece

Kirk Fleming wrote:

> In this case the finite regime analysis from the LEDACrypt team gives the following
> estimates of computational and memory costs for the pre-merger Classic McEliece
> and NTS-KEM parameters:

It was pointed out that my finite regime analysis reference was unclear. The figures were
taken from Tables 4 and 5 in Baldi, Barenghu, Chiaraluce, Pelosi and Santini, "A finite
regime analysis of Information Set Decoding algorithms", Algorithms 12, no. 10 (2019).
The paper can be found at https://www.mdpi.com/1999-4893/12/10/209/pdf.

Kirk


https://www.mdpi.com/1999-4893/12/10/209/pdf

From: D. J. Bernstein <djb@cr.yp.to>

Sent: Thursday, November 19, 2020 7:38 AM

To: pgc-comments

Cc: pqc-forum

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece
Attachments: signature.asc

Kirk Fleming writes:

> mceliece-3488-064 152.51 34.68 143
mceliece-4608-096 194.36 35.66 207
mceliece-6688-128 270.46 37.48 272
mceliece-6960-119 271.18 47.58 272
mceliece-8192-128 306.63 67.64 272

V V V V

We agree that the second column is sometimes less than the fourth column.
However, the second column ignores the huge overheads measured by the third column. As stated in the submission:

A closer look shows that the attack in [11] is bottlenecked by random
access to a huge array (much larger than the public key being

attacked), and that subsequent ISD variants use even more memory. The
same amount of hardware allows much more parallelism in attacking,
e.g., AES-256.

The submission goes on to state expectations regarding (e.g.) 6960119 being more expensive to break than AES-256. The
numbers you quote (e.g.,
27271.18 operations on 2747.58 bits of RAM) are consistent with these expectations.

The literature shows that optimized hardware for AES attacks has similar efficiency to multipliers. The multipliers in an
Intel CPU core carry out millions of bit operations in the same time that it takes the core to retrieve data from (say) 6GB
of RAM, never mind RAM contention across cores. GPUs and TPUs show the costs of RAM even more clearly. On a larger
scale, decades of supercomputing literature consistently fit a square-root scaling of RAM costs, and science-fiction 3D
computers (which seem much harder to build than quantum computers) would still have cube-root costs.

> | am filing this comment to request that the Classic McEliece
> submitters justify the claimed security categories for their parameters.

Can you please clarify how you think that the numbers already in the literature don't already justify the assignments in
the submission?

Our best guess is that you're assuming that NIST requires >=27272 operations in a specified metric for "category 5", and
that 24271.18 is an evaluation in this metric. But the assumption here isn't correct.

NIST has not issued clear definitions of the cost metrics for its "categories". If at some point NIST does issue clear, stable
definitions of its cost metrics, then it should also allow all submitters to set their "category" assignments accordingly.

Note that one can make any cryptosystem sound much easier to break by choosing a cost metric that assigns
unrealistically low cost to operations used in attacks; RAM access is just one example. If the same operations are not
bottlenecks in attacks against AES-m or SHA-n then this can reverse comparisons to AES-m or SHA-n respectively.



> The Round 3 submission does not include any concrete analysis of the
> security provided by the proposed parameter sets.

Not true. For example, the stated expectation to be "more expensive to break than AES-256" is concrete, and the
rationale is stated. A more detailed analysis depends on the cost metric.

> There is a lot of hype about the asymptotic result from Canto Torres
> and Sendrier

The graph in https://video.cr.yp.to/2020/0813/video.html shows that asymptotic lattice security levels against attacks
known 10 years ago were 42% higher than lattice security levels against attacks known today (for otherwise unbroken
lattice systems), while for McEliece's system the change is 0%. Any thorough evaluation of security risks will take these
facts into account, along with other risk indicators.

> but this is ultimately irrelevant for any finite choice of parameters.
The submission already says, at the top of the "Information-set decoding, concretely" section:

We emphasize that o(1) does not mean 0: it means something that
converges to 0 as n->infty. More detailed attack-cost evaluation is
therefore required for any particular parameters.

The section goes on to summarize what the literature says about concrete cost analyses, and ends with the AES-256
comparison reviewed above.

> The submission argues that any reduction in classical security from
> improved ISD attacks will be offset by the increased memory

> requirements. While this may be true for some ISD variants such as
> BJMM, they provide no analysis to back this up.

Again, here's the critical quote from the submission:

A closer look shows that the attack in [11] is bottlenecked by random
access to a huge array (much larger than the public key being

attacked), and that subsequent ISD variants use even more memory. The
same amount of hardware allows much more parallelism in attacking,
e.g., AES-256.

The exact impact depends on the cost metric.

> It also ignores other
> |SD variants such as Stern that need significantly less memory.

No, the submission doesn't ignore this. The "attack in [11]" (see quote
above) is a Stern-type attack. The submission's comment that "subsequent ISD variants use even more memory" (see
guote above) is pretty much the same as your comment that Stern-type attacks "need significantly less memory".

> -The mceliece-4608-096 parameters are about 13 bits below Category 3 with
> an attack that needs slightly over 6 GiB of memory.

Evaluating such a claim would require a clear, stable definition of "Category 3". If NIST settles on a definition to be used
in NISTPQC then submitters will be able to make "category" assignments accordingly.
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See above regarding the actual costs of accessing 6GB of RAM.

> If Classic McEliece is to be standardized as a conservative option

> then the parameter sets that are standardized with it should also be

> chosen conservatively. The NTS-KEM parameters were. Three out of the
> five Classic McEliece parameters were not.

Please clarify. Are you saying anything here beyond the 214194 vs. 27207,
27270 vs. 27272, and 22271 vs. 27272 discussed above?

If you're concerned about 22270 RAM operations vs. 22272 bit operations then you should be far more concerned about
NIST dropping the targets from 24256 to 2/128:

* Multi-target attacks turn 22128 into something already feasible for
large-scale attackers today. ECC is an exception to this (provably,
via a tight self-reduction), but codes and lattices and AES aren't
exceptions. See https://blog.cr.yp.to/20151120-batchattacks.html.

* Both round-1 Classic McEliece options were at the 27256 level.
However, NIST then praised NTS-KEM for offering lower-security
options, and asked Classic McEliece for "parameter sets for other
security categories".

From this perspective, NTS-KEM and NIST were far less conservative than Classic McEliece was. Note that general trends
in networking and in CPUs are making the high-security Classic McEliece parameter sets affordable for more and more
users.

There's also a tremendous amount to say about the dangers of unnecessary complexity. One aspect of this is specifying
more parameter sets than necessary. Of course, NIST's request for lower-security parameter sets was an offer that
Classic McEliece couldn't refuse, but we continue to recommend the 22256 parameter sets. Within those parameter
sets:

* The 6960119 parameter set goes back to 2008, maximizing security
for 1MB keys. This has held up just fine, and can reasonably be
viewed as the default choice.

* The new 6688128 parameter set is a slight variant that requires n
and t to be multiples of 32, which _might_ be slightly better for
formal verification, but the jury is still out on this. (Components
are being verified---see https://cr.yp.to/papers.html#controlbits
for the latest news---but this work hasn't yet reached the
components that could interact with the multiple-of-32 question.)

* The 8192128 parameter set is bigger, but the 6960119 and 6688128
parameter sets include an extra defense explained in the
submission. People paranoid enough to imagine 22306 vs. 24270
making a difference should also be paranoid enough to imagine this
defense making a difference.

One can easily write down even larger parameter sets. Also, the ISD attack analyses in the literature are precise and
straightforward, and it should be easy to evaluate the security of any desired parameters in any well-defined metric.
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However, the right order of events is, first, for NIST to fully define the cost metric to be used for "categories", and,
second, for all submission teams to evaluate costs in this metric.

---Dan (on behalf of the Classic McEliece team)



From: pqc-forum@list.nist.gov on behalf of Kirk Fleming <kpfleming@mail.com>

Sent: Monday, November 23, 2020 8:01 PM

To: pgc-comments

Cc: pqc-forum

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece

Dan Bernstein wrote:

> Kirk Fleming writes:

>>

>> mceliece-3488-064 152.51 34.68 143

>> mceliece-4608-096 194.36 35.66 207

>> mceliece-6688-128 270.46 37.48 272

>> mceliece-6960-119 271.18 47.58 272

>> mceliece-8192-128 306.63 67.64 272

>

> We agree that the second column is sometimes less than the fourth column.
> However, the second column ignores the huge overheads measured by the
> third column.

No. The second column includes a logarithmic memory overhead. This is not
an accurate analysis of the cost of memory accesses but it does not ignore it.

> As stated in the submission:

A closer look shows that the attack in [11] is bottlenecked by random
access to a huge array (much larger than the public key being

attacked), and that subsequent ISD variants use even more memory. The
same amount of hardware allows much more parallelism in attacking,
e.g., AES-256.

VVVVYVYV

This is the second time you've used the word "huge". Let's give it some
perspective. 27 35.66 bits is less RAM than the laptop I'm using to write
this. 27°47.58 bits is the same as Amazon EC2's u-24tb1l.metal instance.
Maybe the "u" stands for 'uge.

> The submission goes on to state expectations regarding (e.g.) 6960119

> being more expensive to break than AES-256. The numbers you quote (e.g.,
> 2/7271.18 operations on 2°47.58 bits of RAM) are consistent with these

> expectations.

Your submission and this reply focus almost exclusively on the
mceliece-6960-119 parameter set. What about the other four?

> The literature shows that optimized hardware for AES attacks has similar

> efficiency to multipliers. The multipliers in an Intel CPU core carry

out millions of bit operations in the same time that it takes the core

to retrieve data from (say) 6GB of RAM, never mind RAM contention across
cores. GPUs and TPUs show the costs of RAM even more clearly. On a
larger scale, decades of supercomputing literature consistently fit a
square-root scaling of RAM costs, and science-fiction 3D computers

(which seem much harder to build than quantum computers) would still
have cube-root costs.

\%

VVVYVYVYV

No. It's not as simple as applying a square-root overhead for memory across

the board. For an interesting (but not very rigorous) example see
http://www.ilikebigbits.com/2014_04_21_myth_of_ram_1.html. The blog argues
for a square-root memory cost. If you look at the graphs this is a poor

fit in the 10 MiB to 6 GiB range.



Not all memory accesses are the same. The memory overhead depends on the
number of random accesses to high-latency memory. One cost model in Ray
Perlner's slides assumes that up to 2”50 bits of memory is local with

unit cost memory accesses.

>> I am filing this comment to request that the Classic McEliece submitters
>> justify the claimed security categories for their parameters.

>

> Can you please clarify how you think that the numbers already in the

> literature don't already justify the assignments in the submission?

Let's try an easier question. Can you point to the paper cited by your
submission that gives numbers for the mceliece-4608-096 parameter set
which clearly justify its assignment as category 37

> Our best guess is that you're assuming that NIST requires >=2/272
> operations in a specified metric for "category 5", and that 272271.18 is
> an evaluation in this metric. But the assumption here isn't correct.

> NIST has not issued clear definitions of the cost metrics for its

> "categories". If at some point NIST does issue clear, stable definitions
> of its cost metrics, then it should also allow all submitters to set

> their "category" assignments accordingly.
>
>
>
>
>
>

Note that one can make any cryptosystem sound much easier to break by
choosing a cost metric that assigns unrealistically low cost to

operations used in attacks; RAM access is just one example. If the same
operations are not bottlenecks in attacks against AES-m or SHA-n then
this can reverse comparisons to AES-m or SHA-n respectively.

No. You are arguing that because NIST has not specified a single metric
no evaluation in any metric can be valid. The Call for Proposals actually
says (NIST's emphasis):

"In order for a cryptosystem to satisfy one of the above security
requirements, any attack must require computational resources
comparable to or greater than the stated threshold, with respect
to *all* metrics that NIST deems to be potentially relevant to
practical security."

NIST gives circuit size as an example of a metric and says that AES-192 key
recovery is equivalent to 2”207 classical gates in this metric. The finite
regime analysis estimates that breaking mceliece-4608-096 with Stern takes
27°194.4 classical gates including a logarithmic overhead for memory accesses
to 6 GiB of RAM. Whether or not NIST deems this to be potentially relevant to
practical security is up to them.

>> The Round 3 submission does not include any concrete analysis of the
>> security provided by the proposed parameter sets.

>

> Not true. For example, the stated expectation to be "more expensive to
> break than AES-256" is concrete, and the rationale is stated. A more

> detailed analysis depends on the cost metric.

We have different ideas of what constitutes concrete analysis. Let's take
a look at what section 8.2 of your submission actually says. Don't worry.
It's not that long.

"As an example, our parameter set mceliece6960119 takes m=13, n=6960,
and t=119. This parameter set was proposed in the attack paper [11]
that broke the original McEliece parameters (10,1024,50).



That paper reported that its attack uses 2°266.94 bit operations to
break the (13,6960,119) parameter set. Subsequent ISD variants have
reduced the number of bit operations considerably below 2”256.

However:

- None of these analyses took into account the costs of memory
access. A closer look shows that the attack in [11] is bottle-
necked by random access to a huge array (much larger than the
public key being attacked), and that subsequent ISD variants
use even more memory. The same amount of hardware allows much
more parallelism in attacking, e.g., AES-256.

- Known quantum attacks multiply the security level of both ISD
and AES by an asymptotic factor of 0.5 + o(1), but a closer
look shows that the application of Grover's method to ISD
suffers much more overhead in the inner loop.

We expect that switching from a bit-operation analysis to a cost
analysis will show that this parameter set is more expensive to

break than AES-256 pre-quantum and much more expensive to break
than AES-256 post-quantum.”

That's it. No mention of the other parameter sets. No attempt to quantify
the impact of memory accesses. Just a vague statement that something
that is "considerably below 27256" bit operations will be fine because
memory.

>> There is a lot of hype about the asymptotic result from Canto Torres
>> and Sendrier

>

> The graph in https://video.cr.yp.to/2020/0813/video.html| shows that
> asymptotic lattice security levels against attacks known 10 years ago
> were 42% higher than lattice security levels against attacks known today
> (for otherwise unbroken lattice systems), while for McEliece's system
> the change is 0%. Any thorough evaluation of security risks will take
> these facts into account, along with other risk indicators.

>

>> but this is ultimately irrelevant for any finite choice of parameters.

This is the irrelevant hype I mean. You are ignoring asymptotic improvements
to half-distance decoding because McEliece uses errors with sublinear weight
yet compare it with asymptotic improvements to the exact short vector problem
even though lattice schemes depend on different variants of the problem.

> The submission already says, at the top of the "Information-set

> decoding, concretely" section:

>

> We emphasize that o(1) does not mean 0: it means something that

> converges to 0 as n->infty. More detailed attack-cost evaluation is

> therefore required for any particular parameters.

>

> The section goes on to summarize what the literature says about concrete
> cost analyses, and ends with the AES-256 comparison reviewed above.

The rest of section 8.2 is quoted above in its entirety. The literature
says much more about concrete cost analyses than this "summary".

>> The submission argues that any reduction in classical security from
>> improved ISD attacks will be offset by the increased memory

>> requirements. While this may be true for some ISD variants such as
>> BIMM, they provide no analysis to back this up.

>

> Again, here's the critical quote from the submission:



A closer look shows that the attack in [11] is bottlenecked by random
access to a huge array (much larger than the public key being

attacked), and that subsequent ISD variants use even more memory. The
same amount of hardware allows much more parallelism in attacking,
e.g., AES-256.

VVVVYVYVYV

> The exact impact depends on the cost metric.

>

>> It also ignores other

>> ISD variants such as Stern that need significantly less memory.

>

> No, the submission doesn't ignore this. The "attack in [11]" (see quote

> above) is a Stern-type attack. The submission's comment that "subsequent

> ISD variants use even more memory" (see quote above) is pretty much the

> same as your comment that Stern-type attacks "need significantly less

> memory".

>

>> - The mceliece-4608-096 parameters are about 13 bits below Category 3 with
>> an attack that needs slightly over 6 GiB of memory.

>

> Evaluating such a claim would require a clear, stable definition of

> "Category 3". If NIST settles on a definition to be used in NISTPQC then

> submitters will be able to make "category" assignments accordingly.
>
>

See above regarding the actual costs of accessing 6GB of RAM.

No. The definition of category 3 is stable. Your argument is that NIST has
not specified a single metric. Evaluating the claim only needs a metric that
NIST deems practically relevant.

For example, the cost of breaking mceliece-4608-096 using Stern with no,
logarithmic, cube-root, or square-root memory overhead is:

Parameter Set Free Log Cbrt Saqrt
mceliece-4608-096: 189.2 194.4 200.3 204.6

Ray Perlner's cost model slides include almost all of these metrics. None
of them give an estimate greater than 2207 classical gates.

>> If Classic McEliece is to be standardized as a conservative option

>> then the parameter sets that are standardized with it should also be

>> chosen conservatively. The NTS-KEM parameters were. Three out of the
>> five Classic McEliece parameters were not.

>

> Please clarify. Are you saying anything here beyond the 22194 vs. 27207,
> 27270 vs. 27272, and 27271 vs. 27272 discussed above?

>

> If you're concerned about 272270 RAM operations vs. 27272 bit operations

No, no, no. 27°189.2 classical gates does not mean 27189.2 random memory
accesses. Not all gates involve a memory access. Not all memory accesses
are to high-latency memory. Not all high-latency memory accesses are
random. My point is that you can't just say that everything will be fine
because memory. You actually need to do the analysis.

> There's also a tremendous amount to say about the dangers of unnecessary
> complexity. One aspect of this is specifying more parameter sets than

> necessary. Of course, NIST's request for lower-security parameter sets

> was an offer that Classic McEliece couldn't refuse, but we continue to

> recommend the 2°256 parameter sets.

I assume that if Classic McEliece is chosen for standardization you will
be withdrawing the parameter sets that you don't recommend for use.
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> One can easily write down even larger parameter sets. Also, the ISD
> attack analyses in the literature are precise and straightforward, and
> it should be easy to evaluate the security of any desired parameters in
> any well-defined metric. However, the right order of events is, first,

> for NIST to fully define the cost metric to be used for "categories",

> and, second, for all submission teams to evaluate costs in this metric.

No. The right order of events is, first, submit parameter sets with security
estimates in a metric that you think is practically relevant and, second,
let eveyone else spend three rounds of the NIST process evaluating those
claims. That's what most of other submissions have done.

> ---Dan (on behalf of the Classic McEliece team)

Kirk

You received this message because you are subscribed to the Google Groups "pgc-forum" group.

To unsubscribe from this group and stop receiving emails from it, send an email to pgc-forum-+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pgc-forum/trinity-2fd8b511-
ef73-4d23-80f9-f60c63ff91a9-1606179667109%403c-app-mailcom-Ixa05.




From: D. J. Bernstein <djb@cr.yp.to>

Sent: Monday, December 7, 2020 5:21 AM

To: pgc-comments

Cc: pqc-forum

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece
Attachments: signature.asc

Speaking for myself in this message. As far as | can tell, the questions specific to Classic McEliece have already been
answered. There are some broader NISTPQC process points here for NIST to address (as shown by the inconsistent
handling of different cryptosystems), and there are some factual errors that I'll correct for the record.

As a starting point, there appears to be a misconception that NIST has already defined metrics to be used for the
NISTPQC "categories": namely, (non-quantum and quantum) "gates" metrics, ignoring the costs of RAM.

If this were true then | would agree that all submissions have to report security in these metrics. But it isn't true. NIST
has never issued any such definition. There are many different definitions of (non-quantum and quantum) "gates" in the
literature, with many variations (e.g., sometimes RAM gates, sometimes not), often producing radically different cost
numbers; NIST has never said which "gates" we're supposed to use.

The hard way to check this is to dig through the complete NISTPQC archives and look at what NIST has written. The easy
way, for people who know some quantum algorithms, is to consider the following two facts:

* The NISTPQC call for proposals claims that known SHA3-256 collision
attacks need 27146 "gates", with no quantum speedups.

* It's easy to find SHA3-256 collisions in only about 2485 oracle
queries, which is in the ballpark of 24100 quantum "gates" with the
"gates" defined in, e.g., Ambainis's famous distinctness paper and
used in many other quantum-walk papers.

To see the 2785, apply Ambainis's algorithm to 128-bit strings

after a random prefix. Or, simpler and presumably faster, apply the
BHT (Brassard--Hoyer--Tapp) algorithm to 256-bit strings. This
means a Grover search through 170-bit inputs for hashes appearing
in a table of 2286 hashes of other inputs.

To see the 27100, start from the 2”285 and look at the cost of
SHA3-256 evaluation. Maybe ends up slightly over 100, but maybe
not: one can handle a large oracle cost by adjusting 170 down and
86 up. The exact number doesn't matter for anything I'll say here.

Given the gap between 22100 and 27146, why does the call for proposals ignore BHT, Ambainis, etc.? Anyone who
thinks that NIST has defined "gates", and that NIST's "gates" allow free memory, will have trouble explaining this.

It's clear how many _operations_ are used by (e.g.) BHT, but turning the operation count into a cost number to compare
to other attacks requires defining a cost metric. Novices might think that the choice of cost metric is a matter of "low-
order details", but the gap between 22146 and



27100 is bigger than most of the attack advances we've seen in NISTPQC, including advances that NIST has used to
publicly justify its decisions.

It's almost as big as the gap between Kyber-768 and what the New Hope paper calls "Jarlar". It's bigger than the pre-
guantum gap between

RSA-2048 and RSA-1024.

Once upon a time, NIST cited https://cr.yp.to/papers.html#collisioncost

as justification for ignoring BHT. But that paper doesn't use a "gates"

metric, so this doesn't salvage the idea that NIST has defined a "gates"

metric. That paper also takes RAM costs into account in exponents, which is the opposite direction from treating RAM as
free.

Ray Perlner claimed in August 2020 that quantum RAM gates are "much less realistic" than non-quantum RAM gates.
This sounds very wrong to me--- cost 1 for an unlimited-size array lookup is not reality, and will never be reality, whether
guantum or not---but in any case it doesn't resolve the more basic problem of _not having a definition_.

Where's the definition that says exactly which gates are included in NIST's "gates"? If the situation is supposed to be that
NIST's "quantum gates" exclude RAM gates while, bizarrely, NIST's "classical gates"

_include_ RAM gates, then we should all be able to confidently see this by looking at NIST's definition. But there is no
definition!

The fact that NIST has never defined a cost metric to be used in NISTPQC is a disincentive for detailed cost evaluations.
Consider the quandary facing Caroline the Cryptanalyst:

* If Caroline does the work to analyze system S in a realistic cost
metric (e.g., 1981 Brent--Kung with appropriate parameter choices,
or a quantum variant of the same thing) then people who don't like
S will complain that Caroline is cheating and overestimating
security through the choice of metric.

* If Caroline instead picks a simpler cost metric that ignores the
costs of RAM etc. then maybe Caroline will have less work, but
people who like S will (correctly) complain that Caroline is
underestimating security.

Caroline would be able to justify an analysis by pointing to NIST's request for a particular metric---but NIST hasn't
defined a metric to use. Is it a surprise, then, that detailed cost evaluations in NISTPQC have been so rare? Is it a surprise
that, to the extent they exist, they don't agree on which cost metrics to use?

Simply counting the higher-level operations that naturally appear in attacks doesn't run into these problems, but how
are we supposed to compare attacks against different systems? Or attacks against the same system, when the
underlying operations are different? (For example, within published lattice attacks, quantum enumeration looks more
efficient than sieving in _some_ cost metrics, although in this case there are also many unresolved questions about the
higher-level operation counts.)

Even worse, NIST has managed to make many casual observers (not the careful observers such as Caroline!) believe that
NIST _has_ defined metrics to be used in NISTPQC. The unfortunate reality is that there's a definitional void filled with
unjustified and conflicting assumptions.

For example:

* Some people think that NIST "gates" assign low costs to memory (so
BHT uses 22100 NIST "gates" and the call for proposals is wrong).
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* Some people think that NIST "gates" assign high costs to memory
(which is why BHT doesn't beat 22146 NIST "gates").

These incompatible beliefs end up being applied inconsistently to different candidates, as we're seeing in discussions
right now about multiple finalists. The same lack of definitions means that nobody can figure out the "category"
boundaries, even for the small number of submissions where operation counts in attacks are thoroughly understood.
This is a cross-cutting failure in the NISTPQC evaluation procedures.

NIST has the unique power to fix this mess by issuing a _complete_ definition of a metric (or multiple metrics if that's
really needed) for _all_ NISTPQC submissions to use. This means not just waving around ambiguous words such as
"gates", but clearly specifying _which_ gates.

We can use, say, vVOW and BHT cost analyses as test cases for the clarity of the definition, and then we can all go ahead
with evaluating all submissions in the same metric.

Will this be the "best" metric? Unlikely. Maybe it will be so poorly chosen as to noticeably damage parameter selection.

But we're starting from major ongoing damage to the evaluation process as a direct result of NIST's "category"
boundaries not having clear definitions.

> > We agree that the second column is sometimes less than the fourth column.
> > However, the second column ignores the huge overheads measured by

> > the third column.

> No. The second column includes a logarithmic memory overhead.

Counting cost 1 for each bit of an index i is simply reading i; it is not covering the far larger costs of retrieving x[i]. The
attack is, as the submission states, "bottlenecked by random access to a huge array"; it is not bottlenecked by inspecting
the indices used for this access.

The picture to have in mind here is a RAM request moving a huge distance down wires (or fiber or any other physical
communication technology), compared to inspecting bits locally.

In algorithm analysis, pointing to overhead beyond cost analysis X means pointing to a cost that _isn't_included in X. A
reader who redefines "overhead" to cover something that _is_ included in X is not correctly presenting the original
statement. This redefinition is also missing the point in this case: what we care about are "the huge overheads" of
continual RAM access, since those are the bottlenecks in the attack.

> > As stated in the submission:

>> A closer look shows that the attack in [11] is bottlenecked by random

>> access to a huge array (much larger than the public key being

>> attacked), and that subsequent ISD variants use even more memory. The
>> same amount of hardware allows much more parallelism in attacking,
>> e.g., AES-256.

> This is the second time you've used the word "huge". Let's give it

> some perspective. 2135.66 bits is less RAM than the laptop I'm using

> to write this.

It's also 10000 times larger than the public key. This is "a huge array (much larger than the public key being attacked)",
as the submission says. The same circuit size "allows much more parallelism in attacking, e.g., AES-256", as the
submission says. See

https://www.sites.google.com/site/michaeljameswiener/dessearch.pdf

for an example (predating AES) of the efficiency of special-purpose hardware for cipher attacks.

3



The laptop "perspective" wildly overestimates the costs of attacks, as already established in the literature on attack
hardware. The amount of overestimation varies from one cryptosystem to another. This makes the laptop "perspective"
useless for serious security evaluation---so why are we seeing this "perspective" appearing in NISTPQC discussions?
Answer: it's yet another random attempt to fill the void left by NIST's failure to _define_ the NISTPQC security
requirements. All sorts of people interested in NISTPQC are being put in the position of figuring out for themselves what
the NISTPQC security levels mean, because the only organization in a position to do the job centrally hasn't done it.

> > The submission goes on to state expectations regarding (e.g.)

>> 6960119 being more expensive to break than AES-256. The numbers you
> > quote (e.g.,

>>2/271.18 operations on 2747.58 bits of RAM) are consistent with

> > these expectations.

> Your submission and this reply focus almost exclusively on the

> mceliece-6960-119 parameter set. What about the other four?

The submission takes this example (using the words "as an example") to explain the most important effects separating
cost metrics in this case:

namely, the state-of-the-art attacks are "bottlenecked by random access to a huge array (much larger than the public
key being attacked)", and quantum attacks suffer "much more overhead in the inner loop". Repeating the same points
for each parameter set, mutatis mutandis, would be unilluminating.

Because of the unlimited variation in cost metrics, any parameter set can be ranked anywhere from "overkill" to "too
small" depending on which cost metric is selected, as the submission spells out for this example.

The incorrect idea that this is specific to Classic McEliece was already

answered: "Note that one can make any cryptosystem sound much easier to break by choosing a cost metric that assigns
unrealistically low cost to operations used in attacks; RAM access is just one example. If the same operations are not
bottlenecks in attacks against AES-m or SHA-n then this can reverse comparisons to AES-m or SHA-n respectively."

I'm very much in favor of building tables of publicly verified cost evaluations for attacks across all parameter sets in all
submissions, with AES-128, SHA-256, etc. as baselines---including how the evaluations are changing over time, so that
we can recognize attack improvements, evaluate security stability, and evaluate maturity of analysis. However, this
process doesn't work until NIST defines a cost metric for all NISTPQC submissions to use. Allowing cost metrics to be
selected ad-hoc for particular submissions is error-prone and subject to abuse.

> > The literature shows that optimized hardware for AES attacks has

> > similar efficiency to multipliers. The multipliers in an Intel CPU

> > core carry out millions of bit operations in the same time that it

> > takes the core to retrieve data from (say) 6GB of RAM, never mind

> > RAM contention across cores. GPUs and TPUs show the costs of RAM
> > even more clearly. On a larger scale, decades of supercomputing

> > literature consistently fit a square-root scaling of RAM costs, and

> > science-fiction 3D computers (which seem much harder to build than
> > quantum computers) would still have cube-root costs.

> No. It's not as simple as applying a square-root overhead for memory
> across the board. For an interesting (but not very rigorous) example

> see http://www.ilikebigbits.com/2014_04_ 21 myth_of ram_1.html. The
> blog argues for a square-root memory cost. If you look at the graphs

> this is a poor fit in the 10 MiB to 6 GiB range.

Across seven orders of magnitude of array sizes, the graphs in that blog post are always within one order of magnitude
of the square-root prediction (and people who understand the microarchitecture already know where the deviations
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come from). If you look at the supercomputing literature you'll see the same basic scaling across further orders of
magnitude. (See, e.g., https://cr.yp.to/papers.html#nonuniform, Appendix Q.6, comparing the records from
https://sortbenchmark.org at two different sizes for the number of 100-byte items sorted per joule.)

There's also a clear physical mechanism producing the square-root

overhead: namely, moving a bit across distance sqrt(N) consists of

sqrt(N) motions through distance 1. Each motion through distance 1 occupies a constant amount of hardware for a
constant amount of time, the same way that a bit operation occupies a constant amount of hardware for a constant
amount of time. Overall the motion through distance

sqrt(N) is occupying Theta(sqgrt(N)) times more hardware (per unit time) than a bit operation is, where Theta covers the
ratios between the relevant constants.

This basic throughput barrier is exactly what one sees in the 1981 Brent--Kung theorem, which obtains the same square
root for a broad class of plausible machine models:

https://maths-people.anu.edu.au/~brent/pd/rpb055.pdf

Fiber doesn't magically avoid this throughput barrier: the hardware is still filled up by the data being communicated.
Free-space lasers might seem to avoid the cost of equipment in the middle, but they spread out linearly with distance
and don't end up improving scalability.

The "holographic principle" in physics says that the information in a volume of space is actually two-dimensional. (This
won't surprise physics students who have already practiced converting three-dimensional to two-dimensional integrals.)
The numerical limits don't say that existing technology is close to optimal, but they do say that anyone claiming better
than square-root scaling is wrong for large enough sizes and thus has a ton of explaining to do regarding cryptographic
sizes.

An easy mistake to make here is to cherry-pick some news story about a technology improvement at some medium size,
and compare it to unimproved technology at a small size (e.g., the laptop "perspective"), while failing to ask whether
technology improvements are also following the expected square-root curve down to small sizes.

> Not all memory accesses are the same. The memory overhead depends on
> the number of random accesses to high-latency memory.

| agree that memory accesses differ in general. However, the attacks we're talking about here are bottlenecked by
random access to a huge array ("much larger than the public key being attacked").

Note that one can replace parallel random access with, e.g., bitonic sorting, at which point the word "random" might
seem misleading since at a low level all accesses are through a predefined network. What really matters, as the Brent--
Kung proof clearly shows, is simply how much data is moving across long distances.

> One cost model in Ray Perlner's slides assumes that up to 2750 bits of
> memory is local with unit cost memory accesses.

This was already answered: "The multipliers in an Intel CPU core carry out millions of bit operations in the same time
that it takes the core to retrieve data from (say) 6GB of RAM, never mind RAM contention across cores."

> Can you point to the paper cited by your submission that gives numbers
> for the mceliece-4608-096 parameter set which clearly justify its
> assignment as category 3?

NIST has failed to define the metrics to be used, so there's no way for anyone to be sure what's included in "category 3".
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This isn't specific to Classic McEliece. Every submission is in the same position of uncertainty regarding what NIST's
security requirements mean. Beyond actual security risks, this creates an artificial risk of being criticized for allegedly not
meeting someone's interpretation of NIST's security requirements. There is no way to avoid this risk: _any_"category"
assignment of _any_parameter setin _any_submission can be targeted by a metric-selection attack. The way that
these criticisms are allocated to submissions has nothing to do with security; it is a political game of ad-hoc marketing of
cost metrics.

Regarding citations, the Classic McEliece submission cites the original attack papers. Those papers, in turn, convincingly
count the operations that they use. Each operation count corresponds to many different cost numbers for many
different choices of cost metric:

attack analysis cost metric 1
attack --------------- > operation count ------------- >cost 1
A\ \\ \ cost metric 2
AN N\ > cost 2

\ \ cost metric 5

|| PE—— > cost 5
\ cost metric 6
| —— > cost 6

This correspondence is conceptually straightforward, but _which cost metric are submitters supposed to use for
NISTPQC_? Nobody knows.

There are other submissions where the operations in attacks are much harder to count, but if we optimistically imagine
this problem being fixed then we're still faced with the same basic cost-metric question for all submissions, as noted
above.

Submitters could start from Perlner's recent "preliminary" slides, which run through various possible features of metrics.
How many metrics are clearly defined in those slides, with a NIST commitment to treat attacks in those metrics as being
relevant? Zero. So what exactly are submitters supposed to do? For each feature listed by Perlner, try to guess the
sanest-sounding definition of a specific metric that seems consistent with that feature, and then work through a pile of
cost evaluations in all of these metrics, while being pretty sure that NIST will disregard most, perhaps all, of the resulting
numbers? See how crazy this is?

> You are arguing that because NIST has not specified a single metric no

> evaluation in any metric can be valid. The Call for Proposals actually

> says (NIST's emphasis):
"“In order for a cryptosystem to satisfy one of the above security
requirements, any attack must require computational resources
comparable to or greater than the stated threshold, with respect
to *all* metrics that NIST deems to be potentially relevant to
practical security."

NIST gives circuit size as an example of a metric

\"

V V. V V V
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As a baseline, | think everyone agrees that the structure specified in the call for proposals is as follows:

* There's a set M of metrics to be used for NISTPQC (the "metrics
that NIST deems to be potentially relevant to practical security").

* Cryptosystem X is eliminated from category 1 (and thus from
NISTPQQC) if there's even _one_ metric in M saying that attacking X
costs less than AES-128 key search.

* Cryptosystem X is eliminated from category 2 if one metricin M
says that attacking X costs less than SHA-256 collision search.

* Similarly for other categories.

But what's M? Can we even point to _one_ clear example of something in M? Unfortunately not. If you look for a NIST
document that clearly defines a metric and specifies that the metric is in this set M, you won't find any such document!

For example, it's _not_ true that there's some clearly defined "circuit size" metric specified to be in M, and it's not true
that there's some clearly defined "gates" metric specified to be in M. A clear definition of NIST "gates" would let the
community understand and verify the claim in the call for proposals that known SHA3-256 attacks, such as BHT, don't
beat 22146 NIST "gates". Right now this is unverifiable, unfalsifiable, mathematically meaningless, since there's no
definition.

> and says that AES-192 key
> recovery is equivalent to 22207 classical gates in this metric

Unfortunately NIST never defined "this metric". See above.

> That's it. No mention of the other parameter sets. No attempt to
> quantify the impact of memory accesses.

The literature already pinpoints the number of memory accesses for arbitrary input sizes. As soon as NIST defines a cost
metric, an analysis in that metric will be straightforward.

> Just a vague statement that something that is "considerably below
> 2/256" bit operations will be fine because memory.

The actual "will be fine" statement is "more expensive to break than AES-256". This is not vague. It has the cost metric as
a parameter, and of course one _can_ define cost metrics that reverse the comparison by ignoring important
components of costs, but, again, having to allow every possible metric would undermine _every_ category assignment in
_every_ submission.

Quantifying "considerably below 22256" depends on the cost metric. The minimum "time" in the literature is achieved
by algorithms using absurd amounts of memory, and those algorithms are optimal in metrics that allow x[i] with cost 1,
but gradually increasing the RAM cost in the metrics (compared to other costs) shifts the optimum to different
algorithms.

> This is the irrelevant hype | mean. You are ignoring asymptotic
> improvements to half-distance decoding because McEliece uses errors
> with sublinear weight



Carefully quantifying the application of attack ideas to a cryptosystem, and correctly concluding that the asymptotic
change in security levels is exactly 0%, is not "ignoring" anything.

The 0% change has always been clearly and correctly labeled as being asymptotic. This means that there's <10% change
once the security level is large enough, <1% change once the security level is large enough, etc. Regarding the question
of what "large enough" means, the submission cites the relevant attack papers and emphasizes the importance of
concrete cost analysis.

Seeing that lattices have a worse picture here---e.g., the asymptotic lattice security levels were 42% higher just ten years
ago---is a risk indicator. Nobody says it's the only risk indicator! Classic McEliece has established a strong track record of
observing many other risk indicators and acting accordingly.

This is important. History suggests that identifying and monitoring risk indicators is one of the most effective ways that
system designers can avoid disasters. There's ample evidence for this in the general risk-management literature, and
there's quite a bit of evidence in cryptography.

Consider, for example, pre-quantum discrete-logarithm-based cryptography. There was already a long history by 2005 of

* multiplicative groups suffering percentage losses (and sometimes
larger losses) of asymptotic security levels, including losses
avoided by elliptic curves, and

* fields with extra automorphisms suffering percentage losses of
asymptotic security levels, including losses avoided by prime
fields.

Public recommendations from cryptographers monitoring the literature concluded that multiplicative groups were
higher risk than elliptic curves, and that fields with extra automorphisms were higher risk than prime fields. (Of course,
people desperate to paint the opposite picture could always come up with reasons: the RSA company was still claiming
that elliptic curves hadn't been studied, for example, and there was also an interesting story regarding "medium" fields.)
Unsurprisingly, we saw big further security losses after that for multiplicative groups (for some highlights see
https://blog.cr.yp.to/20161030-pgnist.html),

especially in the case of fields with extra automorphisms.

What does this tell us about lattices vs. McEliece? Should we be on the alert for percentage losses of asymptotic security
levels (many losses for lattices, nothing for McEliece)? Larger losses (yes for lattices, no for McEliece)? Unnecessary
automorphisms? All of the above?

If there's a rational argument that a particular risk indicator _isn't_ helpful, the argument should be published for further
analysis. Posting one message after another labeling a risk indicator as "irrelevant hype"
doesn't move the analysis forward, and seems hard to reconcile with the thoroughly documented discrete-log history.

> yet compare it with asymptotic improvements to the exact short vector
> problem even though lattice schemes depend on different variants of the problem.

Actually, the SVP security levels being asymptotically 42% higher in

2010 than today translates directly into the security levels of (otherwise unbroken) lattice systems being asymptotically
42% higher in

2010 than today. Basically, the lattice attacks are bottlenecked by BKZ, and BKZ is bottlenecked by a relatively short
series of expensive shortest-vector searches in a lower dimension (beta, the "block size"), so if the SVP solution loses P%
of its asymptotic bits of security then the whole attack loses P% of its asymptotic bits of security.



(BKZ is one of many algorithms, and ongoing research indicates that SVP isn't really the right interface, but these issues
don't seem to affect the exponent. A bigger issue is hybrid attacks: my message on that topic in July outlines a way to
remove another percentage from the security level for any system with errors in, say, {-3,...,3}, so the loss for lattice
security compared to 2010 will be even larger than the SVP loss.

Some hybrid-attack details still need verification, and the percentage hasn't been calculated yet.)

For comparison, consider https://eprint.iacr.org/2017/1139.pdf reporting exponent 0.0465 for half-distance decoding,
where Prange's algorithm from 51 years earier was exponent 0.0576; see the paper for a survey of intermediate results.
This asymptotic 24% change corresponds to an asymptotic 0% change in the asymptotic security level of McEliece's
system. The situation for McEliece's system has always been that the asymptotic bits of security come primarily from a
gigantic combinatorial search through information sets.

To summarize: The graph in https://video.cr.yp.to/2020/0813/video.html

correctly compares asymptotic attack costs, as the label indicates. In particular, the asymptotic security level of
otherwise unbroken lattice cryptosystems has dropped as dramatically as shown in the graph. (Also, recent work, once
quantified, should produce further lattice losses.)

> > The section goes on to summarize what the literature says about

> > concrete cost analyses, and ends with the AES-256 comparison reviewed above.
> The rest of section 8.2 is quoted above in its entirety. The

> literature says much more about concrete cost analyses than this "summary".

"Summary, noun: a brief statement or account of the main points of something." | agree that the literature says much
more than the summary does.

> > Evaluating such a claim would require a clear, stable definition of

> > "Category 3". If NIST settles on a definition to be used in NISTPQC

> > then submitters will be able to make "category" assignments accordingly.
> > See above regarding the actual costs of accessing 6GB of RAM.

> No. The definition of category 3 is stable.

No, it isn't. NIST has never issued a clear, stable definition of "Category 3". NIST has given a pseudo-definition---
something that looks at first glance like a definition but that turns out to rely on undefined metrics. How are submitters
supposed to evaluate costs in cost metrics that haven't been defined? See above.

> 27189.2 classical gates does not mean 272189.2 random memory accesses.
> Not all gates involve a memory access. Not all memory accesses are to
> high-latency memory. Not all high-latency memory accesses are random.

It's of course true across the field of cryptanalysis that attacks vary in how often they're randomly accessing memory.
However, all of the attacks we're discussing here are bottlenecked by random access.

> My point is that you can't just say that everything will be fine
> because memory. You actually need to do the analysis.

The attack paper [11] cited in exactly this section of the submission already includes a detailed cost analysis of Stern's
attack with many further optimizations. The inner loop consists of picking up a number that looks random, xor'ing it into
an index i, randomly accessing x[i], and going back to the top of the loop.

As the submission says, this attack is "bottlenecked by random access".
Newer attacks are similarly memory-bound, using even more memory.



The operation counts are clear (for this submission; again, there are other submissions where attacks are much harder
to analyze). The notion that there's some missing analysis of how many RAM accesses there are is simply not true.
What's missing is a definition from NIST of how NISTPQC assigns costs to x[i] and other operations.

> > There's also a tremendous amount to say about the dangers of

> > unnecessary complexity. One aspect of this is specifying more

> > parameter sets than necessary. Of course, NIST's request for

> > lower-security parameter sets was an offer that Classic McEliece

> > couldn't refuse, but we continue to recommend the 22256 parameter sets.
> | assume that if Classic McEliece is chosen for standardization you

> will be withdrawing the parameter sets that you don't recommend for use.

Procedurally, NIST is in charge, and has always specifically reserved the right to make its own parameter-set decisions
after it consults with the submitters and the community. See the call for proposals. Obviously submission teams and
other interested parties will provide feedback to NIST regarding the wisdom of their decisions.

> > One can easily write down even larger parameter sets. Also, the ISD

> > attack analyses in the literature are precise and straightforward,

> > and it should be easy to evaluate the security of any desired

> > parameters in any well-defined metric. However, the right order of

> > events is, first, for NIST to fully define the cost metric to be

> > used for "categories", and, second, for all submission teams to evaluate costs in this metric.
> No. The right order of events is, first, submit parameter sets with

> security estimates in a metric that you think is practically relevant

> and, second, let eveyone else spend three rounds of the NIST process

> evaluating those claims. That's what most of other submissions have done.

No, it isn't. Let's take the Kyber submission as a case study of what other submissions have in fact done.

The round-3 Kyber submission has an analysis concluding that attacks against round-3 Kyber-512 are probably---
accounting for the "known unknowns"---somewhere between 272135 and 27167 "gates", a remarkably wide range for a
cryptosystem that claims its security is well understood.

The submission hopes that the "known unknowns" will be pinned down, and that the final answer will be above 2/143.
The submission also claims to use a "conservative lower bound" on attack costs. Can NIST see whether this "bound" is
above or below 271437 Can anyone else see this? Nope.

Could someone have been reviewing the analysis since the first round of the NIST process? No. The parameter set has
changed. The analysis has changed. The problem that cryptanalysts are being asked to study has changed! Kyber-512
used to claim that its security was based on the MLWE problem, but, as far as | can tell, this has been dropped in round
3. Concretely, my understanding is that if someone claims an attack against round-3 Kyber-512 by showing that MLWE
for that size is easier to break than AES-128, the official response will be that the round-3 submission does _not_ claim
MLWE attacks are so hard---its security levels are claimed only for direct IND-CPA/IND-CCA2 attacks. (I've asked for
confirmation of this in a separate thread on Kyber.)

So much for spending "three rounds of the NIST process evaluating those claims", or, in the words of the call for
proposals, "maturity of analysis". Now let's move on to the "metric" question.

Let's say Caroline the Cryptanalyst is looking at round-3 Kyber-512.

What would be required, structurally, for Caroline to show that round-3

Kyber-512 is broken? Let's assume for simplicity that Kyber "gates" are clearly defined and that AES-128 key search
needs 27143 Kyber "gates".
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Here are two possibilities for Caroline:

* Strategy 1: Show that the best attacks considered in the submission
actually use fewer than 27143 "gates". This is compatible with the
27135...27167 range claimed in the submission.

* Strategy 2: Show that attacks not considered in the submission,
such as hybrid attacks, use fewer than 27143 "gates".

These would both be breaks, since they'd violate the minimum for category 1, right? Nope. The submission protects
itself against this by leaving wiggle room in the cost metric. Here's the critical quote:

We do not think that [24135] would be catastrophic, in particular
given the massive memory requirements ...

The submission is saying that 22135 "gates" wouldn't actually be a problem (assuming the attacks use tons of memory,
which most, although not all, lattice attacks do), since of course memory costs much more than a "gate" count indicates.

Should Caroline expect NIST to downplay the memory requirements and accept the attack as a break? Why?

NIST has repeatedly asked for "confidence" that the NISTPQC security requirements are reached. | challenged the
security of round-2 Kyber-512, pointing out errors in the security analysis and pointing out reasons to believe that
known attacks don't use more "gates" than AES-128. Did NIST claim "confidence" that the attacks actually use more
"gates" than AES-1287? No. Did NIST kick out that parameter set? No.

Instead NIST initiated a "preliminary", open-ended project to start incorporating overheads into cost metrics.

Does this sound like NIST automatically kicking out any parameter set when there's an attack below 21143 "gates", with
free RAM "gates"? No.

It sounds like NIST shifting the boundaries of "category 1" as far as necessary to declare that Kyber-512 isn't broken, by
playing games with the cost metric. Maybe NIST has another reason for not specifying a metric, but in any case the
moving target deters cryptanalysis.

Part of recognizing security risks is recognizing the procedures that are actually being used for designing, evaluating, and
standardizing cryptography. Cryptanalytic work is a critical part of this, and NISTPQC is raising far more security
questions than cryptanalysts can answer in the time available. It's not as if the attack picture was stable in 2020, so why
should we expect it to suddenly be stable in 2021, or in 20257 This denial-of-service attack against cryptanalysts starts
from the inherent cryptanalytic complexity of post-quantum cryptography, but the attack is exacerbated by NIST's
continued failure to clarify its pseudo-definition of the minimum allowed NISTPQC security level.

---Dan
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From: Kirk Fleming <kpfleming@mail.com>

Sent: Friday, December 11, 2020 8:29 PM

To: pgc-forum

Cc: pgc-comments

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece

Dan Bernstein (speaking for himself) wrote:
> As far as I can tell, the questions specific to Classic McEliece
> have already been answered.

In the formal sense that you responded, I guess. It's like asking
the time and being told that it depends on the observer's frame of
reference. Thanks Einstein. It is an answer but I still don't know

if I'm late for class.

Kirk Fleming wrote:

>>>> I am filing this comment to request that the Classic McEliece
>>>> submitters justify the claimed security categories for their
>>>> parameters.

Dan Bernstein (on behalf of the Classic McEliece team) wrote:

>>> Can you please clarify how you think that the numbers already
>>> in the literature don't already justify the assignments in the
>>> submission?

Kirk Fleming wrote:

>> Let's try an easier question. Can you point to the paper cited

>> by your submission that gives numbers for the mceliece-4608-096
>> parameter set which clearly justify its assignment as category 3?

Dan Bernstein (speaking for himself) wrote:
> NIST has failed to define the metrics to be used, so there's no
> way for anyone to be sure what's included in "category 3".

To be absolutely clear, you are stating that the numbers in the

literature already justify the assignments in the submission but
that you can't point to any specific numbers because there is no
way for anyone to be sure what's included in each category.

Okaaaay.
Let's try an even easier question. Why mceliece-4608-967

The mceliece-6960-119 parameter set was taken from "Attacking and
defending the McEliece cryptosystem”. You could have chosen the
mceliece-4624-95 parameter set from the same paper. Instead you
chose a parameter set which had "optimal security within 2~19 bytes
if n and t are required to be multiples of 32". (mceliece-4624-95

was chosen to be optimal without the restrictions on n and t)

mceliece-5856-64 and mceliece-4160-128 are also within 2”19 bytes.
Both of these have smaller public keys than mceliece-4608-96 and
mceliece-5856-64 has smaller ciphertexts. Please explain the metric
you used to decide which of the three parameter sets had "optimal
security".

Kirk



From: Kirk Fleming <kpfleming@mail.com>

Sent: Wednesday, December 30, 2020 7:50 PM

To: pgc-forum

Cc: pgc-comments

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece

I promise this is my last message on the topic. Dan has
stopped responding but I wanted to make one final point.

Dan Bernstein (on behalf of the Classic McEliece team) asked:

> Can you please clarify how you think that the numbers already
> in the literature don't already justify the assignments in the

> submission?

The only concrete security estimate given in the entire Classic
McEliece submission is:

"[Bernstein, Lange and Peters. 2008] reported that its attack
uses 2°266.94 bit operations to break the (13,6960,119)
parameter set."

This is not true. Bernstein, Lange and Peters actually say:

"For keys limited to 2716, 2717, 2718, 27°19, 2720 bytes, we
propose Goppa codes of lengths 1744, 2480, 3408, 4624, 6960
and degrees 35, 45, 67, 95, 119 respectively, with 36, 46,

68, 97, 121 errors added by the sender. These codes achieve
security levels 84.88, 107.41, 147.94, 191.18, 266.94 against
our attack."

The 27°266.94 estimate is not for mceliece-6960-119. It's for a
different parameter set that uses list decoding to increase the
number of errors that can be corrected.

The submission's lack of any serious security analysis for the
five parameter sets being proposed should be cause for concern.
The team's refusal to provide any justification for their claimed
security categories when challenged should be disqualifying.

Kirk



From: Kirk Fleming <kpfleming@mail.com>

Sent: Monday, January 4, 2021 8:57 PM

To: pgc-comments

Cc: pqc-forum

Subject: ROUND 3 OFFICIAL COMMENT: Classic McEliece decoding failure attack

The Classic McEliece submission explicitly allows a change
to decapsulation which breaks the IND-CCA2 security proof
and leaves the scheme vulnerable to decoding failure
attacks.

The decapsulation algorithm described in Section 2.3.3 is:

. Split the ciphertext C as (C0,C1).
. Set b:=1.
. Extract s and Gamma' from the private key.
. Compute e := Decode(C0,Gamma’).
If e = Fail set e:=s and b:=0.
. Compute C'1 := H(2,e).
.IfC'1 1= C1 set e:=s and b:=0.
. Compute K := H(b,e,C).
. Output session key K.

AWNH

ONO WU

However, the discussion in the paragraphs following the
algorithm description suggests a change to Step 4 for ease
of implementation.

"As an implementation note, the output of decapsulation
is unchanged if 'e <-- s' in Step 4 is changed to assign
something else to e. Implementors may prefer, e.g., to
set e to a fixed n-bit string or a random n-bit string
other than s."

This is not true. Using a known fixed string trivially breaks the
scheme.

To see why, consider decapsulation where Step 4 is changed to:

4'. Compute e := Decode(C0,Gamma').
If e = Fail set e:=0 and b:=0.

Let C := (CO,C1) be a ciphertext chosen so that CO is not a
codeword and C1 := H(2,0).

If decoding succeeds in Step 4' then e := Decode(C0,Gamma')
and b:=1, Step 5 gives C'1 := H(2,e), the confirmation check
fails in Step 6 so gives e:=s and b:=0, and Step 7 gives the
unpredictable session key K := H(0,s,C).

If decoding fails in Step 4' then e:=0 and b:=0, Step 5 gives
C'l := H(2,0), the confirmation check passes in Step 6 so
keeps e=0 and b=0, and Step 7 gives the predictable session
key K := H(0,0,C).

Distinguishing between these two cases gives enough
information to recover messages using a standard reaction
attack.



IND-CCA2 transforms are fragile. Any changes that deviate
from the security proof for ease of implementation or
efficiency reasons are potentially dangerous.

Kirk



From: daniel.apon <daniel.apon@nist.gov>

Sent: Monday, January 4, 2021 9:48 PM

To: pgc-forum

Cc: Kirk Fleming; pgc-forum; pgc-comments

Subject: Re: ROUND 3 OFFICIAL COMMENT: Classic McEliece decoding failure attack
Hi Kirk,

"Distinguishing between these two cases gives enough information to recover messages using a standard reaction
attack."

Would you describe what you mean in more detail?

Off hand, this seems like an implicit rejection vs explicit rejection issue, which raises various important issues, but
doesn't seem to directly lead to a "standard reaction attack" in a straightforward manner -- to my knowledge

In particular, | don't see how to distinguish between decryption failures (of honestly generated ciphertexts) and
decryption failures (of intentionally malformed ciphertexts)

Hope I'm not misunderstanding,
--Daniel

On Monday, January 4, 2021 at 8:57:08 PM UTC-5 Kirk Fleming wrote:
The Classic McEliece submission explicitly allows a change
to decapsulation which breaks the IND-CCA2 security proof
and leaves the scheme vulnerable to decoding failure
attacks.

The decapsulation algorithm described in Section 2.3.3 is:

. Split the ciphertext C as (C0,C1).
. Set b:=1.
. Extract s and Gamma' from the private key.
. Compute e := Decode(C0,Gamma’).
If e = Fail set e:=s and b:=0.
. Compute C'1 := H(2,e).
.IfC'1 1= C1 set e:=s and b:=0.
. Compute K := H(b,e,C).
. Output session key K.

AWNH

O NO WU

However, the discussion in the paragraphs following the
algorithm description suggests a change to Step 4 for ease
of implementation.

"As an implementation note, the output of decapsulation
is unchanged if 'e <-- s' in Step 4 is changed to assign
something else to e. Implementors may prefer, e.g., to
set e to a fixed n-bit string or a random n-bit string
other than s."

This is not true. Using a known fixed string trivially breaks the
scheme.

To see why, consider decapsulation where Step 4 is changed to:



From: D. J. Bernstein <djb@cr.yp.to>

Sent: Tuesday, January 5, 2021 1:28 AM

To: pgc-comments

Cc: pqc-forum

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece decoding failure
attack

Attachments: signature.asc

Kirk Fleming writes:

"As an implementation note, the output of decapsulation

is unchanged if 'e <-- s' in Step 4 is changed to assign
something else to e. Implementors may prefer, e.g., to

set e to a fixed n-bit string or a random n-bit string

> otherthans."

> This is not true. Using a known fixed string trivially breaks the
> scheme.

>
>
>
>

For some reason Mr. Fleming omitted the next sentence in the paragraph, which says "However, the definition of
decapsulation does depend on e being set to s in Step 6."

---Dan



From: Christopher J Peikert <cpeikert@alum.mit.edu>

Sent: Tuesday, January 5, 2021 2:35 AM

To: pqc-comments; pgc-forum

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece decoding failure
attack

On Tue, Jan 5, 2021 at 1:28 AM D. J. Bernstein <djb@cr.yp.to> wrote:
Kirk Fleming writes:
> "As an implementation note, the output of decapsulation
> isunchanged if 'e <--s'in Step 4 is changed to assign
> something else to e. Implementors may prefer, e.g., to
> set e to a fixed n-bit string or a random n-bit string
> otherthans."
> This is not true. Using a known fixed string trivially breaks the
> scheme.

For some reason Mr. Fleming omitted the next sentence in the paragraph,
which says "However, the definition of decapsulation does depend on e
being set to s in Step 6."

This is an irrelevant and totally inadequate response to a serious issue. Fleming’s example leaves Step 6 as-is, including
the “e := s” part (as required by the sentence you quoted). And it demonstrates that the output of decapsulation *does*
change if Step 4 is changed as suggested by the submission, contradicting the associated claim and even apparently
breaking CCA security.

Sincerely yours in cryptography,
Chris



From: D. J. Bernstein <djb@cr.yp.to>

Sent: Tuesday, January 5, 2021 4:29 AM

To: pgc-comments

Cc: pqc-forum

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece decoding failure
attack

Attachments: signature.asc

Christopher J Peikert writes:

> This is an irrelevant and totally inadequate response to a serious issue.
> Fleming’s example leaves Step 6 as-is, including the “e := s” part (as

> required by the sentence you quoted). And it demonstrates that the

> output of decapsulation *does* change if Step 4 is changed as

> suggested by the submission, contradicting the associated claim and

> even apparently breaking CCA security.

Huh?
The specification indisputably requires e to be set to s in both failure cases, Step 4 and Step 6.

In the case of a Step 4 failure, the computation using e in Step 5 is irrelevant to the output, since the result is thrown
away in Step 6.

This fact opens up more implementation options, using whatever e you want in Step 5 in case of failure, _but_ you still
have to set e to s in Step 6. This is exactly what the implementation note says:

As an implementation note, the output of decapsulation is unchanged
if “e<=s” in Step 4 is changed to assign something else to e.
Implementors may prefer, e.g., to set e to a fixed n-bit string, or a
random n-bit string other than s. However, the definition of
decapsulation does depend on e being set to s in Step 6.

If you maliciously misinterpret this by omitting the "but"/"However"
part then of course you get different results and a fake contradiction.

---Dan



From: Christopher J Peikert <cpeikert@alum.mit.edu>

Sent: Tuesday, January 5, 2021 9:50 AM

To: pqc-forum; pgc-comments

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece decoding failure
attack

Let's put the relevant lines of pseudocode and implementation note together, and consider the potential
interpretations:

4. Compute e := Decode(C0,Gamma’).
If e = Fail set e:=s and b:=0.

5. Compute C'1 := H(2,e).

6.1f C'1 = C1 set e:=s and b:=0.

"As an implementation note, the output of decapsulation
is unchanged if 'e <-- s' in Step 4 is changed to assign
something else to e. Implementors may prefer, e.g., to
set e to a fixed n-bit string or a random n-bit string

other than s. However, the definition of decapsulation
does depend on e being set to s in Step 6."

A natural interpretation of this -- in my opinion, the most natural one -- is:

(a) in Step 4 you can replace "e :=s" with "e := 00...0" (n bits);
(b) but in Step 6 you must preserve the "e :=s".

(Notably, both "e :=..." assignments are behind conditionals, and the note says nothing about changing the logical
control flow of the code. In particular, there's no instruction that the outcome of the test in Step 4 should influence the
action taken in Step 6.)

Reader, do you find this to be a reasonable interpretation of the note? If so, Dan seems to think that you have
"maliciously misinterpret[ed]" it. In any case, this interpretation leads to a total break of CCA security, as Fleming has
demonstrated.

Now let's consider the interpretation that Dan appears to have:

(a) in Step 4 you can replace "e :=s" with "e := 00...0";

(b) but for Step 6 you must change the control flow. Specifically:
(b1) test whether e was 'Fail' in Step 4 (e has since been overwritten, but we can check if b=0);
(b2) if so, then *unconditionally* set e:=s, regardless of whether C'1 = C1 or not;
(b3) otherwise, do Step 6 as written above.

(It's plausible that this interpretation preserves CCA security, but | may have missed something, so no promises.)
I'll freely grant that if you know why the tests in Steps 4 and 6 are there, and why those steps set e:=s --- perhaps

because you know the subtleties of the CCA security proof --- and if you intelligently use this knowledge to extrapolate
from the text of the implementation note, then you can see this interpretation as being consistent with it.



But is this really the most natural interpretation? More to the point, is it one that implementors --- who may not have
the above knowledge --- are likely to arrive at on their own from reading the note? | strongly doubt it. (No offense
intended, implementors.)

At the very least, the note is ambiguous, and a perfectly reasonable reading of it leads to a devastating security failure.
So, the specification should be updated to ensure that there is no ambiguity.

Sincerely yours in cryptography,
Chris



From: Kirk Fleming <kpfleming@mail.com>

Sent: Tuesday, January 5, 2021 3:00 PM

To: pgc-forum

Cc: pgc-comments

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece decoding failure
attack

Hi Daniel,

Daniel Apon wrote:

>

> "Distinguishing between these two cases gives enough

> information to recover messages using a standard

> reaction attack."

>

> Would you describe what you mean in more detail?

Let C = He for an unknown error e of weight t. Construct
C=C+H_i+H]

where H_i and H_j are a pair of columns of H. This
corresponds to C' = He' where the error €' is obtained
from e by flipping the bits in positions i and j. In other
words e' = e + e_i + e_j where e_i and e_j are standard
basis vectors.

If C' decodes successfully then you know that e' must
also have weight t. This imples that e has a bit set in
exactly one of the positions i or j. You can recover the
full error e with at most n-1 spoofs of this form.

> Off hand, this seems like an implicit rejection vs

> explicit rejection issue, which raises various

> important issues, but doesn't seem to directly lead

> to a "standard reaction attack" in a straightforward

> manner -- to my knowledge

>

> In particular, I don't see how to distinguish between

> decryption failures (of honestly generated ciphertexts)
> and decryption failures (of intentionally malformed

> ciphertexts)

All the ciphertexts are malformed. The attack works
because you learn whether rejection happens at Step 4
because of a decoding failure (decapsulation outputs
the predictable session key) or at Step 6 because of a
confirmation failure (decapsulation outputs a different
session key).

Kirk



From: D. J. Bernstein <djb@cr.yp.to>

Sent: Tuesday, January 5, 2021 3:18 PM

To: pgc-comments

Cc: pqc-forum

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece decoding failure
attack

Attachments: signature.asc

Christopher J Peikert writes:

> 4. Compute e := Decode(C0,Gamma').
> If e = Fail set e:=s and b:=0.

> 5. Compute C'1 := H(2,e).

> 6.IfC'1!=C1set e:=sand b:=0.

This is an excerpt from the specification of the decapsulation function.
The specification requires e to be set to s (and b to be set to 0; otherwise b is 1) in both failure cases, Step 4 and Step 6,
producing output H(0,s,C).

If there's a Step 4 failure then Step 6 is a no-op, since e is already s (and b is already 0). The rest of the algorithm shows
that there is no use of C'_1 after Step 6. Consequently, in the case of a Step 4 failure, the computation using e in Step 5
is irrelevant to the output.

This fact opens up more implementation options, using whatever e you want in Step 5 in case of failure, _but_ you still
have to set e to s in Step 6. This, once again, is exactly what the implementation note says:

As an implementation note, the output of decapsulation is unchanged
if “e<=s” in Step 4 is changed to assign something else to e.
Implementors may prefer, e.g., to set e to a fixed n-bit string, or a
random n-bit string other than s. However, the definition of
decapsulation does depend on e being set to s in Step 6.

| already wrote essentially all of this in my previous message, the message that Dr. Peikert (1) claims to be replying to,
and (2) posts various characterizations of, but (3) does not quote. | request that he follow the traditional email-handling
practice of quoting and replying to each point, to reduce the risk of error and to assist readers tracking the discussions.
> A natural interpretation of this -- in my opinion, the most natural one -- is:

> (a) in Step 4 you can replace "e := s" with "e := 00...0" (n bits);

> (b) but in Step 6 you must preserve the "e :=s".

This "interpretation" would replace the specified mathematical function with a different function, contradicting

(1) the paragraph's explicit statement that "the output of
decapsulation is unchanged" and

(2) the paragraph's explicit label as an "implementation note",



not to mention that this "interpretation" would make the paragraph have the same meaning as the paragraph
_without_ the final sentence (the sentence that Mr. Fleming omitted), begging the question of why that sentence is
there.

Even for readers who manage to miss the final sentence, this is two direct contradictions with what's stated at the
beginning of the same paragraph. This "interpretation" is simply not correct.

> (Notably, both "e :=..." assighments are behind conditionals, and the
> note says nothing about changing the logical control flow of the code.

| don't know what Dr. Peikert thinks he means by "the logical control flow", so the claim of a change is hard to evaluate,
never mind the question of why this is supposed to be relevant. In the end everything is fed through standard
transformations to constant-time code, so the data flow ends up being independent of inputs.

>In

> particular, there's no instruction that the outcome of the test in

> Step 4 should influence the action taken in Step 6.)

The specification indisputably requires e to be set to s in both of the failure cases, producing a final output of H(0,s,C) in
those cases. The implementation note correctly points out the implementor's freedom to vary an intermediate
computation without affecting the final output.

> Reader, do you find this to be a reasonable interpretation of the note?

An "interpretation" that contradicts what's stated in the text is incorrect. Repeatedly claiming that an incorrect
"interpretation" is "natural" and "reasonable" does not change the fact that it's wrong.

> If so, Dan seems to think that you have "maliciously misinterpret[ed]"

> it.

What | stated was "If you maliciously misinterpret this by omitting the 'but'/'However' part then of course you get
different results and a fake contradiction." It's of course also possible for one person maliciously misinterpreting it to
deceive other, non-malicious, people, which is an example of why something as important as standardizing post-

guantum crypto should have evaluation procedures designed to resist attack.

> In any case, this interpretation leads to a total break of CCA
> security, as Fleming has demonstrated.

"Doctor, doctor, it hurts when | don't do what the documentation tells me to do."

There are some types of bugs in post-quantum software that are hard to catch with standard verification techniques.
This isn't one of them.

> Now let's consider the interpretation that Dan appears to have:

Many people expect the word "interpretation” to mean that there's an ambiguity. There's no ambiguity here.
Furthermore, most people expect the word "appears" to indicate some lack of clarity. | see nothing unclear in the
message that Dr. Peikert claims to be replying to here. If he thinks there's a lack of clarity in something | wrote, the

normal way forward would be to quote it and ask for clarification.

> (a) in Step 4 you can replace "e := s" with "e := 00...0";



> (b) but for Step 6 you must change the control flow. Specifically:

> (b1l) test whether e was 'Fail' in Step 4 (e has since been

> overwritten, but we can check if b=0);

> (b2) if so, then *unconditionally* set e:=s, regardless of whether
> C'1 !=C1 or not;

> (b3) otherwise, do Step 6 as written above.

> (It's plausible that this interpretation preserves CCA security, but |
> may have missed something, so no promises.)

Consider the following line of pseudocode:
6.1fC'_1!1=C 1, set b:=0. If b=0, set e:=s.
Notice that this line is much more concise, and much easier to read, than the above series of several b-b1-b2-b3 lines.

Why, one wonders, was something so short and simple stated in such an obfuscated b-b1-b2-b3 way, using vastly more
space than necessary, with a claim of a "change" in the "control flow" etc., a scary-sounding comment about possible
losses of CCA security, etc.?

Most readers seeing this obfuscated presentation of X won't take the time to strip away the obfuscation---they'll simply
assume, incorrectly, that X really is so complicated, and they'll tend to wonder whether a short implementation note
could really have been saying something so complicated. This obfuscation thus contributes to the effort to convince
readers to accept a wrong "interpretation" of the implementation note, rather than taking the implementation note to
mean exactly what it says.

> I'll freely grant that if you know why the tests in Steps 4 and 6 are

> there, and why those steps set e:=s --- perhaps because you know the
> subtleties of the CCA security proof --- and if you intelligently use

> this knowledge to extrapolate from the text of the implementation

> note, then you can see this interpretation as being consistent with it.

| don't see any _overt_ errors in the statement being "freely" granted here. However, the paragraph tries to make
readers believe that one _needs_ to go to all this work to understand a simple implementation note. This belief is simply
wrong.

| already spelled out the data-flow details that allow implementors to vary e in this way without changing the function
being computed. Those details are entirely about the structure of the function being computed.

Again, the function is unchanged, so the question of _why_the function is designed this way is irrelevant, and the
guestion made no appearance in my explanation.

More broadly, there's an impressive circularity between

(1) repeatedly talking about CCA security to make the reader think
that the function being computed is changing, and

(2) repeatedly claiming that the function being computed is changing
to make the reader think that there's a CCA security question,

all of which is completely out of whack with the fact that this is explicitly an _implementation note_, correctly and
explicitly saying that it computes the _same_ function.

> But is this really the most natural interpretation? More to the point,

3



> is it one that implementors --- who may not have the above knowledge
> --- are likely to arrive at on their own from reading the note? |
> strongly doubt it. (No offense intended, implementors.)

Again biased wording ("natural", "strongly doubt", etc.) is being used to push an "interpretation” of a paragraph that
directly contradicts what the paragraph says.

> At the very least, the note is ambiguous, and a perfectly reasonable
> reading of it leads to a devastating security failure.

No. The claimed ambiguity is resolved by what the note says. Calling an incorrect interpretation "perfectly reasonable"
does not make it so.

> So, the specification should be updated to ensure that there is no ambiguity.

We are talking about an explicitly labeled _implementation note_ that explicitly and correctly says that it does _not_
change the function being computed. The explicit text is not consistent with your claimed "interpretation". Furthermore,
it's simply wrong to label a request for a change in the note as requesting a change in the specification; we should all be
clear about the roles of specifications, reference implementations, further implementations, and further text.

---Dan
P.S. Side question for NIST: Is it okay to be putting extra text into the subject line of OFFICIAL COMMENTS, as in this

thread? This isn't what the official links show, but it would generally be helpful for tracking other discussions, for
example to split the discussions of Kyber's patent issues from the discussions of Kyber-512's security.



From: Greg Maxwell <gmaxwell@gmail.com>

Sent: Tuesday, January 5, 2021 4:36 PM

To: pqc-forum; pgc-comments

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece decoding failure
attack

On Tue, Jan 5, 2021 at 8:18 PM D. J. Bernstein <djb@cr.yp.to> wrote:

>

> This fact opens up more implementation options, using whatever e you
> want in Step 5 in case of failure, _but_you still have to sete to s

> in Step 6. This, once again, is exactly what the implementation note says:
>

As an implementation note, the output of decapsulation is unchanged
if “e<-s” in Step 4 is changed to assign something else to e.
Implementors may prefer, e.g., to set e to a fixed n-bit string, or a
random n-bit string other than s. However, the definition of
decapsulation does depend on e being set to s in Step 6.

V V V V V

| believe the implementation note is a foot-gun and should be revised.

The following "are cautioned" text does a laudable job of making the point that the two causes of failure must not be
distinguishable. But it is easily read as only raising the concern of distinguishability only in terms of timing, leaving open
the possibility of the cases being distinguishable by K taking on an attacker predictable value.

The note's statement about step 6 could be misread as saying "even though you're allowed to fill e with whatever in
step 4, when C1' I=

C1 you must still follow step 6 and set e=s before step 7" in other

words, only if the hash check fails. This way of reading it is vulnerable to the attack described in Kirk's post.

In particular, if an implementation follows that logic and in step 4 sets e to some implementation specific non-secret
constant, this implementation flaw would be impossible to detect with generic test vectors, though it could be caught by
review.

| believe the note could be changed to "As an implementation note, the output of decapsulation is unchanged if “e¢s”
in Step 4 is changed to assign something else to e, so long as the comparison in Step 6. is forced to consider C1' and C1
not equal when Decode fails."

Would that be correct?
Though even that is still a little opaque without any discussion of _WHY_ you might want to implement it that way.

Clearly any implementation is free to implement it in whatever way computes exactly the same function (particularly if
doing so doesn't create sidechannel vulnerabilities...), so an implementation note that simply reminds you of that
without even suggesting a concrete

optimization isn't necessarily the most useful. But my understanding

of the note is that it is actually telling you that you're allowed to change the function so that it always fails if decoding
fails, rather than happening to pass with 1:24256 probability when decoding fails should the invalid input happen to
guess right H(2,s). Is that correct?



From: Christopher J Peikert <cpeikert@alum.mit.edu>

Sent: Tuesday, January 5, 2021 5:04 PM

To: pqc-forum; pgc-comments

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece decoding failure
attack

Dan, your latest reply contains a good deal of code analysis, mixed with the text of the implementation note, mixed with
the words of the authors in this thread.

But the central issue is what the specification says on its own, and what implementors will do with it.

So, for the sake of concision, clarity, and precision, | suggest the following test. Please provide a modification of the
original pseudocode in which:

(a) Steps 1-3 are unchanged;
(b) In Step 4, "e:=s" is changed to "e:=00...0", as allowed by the implementation note;
(c) Steps 5-?7? are the result of whatever you think the note instructs the implementor to do here.

Readers can then judge for themselves whether implementors would arrive at your modified pseudocode, on their own,
by reading the spec.

Kirk Fleming's original message provided such modified code based on his reading of the spec -- namely, for (c) he
retained the "e:=s" in Step 6, presumably believing that to follow the instruction "However, the definition of
decapsulation does depend on e being set to s in Step 6."

| believe it's likely that implementors would naturally arrive at Fleming's pseudocode, even though it is completely
insecure (under CCA). That indicates an ambiguity problem with the spec as currently written.

To conclude, | would like to point out one piece of logical sleight-of-hand to readers:

On Tue, Jan 5, 2021 at 3:18 PM D. J. Bernstein <djb@cr.yp.to> wrote:
Christopher J Peikert writes:
> 4. Compute e := Decode(C0,Gamma').
If e = Fail set e:=s and b:=0.
5. Compute C'1 := H(2,e).
6. If C'1 1= C1 set e:=s and b:=0.

vV V V

This is an excerpt from the specification of the decapsulation function.
The specification requires e to be set to s (and b to be set to 0;
otherwise b is 1) in both failure cases, Step 4 and Step 6, producing
output H(0,s,C).

If there's a Step 4 failure then Step 6 is a no-op, since e is already s
(and b is already 0). The rest of the algorithm shows that there is no
use of C'_1 after Step 6. Consequently, in the case of a Step 4 failure,
the computation using e in Step 5 is irrelevant to the output.

This fact opens up more implementation options, using whatever e you

1



want in Step 5 in case of failure, _but_ you still have to set e to s in
Step 6. This, once again, is exactly what the implementation note says:

As an implementation note, the output of decapsulation is unchanged
if “e<=s” in Step 4 is changed to assign something else to e.

As Kirk Fleming pointed out in his original message, the spec's claim "the output of decapsulation is unchanged...", which
refers to the original pseudocode, is simply not true. Specifically, if we replace e:=s with e:=0 in Step 4, then the
decapsulation output can be changed by letting C'1 = H(2,0). | don't think Dan has acknowledged this error.

| emphasize: in the spec, the "output is unchanged" claim is made *before* any suggested modifications to the code,
and is used to motivate the possibility of such changes, so it must be referring to the original code.

Here is the sleight of hand: in his argument quoted above, Dan has *first* changed Step 6 to include an unconditional
assignment e:=s in the case of a Step 4 failure, *then* quotes the "output is unchanged" claim as being "exactly what
the implementation note says." With that change to Step 6, the claim becomes plausible -- but the claim in the spec
refers to the original code, and is false.

Sincerely yours in cryptography,
Chris



From: Christopher J Peikert <cpeikert@alum.mit.edu>

Sent: Tuesday, January 5, 2021 5:09 PM

To: pqc-forum; pgc-comments

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece decoding failure
attack

On Tue, Jan 5, 2021 at 5:04 PM Christopher J Peikert <cpeikert@alum.mit.edu> wrote:
As Kirk Fleming pointed out in his original message, the spec's claim "the output of decapsulation is unchanged...",
which refers to the original pseudocode, is simply not true. Specifically, if we replace e:=s with e:=0 in Step 4, then the
decapsulation output can be changed by letting C'1 = H(2,0). | don't think Dan has acknowledged this error.

Please excuse a typo here: it should be C1 = H(2,0), not C'1.

Sincerely yours in cryptography,
Chris



From: Christopher J Peikert <cpeikert@alum.mit.edu>

Sent: Tuesday, January 5, 2021 5:22 PM

To: pqc-forum; pgc-comments

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece decoding failure
attack

I now realize that | used the term "spec" or "specification" in some places where Dan would use the separate term
"implementation note." Feel free to replace each occurrence with whatever term is best in context, or replace them all
with "submission"; it won't affect the substance of my comments.

Sincerely your in cryptography,
Chris

On Tue, Jan 5, 2021 at 5:04 PM Christopher J Peikert <cpeikert@alum.mit.edu> wrote:
Dan, your latest reply contains a good deal of code analysis, mixed with the text of the implementation note, mixed
with the words of the authors in this thread.

But the central issue is what the specification says on its own, and what implementors will do with it.

So, for the sake of concision, clarity, and precision, | suggest the following test. Please provide a modification of the
original pseudocode in which:

(a) Steps 1-3 are unchanged;
(b) In Step 4, "e:=s" is changed to "e:=00...0", as allowed by the implementation note;
(c) Steps 5-?? are the result of whatever you think the note instructs the implementor to do here.

Readers can then judge for themselves whether implementors would arrive at your modified pseudocode, on their
own, by reading the spec.

Kirk Fleming's original message provided such modified code based on his reading of the spec -- namely, for (c) he
retained the "e:=s" in Step 6, presumably believing that to follow the instruction "However, the definition of
decapsulation does depend on e being set to s in Step 6."

| believe it's likely that implementors would naturally arrive at Fleming's pseudocode, even though it is completely
insecure (under CCA). That indicates an ambiguity problem with the spec as currently written.

To conclude, | would like to point out one piece of logical sleight-of-hand to readers:

On Tue, Jan 5, 2021 at 3:18 PM D. J. Bernstein <djb@cr.yp.to> wrote:
Christopher J Peikert writes:
> 4. Compute e := Decode(C0,Gamma').
> If e = Fail set e:=s and b:=0.
> 5. Compute C'1 := H(2,e).
> 6.1fC'1 !=C1 set e:=s and b:=0.

This is an excerpt from the specification of the decapsulation function.
The specification requires e to be set to s (and b to be set to 0;
otherwise b is 1) in both failure cases, Step 4 and Step 6, producing

1



From: Mike Hamburg <mike@shiftleft.org>

Sent: Tuesday, January 5, 2021 5:27 PM

To: D. J. Bernstein

Cc: pgc-comments; pgc-forum

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece decoding failure
attack

Hi Dan,

OnlJan 5, 2021, at 4:18 PM, D. J. Bernstein <djb@cr.yp.to> wrote:

Christopher J Peikert writes:

A natural interpretation of this -- in my opinion, the most natural one -- is:
(a) in Step 4 you can replace "e :=s" with "e := 00...0" (n bits);
(b) but in Step 6 you must preserve the "e :=s".

This "interpretation" would replace the specified mathematical function
with a different function, contradicting

(1) the paragraph's explicit statement that "the output of
decapsulation is unchanged" and

(2) the paragraph's explicit label as an "implementation note",

not to mention that this "interpretation" would make the paragraph have
the same meaning as the paragraph _without_ the final sentence (the
sentence that Mr. Fleming omitted), begging the question of why that
sentence is there.

Even for readers who manage to miss the final sentence, this is two
direct contradictions with what's stated at the beginning of the same
paragraph. This "interpretation" is simply not correct.

(Notably, both "e :=..." assignments are behind conditionals, and the note
says nothing about changing the logical control flow of the code.

| don't know what Dr. Peikert thinks he means by "the logical control
flow", so the claim of a change is hard to evaluate, never mind the
question of why this is supposed to be relevant. In the end everything
is fed through standard transformations to constant-time code, so the
data flow ends up being independent of inputs.



In
particular, there's no instruction that the outcome of the test in Step 4
should influence the action taken in Step 6.)

The specification indisputably requires e to be set to s in both of the
failure cases, producing a final output of H(0,s,C) in those cases. The
implementation note correctly points out the implementor's freedom to
vary an intermediate computation without affecting the final output.

Reader, do you find this to be a reasonable interpretation of the note?

An "interpretation" that contradicts what's stated in the text is
incorrect. Repeatedly claiming that an incorrect "interpretation" is
"natural" and "reasonable" does not change the fact that it's wrong.

If so, Dan seems to think that you have "maliciously misinterpret[ed]"
it.

What | stated was "If you maliciously misinterpret this by omitting the
'but'/'However' part then of course you get different results and a fake
contradiction." It's of course also possible for one person maliciously
misinterpreting it to deceive other, non-malicious, people, which is an
example of why something as important as standardizing post-quantum
crypto should have evaluation procedures designed to resist attack.

Many people expect the word "interpretation" to mean that there's an
ambiguity. There's no ambiguity here.

More broadly, there's an impressive circularity between

(1) repeatedly talking about CCA security to make the reader think
that the function being computed is changing, and

(2) repeatedly claiming that the function being computed is changing
to make the reader think that there's a CCA security question,

all of which is completely out of whack with the fact that this is
explicitly an _implementation note_, correctly and explicitly saying
that it computes the same_ function.

But is this really the most natural interpretation? More to the point, is it

one that implementors --- who may not have the above knowledge --- are likely
to arrive at on their own from reading the note? | strongly doubt it. (No

offense intended, implementors.)



Again biased wording ("natural", "strongly doubt", etc.) is being used
to push an "interpretation" of a paragraph that directly contradicts

what the paragraph says.

At the very least, the note is ambiguous, and a perfectly reasonable
reading of it leads to a devastating security failure.

No. The claimed ambiguity is resolved by what the note says. Calling an
incorrect interpretation "perfectly reasonable" does not make it so.

So, the specification should be updated to ensure that there is no ambiguity.

We are talking about an explicitly labeled _implementation note_ that
explicitly and correctly says that it does _not_ change the function
being computed.

With all due respect, horseshit. The implementation note begins with
a perfectly clear and demonstrably false statement:

ann

As an implementation note, the output of decapsulation is unchanged
if “e<=s” in Step 4 is changed to assign something else to e.

oann

This sentence is perfectly clear, self-contained, and ends with a full
stop. And as Kirk pointed out, it is false: if e is assigned a fixed
string in step 4, instead of being assigned s, then there are

(C_0, C_1) for which the output of decapsulation does change.
What’s more, they are easy to compute.

There is no other plausible interpretation of your statement. If you
meant to say that decapsulation is unchanged if, when e=bot, step 5
is replaced with

K = H(b, something else, C)

while leaving steps 4 and 6 alone, then you could have written this
instead. Demanding that the reader replace your false statement with
a different, true statement (in which we somehow additionally branch
on b in step 6, or something?) is entirely unreasonable. Even more
unreasonable is to call the straightforward reading of your false
statement a “fake contradiction”. It’s not a fake contradiction. It's a
real contradiction. False statements are contradictions, more or less
by definition.



You might reasonably object that the false statement is transparently
false, that it is essentially a typo or an imprecision, that any reasonable
reader would understand it to mean some other, true statement. In that
case all your critics in this thread would be picking nits. But several
people in this thread have stated that they read your statement as
written, and | have also read it this way.

| will also support my claim that the false statement is not transparently
false or transparently a typo. There are similar flows in in CCA transforms
where this sort of statement would be true. Consider a generic CCA
transform from a perfectly-correct OW-CPA encryption algorithm, which
performs in part:

3: e <- Decrypt(sk, C)
4:ife=bot:e<-sandb<-0
5: C’ <- Encrypt(pk, e)
6:ifCl=C:e<-sandb<-0

In that case, setting e <- something else would indeed leave the
decapsulation result unchanged, because when e = bot, since Decrypt
is perfectly correct, there is no value of “something else” such that
Encrypt(pk, something else) = C. Thus the branch on line 6 will always
be taken. So not only is the implementation note wrong, there are
other, naturally analogous contexts in which a similar note would not
be wrong.

And indeed, Classic McEliece is based on a perfectly-correct OW-CPA
decryption algorithm. In this case, of course, the same logic does not
apply because C_1 is only part of the ciphertext.

Furthermore, one might say that the natural interpretation is
unreasonable because the specification wouldn’t demand e <- s, if
indeed any value would suffice. But this isn’t a valid objection either,
because within that branch e=bot. Even if Encrypt(pk, bot) is somehow
defined, it will not typically be implemented. So in a typical
implementation, e would need to be replaced with something on that
branch. The specification says to replace it with s, but the
implementation note claims, falsely, that any other choice would give
the same result.

The implementation note continues:

Implementors may prefer, e.g., to set e to a fixed n-bit string, or a
random n-bit string other than s. However, the definition of
decapsulation does depend on e being set to s in Step 6.



oann

These statements are both true. It is also true that implementors may
prefer to use variable-time decoding algorithms, or to skip Step 7 entirely,
or to pass attacker-controlled data in backticks to a shell, or to do any
number of other insecure things. Mentioning these in an implementation
note is transparently content-free, however, so the only reasonable
reading is to recommend that changing line 4 to “e <- something else”
would be acceptable, subject to the following that line 6 must be intact
and that side-channel leaks must be prevented.

But as Kirk has demonstrated, if an implementor changes line 4 while
leaving line 6 intact, exactly as this implementation note details, then
the resulting system is not CCA-secure. So this statement, while
technically content-free, constitutes a footgun at the very least.

Coming back to another objection you made:

not to mention that this "interpretation" would make the paragraph have
the same meaning as the paragraph _without_ the final sentence (the
sentence that Mr. Fleming omitted), begging the question of why that
sentence is there.

The sentence is clearly there to warn implementors that the analogous
change in line 6 is forbidden and would be dangerous. This would be a
perfectly reasonable warning, except that changing line 4 is also
dangerous. But the reader presumably doesn’t know that because
you’ve asserted the opposite.

Your documentation (Look! I didn’t say “specification”!) is wrong, and you
really ought to fix it.

Grumble,
— Mike



From: daniel.apon <daniel.apon@nist.gov>

Sent: Tuesday, January 5, 2021 7:44 PM

To: pgc-forum

Cc: Kirk Fleming; pgc-comments

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece decoding failure
attack

Hi Kirk,

Yes-- your attack seems correct. Well done. =)

On Tuesday, January 5, 2021 at 3:00:01 PM UTC-5 Kirk Fleming wrote:
Hi Daniel,

Daniel Apon wrote:
"Distinguishing between these two cases gives enough

information to recover messages using a standard
reaction attack."

VVVVVYV

Would you describe what you mean in more detail?
Let C = He for an unknown error e of weight t. Construct
C'=C+H_i+H_j

where H_i and H_j are a pair of columns of H. This
corresponds to C' = He' where the error €' is obtained
from e by flipping the bits in positions i and j. In other
words e' = e + e_i + e_j where e_i and e_j are standard
basis vectors.

If C' decodes successfully then you know that e' must
also have weight t. This imples that e has a bit set in
exactly one of the positions i or j. You can recover the
full error e with at most n-1 spoofs of this form.

> Off hand, this seems like an implicit rejection vs

> explicit rejection issue, which raises various

> important issues, but doesn't seem to directly lead

> to a "standard reaction attack" in a straightforward

> manner -- to my knowledge

>

> In particular, I don't see how to distinguish between

> decryption failures (of honestly generated ciphertexts)
> and decryption failures (of intentionally malformed

> ciphertexts)

All the ciphertexts are malformed. The attack works
because you learn whether rejection happens at Step 4
because of a decoding failure (decapsulation outputs
the predictable session key) or at Step 6 because of a
confirmation failure (decapsulation outputs a different
session key).

Kirk



From: D. J. Bernstein <djb@cr.yp.to>

Sent: Wednesday, January 6, 2021 12:51 AM

To: pgc-comments

Cc: pqc-forum

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece decoding failure
attack

Attachments: signature.asc

Greg Maxwell writes:

> The note's statement about step 6 could be misread as saying "even
> though you're allowed to fill e with whatever in step 4, when C1' I=
> C1 you must still follow step 6 and set e=s before step 7"

The note about e being set to sis _not_ limited to "when C_1'!=C_1".
That's an added constraint that changes the meaning, contradicts this being an "implementation note", and contradicts
this leaving the output "unchanged". So this is indeed a misreading.

> | believe the note could be changed to "As an implementation note, the
> output of decapsulation is unchanged if “e<-s” in Step 4 is changed to

> assign something else to e, so long as the comparison in Step 6. is

> forced to consider C1' and C1 not equal when Decode fails."

Sure, and then we'll have people again trying to score cheap political points by pretending that this means something
other than what it says:

e.g., pretending that "forced" is making some sort of security claim about a modified function (rather than pointing out
to the implementor a different way to compute the _same_ function) and then attacking this

(fabricated) security claim.

Pseudocode, such as the line
6.I1fC'_11=C_1, set b:=0. If b=0, set e:=s.

in my previous message, makes misinterpretation _harder_ but doesn't make it _impossible_. The ultimate answer is
automated verification, but this whole discussion makes zero contributions to ongoing verification work, while actively
corrupting novice evaluations of what's safest.

> Though even that is still a little opaque without any discussion of
> WHY_ you might want to implement it that way.

The original text says "Implementors may prefer, e.g., to set e to a fixed n-bit string, or a random n-bit string other than
s." The first part simplifies the data flow in some types of implementations, and the second part is worth considering as
a component of side-channel countermeasures beyond timing-attack protection.

> But my understanding
> of the note is that it is actually telling you that you're allowed to
> change the function so that it always fails if decoding fails,

If by "fails" you mean computes and outputs H(0,s,C), this isn't a change to the specified function.

1



> rather than happening to pass with 1:22256 probability when decoding
> fails should the invalid input happen to guess right H(2,s).

No, Step 6 is a no-op in the "guess right" case. There's nothing probabilistic here.

---Dan



From: Quan Thoi Minh Nguyen <msuntmquan@gmail.com>

Sent: Wednesday, January 6, 2021 2:10 AM

To: pgc-forum

Cc: D. J. Bernstein; pqc-forum; pgc-comments; pgc-comments

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece decoding failure
attack

It’s puzzled me why the discussion in this thread is heated. Can we all take it easy? It's clear that all the people (Classic
McEliece’s authors and critics) are knowledgeable and reputable and know what they’re doing. Is it worth arguing about
the “implementation note” (which no implementers used or implemented yet) at this phase of competition?

If we're worried about implementations’ security then | would be more worried about multiple security bugs that
Markku-Juhani O. Saarinen found in real implementations.

After the competition is concluded, is it NIST’s job to rewrite everything in a clearer manner in the standards so that
implementers can follow? A similar process for IETF’'s RFC standard which takes months (if not years) and multiple
rounds of edit to become standard.

Cheers,
- Quan



From: D. J. Bernstein <djb@cr.yp.to>

Sent: Wednesday, January 6, 2021 2:33 AM

To: pgc-comments

Cc: pqc-forum

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece decoding failure
attack

Attachments: signature.asc

Christopher J Peikert writes:
> Please provide a modification of the original pseudocode in which:

| already did, in exactly the message you claim to be replying to:
6.1f C'_11=C_1, set b:=0. If b=0, set e:=s.

This meets the stated requirements of _preserving the output_ ("output of decapsulation is unchanged") and "e being
set to s in Step 6" on failure, along with everything else that this implementation note says.

> Readers can then judge for themselves whether implementors would
> arrive at your modified pseudocode, on their own, by reading the spec.

What | wrote above is fully compliant with every detail of this _implementation note_, correctly computing the
_specified_ function.

> But the central issue is what the specification says on its own,

The _specification_ produces output H(0,s,C) in both failure cases.
The _implementation note_ correctly describes different computations that reach the specified output in all cases.

> and what implementors will do with it.

Analyzing the ecosystem of implementations is indisputably important, including taking account of possible errors and
measures taken to protect against errors---e.g., NIST's validation process for its current standards, and more advanced
processes that have been developed.

> Kirk Fleming's original message provided such modified code based on

> his reading of the spec -- namely, for (c) he retained the "e:=s" in

> Step 6, presumably believing that to follow the instruction "However,

> the definition of decapsulation does depend on e being set to s in Step 6."

This "interpretation" contradicts the text of the implementation note in question. This isn't disputed.

> That indicates an ambiguity problem with the spec as currently written.

No, it doesn't.

> As Kirk Fleming pointed out in his original message, the spec's claim
> "the output of decapsulation is unchanged...", which refers to the

1



> original pseudocode, is simply not true.
There are multiple levels of errors in what Dr. Peikert claims here.

First, the discussion is about an explicitly labeled "implementation note", not_ the specification. One of the reasons this
structure is important is that it constrains the meaning of the note: the note is _not_ changing the specified function.
(Dr. Peikert posts a followup message claiming, without analysis, that this difference "won't affect the substance of my
comments".)

Second, the claim of something being "not true" rests entirely on pushing an "interpretation" that contradicts what the
text explicitly says, while refusing to acknowledge the existence of a statement that's perfectly correct and matches
every single detail of the text.

> Specifically, if we replace e:=s with e:=0 in Step 4, then the
> decapsulation output can be changed by letting C'1 = H(2,0).

Making _only_that change would flunk "However, the definition of decapsulation does depend on e being set to s in
Step 6", would contradict this being an "implementation note", and would contradict "the output of decapsulation is
unchanged".

> | don't think Dan has acknowledged this error.

There's no error.

> | emphasize: in the spec,

Wrong again. It's an implementation note.

> the "output is unchanged" claim is made
> *pbefore* any suggested modifications to the code,

The claim is correct. This is, as it says, an implementation note about different ways to compute _exactly the same
function_.

>and is used to
> motivate the possibility of such changes, so it must be referring to
> the original code.

Not exactly. The implementation note is _starting_ from the pseudocode used in the spec, but it is then pointing out
some _different_ ways to compute the _same_ function.

> Here is the sleight of hand: in his argument quoted above, Dan has

> *first* changed Step 6 to include an unconditional assighment e:=s in
> the case of a Step 4 failure, *then* quotes the "output is unchanged"
> claim as being "exactly what the implementation note says." With that
> change to Step 6, the claim becomes plausible

When the biased presentation ("sleight of hand" etc.) is stripped away, this paragraph _almost_becomes a clear
admission of what the implementation note was saying in the first place.

> -- but the claim in the spec refers to the original code, and is false.



No.

---Dan



From: pqc-forum@list.nist.gov on behalf of Kirk Fleming <kpfleming@mail.com>

Sent: Wednesday, January 6, 2021 7:54 PM

To: pgc-forum

Cc: pgc-comments

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece decoding failure
attack

Quan Thoi Minh Nguyen wrote:

> It's puzzled me why the discussion in this thread is

> heated. Can we all take it easy? It's clear that all

> the people (Classic McEliece’s authors and critics)

> are knowledgeable and reputable and know what they're
> doing. Is it worth arguing about the “implementation

> note” (which no implementers used or implemented yet)
> at this phase of competition?

>

> If we're worried about implementations’ security then

> I would be more worried about multiple security bugs

> that Markku-Juhani O. Saarinen found in real

> implementations.

>

> After the competition is concluded, is it NIST's job

> to rewrite everything in a clearer manner in the

> standards so that implementers can follow? A similar

> process for IETF’'s RFC standard which takes months

> (if not years) and multiple rounds of edit to become

> standard.

You're correct that it is NIST's responsibility to write

a clear and unambiguous standard but they will use the
submission as a basis for that. For Classic McEliece

it's not always easy to tell which parts constitute the
specification and which parts are just commentary. There
are lots of notes for implementers. Some or all of these
could be picked up by NIST and included in the standard.

Let's look at a different example. Section 2.2.4 of the
submission suggests that one of the checks in the
decoding subroutine can be made more efficient:

"In order to test CO = He, implementors can use any
parity-check matrix H' for the same code."

"There are various well-known choices of H' related
to H~ that are recovered from Gamma' much more
efficiently than MatGen, and that can be applied to
vectors without using quadratic space."

What the submission fails to mention is that while H is
public other choices of H' may need to remain private.
An implementer could miss this if they're not an expert
so NIST would need to add a warning to the standard.

I'm not saying that things like this will necessarily

lead to problems in the standard. I'd expect NIST to
weed most of them out and hope the rest get spotted in
the review process. I'm saying that when a submission
offers so many different implementation options without



being sufficiently clear about them it makes NIST's job
much harder. I think it should be our responsibility to
help by surfacing issues as early as possible.

Kirk

You received this message because you are subscribed to the Google Groups "pgc-forum" group.

To unsubscribe from this group and stop receiving emails from it, send an email to pgc-forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pgc-forum/trinity-dc2c9b65-

e8c4-43af-873c-e4d932c80ef0-1609980867163%403c-app-mailcom-Ixa02.




From: Kirk Fleming <kpfleming@mail.com>

Sent: Wednesday, January 6, 2021 9:49 PM

To: pgc-forum

Cc: pgc-comments

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece decoding failure
attack

Kirk Fleming wrote:

> Let's look at a different example. Section 2.2.4 of the
> submission suggests that one of the checks in the

> decoding subroutine can be made more efficient:

>

"In order to test CO = He, implementors can use any
parity-check matrix H' for the same code."

"There are various well-known choices of H' related
to H~ that are recovered from Gamma' much more
efficiently than MatGen, and that can be applied to
vectors without using quadratic space."

VVVVYVYVYV

I just realized that I don't understand why the CO = He
check is there in the first place. The pseudocode for
the decoding subroutine is:

1. Extend CO to v = (CO0,0,...,0) by apppending k zeros.

2. Find the unique codeword c in the Goppa code
defined by Gamma' that is at distance <=t from v.
If there is no such codeword, return Fail.

3.Sete=v +c.

4. If wt(e) = t and CO = He, return e.
Otherwise return Fail.

Let's skip over the fact that the submission doesn't actually
describe the decoder and just points to the McBits papers. I
think this expects too much of the implementer but whatever.

If Step 2 finds a codeword c and Step 3 sets e = v + c then
He = H(v+c) = Hv + Hc = Hv = CO in Step 4 by construction.
The only reason you'd need to check CO = He is if the decoder
in Step 2 wasn't guaranteed to either return a codeword or fail
but that contradicts the specification.

Kirk



From: Ruben Niederhagen <ruben@polycephaly.org>

Sent: Thursday, January 7, 2021 4:.08 AM

To: Kirk Fleming; pgc-forum

Cc: pgc-comments

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece decoding failure
attack

Hi Kirk!

On 1/7/21 3:49 AM, Kirk Fleming wrote:
> | just realized that | don't understand why the CO = He check is there
> in the first place.

Maybe the following paragraph helps you to understand this:

"Implementors are cautioned that it is important to avoid leaking secret information through side channels, and that the
distinction between success and failure of Decode is secret in the context of the Classic McEliece KEM. In particular,
immediately stopping the computation when Step 2 returns Fail would reveal this distinction through timing, so it is
recommended for implementors to have Step 2 always choose some c."

(Small edits due to math symbols.)

Ruben



From: pqc-forum@list.nist.gov on behalf of Kirk Fleming <kpfleming@mail.com>

Sent: Thursday, January 7, 2021 6:20 AM

To: pgc-forum

Cc: pgc-comments

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece decoding failure
attack

Hi Ruben,

Ruben Niederhagen wrote:

>

> 0On 1/7/21 3:49 AM, Kirk Fleming wrote:

>>

>> I just realized that I don't understand why the CO = He

>> check is there in the first place.

>

Maybe the following paragraph helps you to understand this:

"Implementors are cautioned that it is important to avoid
leaking secret information through side channels, and that

> the distinction between success and failure of Decode is

> secret in the context of the Classic McEliece KEM. In

> particular, immediately stopping the computation when Step 2
> returns Fail would reveal this distinction through timing,

> so it is recommended for implementors to have Step 2 always
> choose some c."

> (Small edits due to math symbols.)

>
>
>
>

Choosing a random c is presumably not part of the specification
since it's only a recommendation. It also doesn't explain the
need for the check if we interpret the paragraph the way we've
been told to interpret the implementation note for decapsulation.
According to that logic if decoding fails in Step 2 and the
implementation chooses a random c then the computation of e in
Step 3 and both checks in Step 4 are irrelevant because Step 4
must always return Fail.

Kirk

You received this message because you are subscribed to the Google Groups "pgc-forum" group.

To unsubscribe from this group and stop receiving emails from it, send an email to pgc-forum-+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pgc-forum/trinity-80898fb3-
8621-4386-8e63-02739cca02ca-1610018396712%403c-app-mailcom-Ixa0l.




From: Ruben Niederhagen <ruben@polycephaly.org>

Sent: Thursday, January 7, 2021 6:38 AM

To: pgc-forum

Cc: pgc-comments

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece decoding failure
attack

On 1/7/21 12:19 PM, Kirk Fleming wrote:

> Ruben Niederhagen wrote:

> >

>0n 1/7/21 3:49 AM, Kirk Fleming wrote:

>>

>> | just realized that | don't understand why the CO = He

>> check is there in the first place.

>

> Maybe the following paragraph helps you to understand this:

>

> "Implementors are cautioned that it is important to avoid

> |leaking secret information through side channels, and that

> the distinction between success and failure of Decode is

> secret in the context of the Classic McEliece KEM. In

> particular, immediately stopping the computation when Step 2

> returns Fail would reveal this distinction through timing,

> so it is recommended for implementors to have Step 2 always

> choose some c."

> > (Small edits due to math symbols.) Choosing a random c is

> presumably not part of the specification since it's only a

> recommendation. It also doesn't explain the need for the check if we
> interpret the paragraph the way we've been told to interpret the

> implementation note for decapsulation.

> According to that logic if decoding fails in Step 2 and the

> implementation chooses a random c then the computation of e in Step 3
> and both checks in Step 4 are irrelevant because Step 4 must always
> return Fail.

V VV V V V VYV YV VYV VYV\VYV

OK, the question why the CO = He check is there seems to be answered.
I'll file this under ‘criticism of the writing style', then.

Ruben



From: Paul Hoffman <paul.hoffman@icann.org>

Sent: Thursday, January 7, 2021 10:58 AM

To: Ruben Niederhagen

Cc: pqc-forum; pgc-comments

Subject: Re: [Ext] [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece decoding failure
attack

<lurker decloaking>

>0nlJan 7, 2021, at 3:37 AM, Ruben Niederhagen <ruben@polycephaly.org> wrote:
>

>0n 1/7/21 12:19 PM, Kirk Fleming wrote:

>> Ruben Niederhagen wrote:

>> >

>> >0n 1/7/21 3:49 AM, Kirk Fleming wrote:

>> >>

>> >> | just realized that | don't understand why the CO = He

>> >> check is there in the first place.

>> >

>> > Maybe the following paragraph helps you to understand this:
>> >

>> > "Implementors are cautioned that it is important to avoid

>> > |eaking secret information through side channels, and that

>> > the distinction between success and failure of Decode is

>> > secret in the context of the Classic McEliece KEM. In

>> > particular, immediately stopping the computation when Step 2
>> > returns Fail would reveal this distinction through timing,

>> >so0 it is recommended for implementors to have Step 2 always
>> > choose some c."

>> > (Small edits due to math symbols.)

>> Choosing a random c is presumably not part of the specification
>> since it's only a recommendation. It also doesn't explain the

>> need for the check if we interpret the paragraph the way we've
>> been told to interpret the implementation note for decapsulation.
>> According to that logic if decoding fails in Step 2 and the

>> implementation chooses a random c then the computation of e in
>> Step 3 and both checks in Step 4 are irrelevant because Step 4

>> must always return Fail.

>

> OK, the question why the CO = He check is there seems to be answered.
>

> I'll file this under 'criticism of the writing style', then.

Speaking as a specification writer: please don't do such filing.

The phrase "so it is recommended" leaves the implementer with three choices:
a) do what comes after the recommendation
b) do some other thing that the implementer makes up themselves

1



c¢) do what they thought was implied by the text preceding the recommendation
If you mean (a), the text needs to updated to say "so implementers must".

If you mean (b), then the specification is both incomplete and dangerous. Some implementers will pick something really
smart-looking that is wrong.

If you mean (c), then the specification is both poorly-written and dangerous. Some implementers will think that what
you were hinting at is something that turns out to be wrong.

| hope you meant (a); if so, you need to update the specification to say so. As far as | can tell from my mild skimming of
this thread, such updates are needed in other places in this specification in order to make it clear.

It would be good for the safety of everyone if the writers **of all the specifications here** would review their
submissions and, wherever there is implementation recommendations, turn them into requirements. The crypto world

has the same track record as the Internet protocol world of unclear specifications that lead to security disasters.

--Paul Hoffman, going back to lurking



From: Ruben Niederhagen <ruben@polycephaly.org>

Sent: Thursday, January 7, 2021 11:48 AM

To: pgc-forum

Cc: pgc-comments

Subject: Re: [Ext] [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece decoding failure
attack

On 1/7/21 4:57 PM, Paul Hoffman wrote:

> It would be good for the safety of everyone if the writers **of all

> the specifications here** would review their submissions and, wherever
> there is implementation recommendations, turn them into requirements.
| do not entirely agree (although | do cherish the sentiment).

The specific recommendation here (talking about the "decoding discussion" on the CO = He check) is about side
channels.

Now, is it the task of a specification or of an implementation to provide security against side-channel attacks?
Let's take the definition of 'side-channel attack' from Wikipedia:

"[...] a side-channel attack is any attack based on information gained from the implementation of a computer system,
rather than weaknesses in the implemented algorithm itself [...]"

A specification provides the algorithm and tells you what to implement, but not explicitly how to implement it; the
specification is not the implementation.

Furthermore, a specification could hardly cover all sources of side channels. (Is it a hardware implementation? Is it a
software implementation? What is the application, what is the use case - which side channels are relevant? ..?)

Thus, I'd say it is hardly the task for the specification to provide side-channel protection; this burden is with the
implementer.

Should a specification provide recommendations to implementers in regards to side channels? "Yes, sure"? "No, never"?
"Yes" if it helps to increase security, "no" if it does not..? Sorry, | have no proper answer here.

Ruben, also going back to lurking



From: Rainer Urian <rainer.urian@googlemail.com>

Sent: Thursday, January 7, 2021 1:19 PM

To: Ruben Niederhagen

Cc: pqc-forum; pgc-comments

Subject: Re: [Ext] [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece decoding failure
attack

> Furthermore, a specification could hardly cover all sources of side

> channels. (Is it a hardware implementation? Is it a software implementation? What is the application, what is the use
case - which side channels are relevant? ..?) Thus, I'd say it is hardly the task for the specification to provide side-channel
protection; this burden is with the implementer.

| totally agree. Side-channel and fault-attack countermeasures are strongly related to the device and the environment
where the device is used.

For instance, they are rather different on PC and smart card devices.

Also, timing attacks cover only a very limited part of all possible side-channel attack scenarios.

So, there is never one-size-fits-all solution.

> Should a specification provide recommendations to implementers in regards to side channels? "Yes, sure"? "No,
never"? "Yes" if it helps to increase security, "no" if it does not..? Sorry, | have no proper answer here.

| my opinion, the specification should take care about all points related to crypto-analytic attacks. All points related to
side-channel and fault attacks shall be informative only.
According to my understanding, this is also the philosophy behind the current FIPS/NIST SP specifications.

BR,
Rainer



From: ‘daniel.apon’ via pgc-forum <pqc-forum@list.nist.gov>

Sent: Thursday, January 7, 2021 2:16 PM

To: pgc-forum

Cc: rainer...@googlemail.com; pgc-forum; pgc-comments; Ruben Niederhagen

Subject: Re: [Ext] [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece decoding failure
attack

Hi Rainer and all,

Rainer's recent message (copied below) prompts me to re-highlight some brief informational content on NIST PQC's
attitude/philosophy toward side-channel attacks.

As | haven't spoken with the team yet, | should highlight this as "speaking for myself," although | believe it's
representative of the general view.

First, NIST has stated the importance of side-channel attacks and countermeasures a few times before.

For example, in the original PQC call for proposals in 2016:
"Schemes that can be made resistant to side-channel attacks at minimal cost are more desirable than those whose
performance is severely hampered by any attempt to resist side-channel attacks."

For a more recent example, in the latest PQC 2nd Round Report (NISTIR 8309) in 2020:

"NIST hopes to see more and better data for performance in the third round. This performance data will hopefully include
implementations that protect against side-channel attacks, such as timing attacks, power monitoring attacks, fault
attacks, etc."

Second, as Rainer points out, the philosophy behind current FIPS/NIST SP specifications indeed only makes informative
comments about side-channel attacks (passive or active). That is, while | suppose it's possible that NIST would choose to
standardize some type of side-channel resistant PQC specification directly, this has not been the case historically, and |
find it unlikely to be the case for the eventual PQC standards as well.

Nonetheless, we are certainly paying attention to side-channel attacks and their analysis, and it could be the case (all
else equal) that this information directly factors into our eventual choice of this algorithm vs. that algorithm to
standardize -- particularly if one algorithm/system seems to clearly lend itself to "side-channel resistance friendly
implementations" more readily than another that is an otherwise close / near-indistinguishable competitor. Additionally,
we certainly would not (or at least, should not) standardize an algorithm/system for which we believe side channel
resistance is critical to its real-world adoption/application but where side-channel resistance appears inherently overly
burdensome to come by.

So -- echoing the NIST team's prior statements on the issue: This is an important issue to think about, especially during
the third round.
| sincerely appreciate everyone's earnest input to this discussion (especially, you lurkers out there :); it's very helpful.

Cheers,
--Daniel



From: Kirk Fleming <kpfleming@mail.com>

Sent: Friday, January 8, 2021 9:55 AM

To: pgc-forum

Cc: pgc-comments

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece decoding failure
attack

Ruben Niederhagen wrote:

>

> OK, the question why the CO = He check is there seems to be
> answered.

>

> I'll file this under 'criticism of the writing style’, then.

I confess. It was a leading question intended to let me complain
about interpretations of implementation notes. That was mean and
I apologize. There's still a serious point behind the question,
though. The CO = He check really isn't needed if you trust the
decoder to either return a codeword or fail.

The submission recommends that when the decoder fails to find a
codeword "Step 2 chooses some vector c in (F_2)”n and continues
on to Step 3."

What does the submission mean by "some vector c"? Does it mean
that the implementation must choose a random c or can it set c to a
fixed value?

If it's intended to be read as "choose a random c" then you're
correct that you do need to check CO = He. The wt(e) = t check
will amost surely fail but the IND-CCA2 security proof requires
the PKE scheme to be perfect. No decryption failures are allowed
no matter how negligible the probability.

What about using a fixed value? It's actually better to set

¢ = 0 when the decoder fails. In this case Step 3 setse = v

and the check CO = He is trivially true so can be skipped. On

the other hand the check wt(e) = t always fails since otherwise

¢ = 0 is the nearest codeword and would have been found by the
decoder.

Poorly written implementation notes are not just a problem for
security. They can also be a problem for efficiency if they stop
implementers from making changes that are genuinely safe.

Kirk



From: Ruben Niederhagen <ruben@polycephaly.org>

Sent: Friday, January 8, 2021 11:36 AM

To: pgc-forum

Cc: pgc-comments

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece decoding failure
attack

On 1/8/21 3:55 PM, Kirk Fleming wrote:

> | confess. It was a leading question intended to let me complain about
> interpretations of implementation notes. That was mean and |

> apologize.

Apology accepted.

> There's still a serious point behind the question, though. The CO = He
> check really isn't needed if you trust the decoder to either return a

> codeword or fail.

> The submission recommends that when the decoder fails to find a

> codeword "Step 2 chooses some vector cin (F_2)*n and continues on to
> Step 3."

> What does the submission mean by "some vector c"? Does it mean that
> the implementation must choose a random c or can it set c to a fixed
>value?

> If it's intended to be read as "choose a random c" then you're correct
> that you do need to check CO = He. The wt(e) = t check will amost

> surely fail but the IND-CCA2 security proof requires the PKE scheme to
> be perfect. No decryption failures are allowed no matter how

> negligible the probability.

> What about using a fixed value? It's actually better to set c = 0 when

> the decoder fails. In this case Step 3 sets e = v and the check CO =

> He is trivially true so can be skipped. On the other hand the check

> wt(e) = t always fails since otherwise ¢ = 0 is the nearest codeword

> and would have been found by the decoder.

> Poorly written implementation notes are not just a problem for

> security. They can also be a problem for efficiency if they stop

> implementers from making changes that are genuinely safe.

| don't want to chime in here on the discussion about the quality of the implementation notes (I am clearly biased in my
opinion that the quality of the implementation notes is impeccable ;) ).

Just as a note: The decoding algorithm used in Step 2 probably per se computes either the unique codeword c if it exists
or 'some cin (F_2)"n'. So, in order to know if it computed the unique codeword or some other vector, one then will
need to compute something like CO = He anyway...

Thus, your observation is relevant only for a decoding algorithm that 'cheaply' detects its own failure; otherwise, the
(CO=He)-check probably is an efficient solution for this detection.



And maybe yet another statement: | claim that for functional correctness, an implementer of an algorithm from a
specification is expected to ensure that his or her implementation gives the exact same output for all possible inputs as
the specified algorithm. Thus, it is

(functionally) alright to leave out steps in the algorithm that do not alter the result (e.g., some unnecessary (CO=He)-
check).

(Caution is required as usual if side-channel security comes into play.)

Basically what | am saying is that in an implementation, the CO = He will likely be required and efficient and if it isn't
required you are allowed to leave it out.

Ruben



From: Christopher J Peikert <cpeikert@alum.mit.edu>

Sent: Friday, May 21, 2021 12:55 AM

To: Kirk Fleming

Cc: pqc-forum; pgc-comments

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece

Was there ever any response (from the Classic McEliece team or otherwise) to this comment from 30 Dec 2020? More
specifically:

On Wed, Dec 30, 2020 at 7:49 PM Kirk Fleming <kpfleming@mail.com> wrote:
The only concrete security estimate given in the entire Classic
McEliece submission is:

"[Bernstein, Lange and Peters. 2008] reported that its attack
uses 2°266.94 bit operations to break the (13,6960,119)
parameter set."

This is not true. Bernstein, Lange and Peters actually say:

"For keys limited to 2716, 2717, 2718, 27°19, 2720 bytes, we
propose Goppa codes of lengths 1744, 2480, 3408, 4624, 6960
and degrees 35, 45, 67, 95, 119 respectively, with 36, 46,

68, 97, 121 errors added by the sender. These codes achieve
security levels 84.88, 107.41, 147.94, 191.18, 266.94 against
our attack."

The 27°266.94 estimate is not for mceliece-6960-119. It's for a
different parameter set that uses list decoding to increase the
number of errors that can be corrected.

Does anyone know what effect this has on security?

The submission's lack of any serious security analysis for the
five parameter sets being proposed should be cause for concern.
The team's refusal to provide any justification for their claimed
security categories when challenged should be disqualifying.

Has there since been any such security analysis or justification provided for the proposed parameter sets?

Sincerely yours in cryptography,
Chris



From: Ruben Niederhagen <ruben@polycephaly.org>

Sent: Friday, May 21, 2021 5:09 AM

To: Christopher J Peikert; Kirk Fleming

Cc: pqc-forum; pgc-comments

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece

On 5/21/21 6:54 AM, Christopher J Peikert wrote:

> O0n Wed, Dec 30, 2020 at 7:49 PM Kirk Fleming <kpfleming@mail.com> wrote:
>

>> The only concrete security estimate given in the entire Classic
>> McEliece submission is:

>>

>> "[Bernstein, Lange and Peters. 2008] reported that its attack
>> uses 2°266.94 bit operations to break the (13,6960,119)

>> parameter set."

>>

>> This is not true. Bernstein, Lange and Peters actually say:

>>

>> "For keys limited to 2716, 2217, 2718, 2719, 2”20 bytes, we
>> propose Goppa codes of lengths 1744, 2480, 3408, 4624, 6960
>> and degrees 35, 45, 67, 95, 119 respectively, with 36, 46,

>> 68,97, 121 errors added by the sender. These codes achieve
>> security levels 84.88, 107.41, 147.94, 191.18, 266.94 against
>> our attack."

>>

>>The 21266.94 estimate is not for mceliece-6960-119. It's for a
>> different parameter set that uses list decoding to increase the
>> number of errors that can be corrected.

>>

>

> Does anyone know what effect this has on security?

According to the analysis in the quoted paper [Bernstein, Lange and Peters. 2008], the difference in the security level
when going from 121 errors to 119 errors while keeping the other parameters unchanged is about 4.

Ruben
(speaking for myself)



From: Christopher J Peikert <cpeikert@alum.mit.edu>

Sent: Saturday, May 22, 2021 4:38 PM
To: pqc-forum; pgc-comments
Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: CRYSTALS-KYBER

For the record, here is a direct response to the following framework and case study of the ciphertext-compression
methods used by some NIST finalists/alternates, versus Ding's 2012 patent.

On Fri, Jan 1, 2021 at 7:19 AM D. J. Bernstein <djb@cr.yp.to> wrote:
Main goal of this message: Unify notation and terminology for the
systems under discussion, to provide a framework for evaluating claims
regarding what's the same, what's different, etc. This message is
organized around a case study, namely a puzzling claim of a dividing
line between Ding's patented work and newer compressed-LPR proposals.

The evidence, viewed within the proposed framework, clearly shows that there is nothing at all puzzling about the
claimed dividing line.

The finalist/alternate NIST PQC proposals use a compression technique that by mid-2011 -- well before Ding's 2012
patent application -- was widely known and used across several (Ring-/Module-)LWE/LWR cryptographic constructions.

This prior art describes the technique's general applicability to the broad family of such cryptographic systems.
Moreover, it _explicitly_ describes the technique's applicability to "structured" lattice systems defined over polynomial
rings for efficiency, including "LPR ciphertexts" (which are functionally equivalent to "Ring-LWE samples," up to the
added plaintext/encapsulated key).

Ding's patent describes a different technique that, in some contexts, can yield more compression than the prior-art
techniques can. The mathematical, algorithmic, and functional distinctions are easy to see from the framework's own
examples, as we will show next.

Vadim Lyubashevksy writes (email dated 2 Dec 2020 20:47:11 +0100):
> No version of the LPR paper presents "reconciliation".

Let's say Alice sends A = aG+e, and Bob sends B = Gb+d, where lowercase
letters are small quantities. Alice computes aB = aGb+ad. Bob computes
Ab = aGb+eb. Can we agree that "noisy DH" is a good name for this?

At this point Alice and Bob have computed something that's _similar_ but
not _identical_. People who say "reconciliation" in the noisy-DH context
are referring to an extra step of Alice and Bob computing the _same_
secret with the help of further communication.

[NB: the term "reconciliation" does not have a consensus precise definition. Some people use it to refer to the general
goal of getting Alice and Bob to compute exactly the same value. Some people use it to refer to a specific method of
accomplishing this, like the one in Ding's patent, and use different words for other methods. The choice of word doesn't
matter for the substance of the facts and analysis here. I'll refrain from using the term wherever possible to avoid any
ambiguity/confusion.]


mailto:djb@cr.yp.to

The normal reconciliation pattern is that Bob sends C = Ab+M+c, where M
is in a sufficiently limited set to allow error correction: for example,

each position in M is restricted to the set {0,floor(q/2)}. Alice now

finds C-aB = M+c+eb-ad, and corrects errors to find M. Bob also finds M.

Example 1: Take the variables in R_qg = F_q[x]/(x*n+1) where n is a power
of 2, and take C as Ab+M+c.

This cryptosystem, with some further restrictions on distributions etc.,
appeared in the revised version of the LPR paper (not with the name
"reconciliation”, | agree) and in talk slides as early as April 2010.

This is pretty much always what people mean by "the LPR cryptosystem",
modulo the question of which number fields are considered; I'm focusing
here on the commonly used case of power-of-2 cyclotomic fields.

Example 2: Special case of Example 1, with the extra requirement of C
being in a more restricted set, so that C can be sent in less space.

This is what | call "compressed LPR". The LPR cryptosystem was in the
revised version of the LPR paper, but compressed LPR wasn't; see below
for further discussion of the history.

Example 3: Special case of Example 2, where C is a deterministic
function of Ab+M: e.g., C is obtained by rounding Ab+M to a more
restricted set.

Examples 2 and 3 are how Kyber and SABER work*, respectively. Note that M has no dependence on A, b, or ¢, and
rounding down to a single bit per polynomial coefficient would not work -- decryption would be incorrect. (E.g.,
Kyber512 compresses the integer coefficients of C to 10 bits each, and can't go much further.)

The methods and distinguishing features of Example 2 (i.e., rounding C to a more restricted set) and Example 3 (i.e.,
replace small error ¢ with deterministic rounding) are well represented in the prior art from 2009-2011, as shown by the
references at the end of this message.

(For reference, Example 2 belongs to a class known in the literature as "rounded (Ring-/Module-)LWE", and Example 3
belongs to the class "(Ring-/Module-)Learning With Rounding.")

Importantly, Ding's patent doesn't claim (or even describe) the compression methods of Examples 2/3, and for good
reason -- one can't patent prior art. So, the patent's limited claims don't cover Example 2/3. At this point one can already
conclude that Kyber/SABER's compression is non-infringing, but let's continue.

*(but with the variables being vectors or matrices over R_q; this distinction isn't important for the analysis of the
compression techniques, and in any case, this setting is also explicitly covered by the prior art.)

Example 4: Special case of Example 3, where M is the output of rounding
-Ab to have each position in {0,floor(q/2)}. This puts each position of
Ab+M between about -g/4 and g/4.

For definiteness let's say that C is then obtained by rounding each
position of Ab+M to {-ceil(q/8),ceil(q/8)}. The difference c = C-Ab-M
is then between about -q/4 and about g/4.



Notice that each position of the shared secret M is now communicating
one bit of information about Ab, namely whether that position of Ab is
closer to 0 or to q/2.

Example 4 closely corresponds to what Ding's patent describes. Note the following features that distinguish it from
Examples 2 and 3: M now depends on Ab (perhaps even deterministically), and every polynomial coefficient can be
compressed to a *single* bit (as opposed to the necessary several bits in Example 2/3).

The patent must be limited to these specific methods and (potential) advantages; it does not apply to any form of
"compressed LPR" in general.

No NIST finalist/alternate has any of these distinguishing features (again, they use only the compression method from
Example 2/3). So, Example 4's/Ding's compression method is irrelevant to the NIST proposals.

Example 5: ...

(Readers coming at all this from an FHE background will recognize the
difference between Example 5 and Example 4 as being analogous to the
difference between 2009 DGHV and 2000 Cohen/2003 Regev. But pointing to
inefficient prior art won't win a patent case; see below.)

It's true that long before the patent, Examples 4 and 5 were understood to have a distinction without a difference. But
we shouldn't limit our view to literature that doesn't use polynomial rings for efficiency. For example, the prior art
BGV'11 cited below explicitly describes Example 2's compression on "LPR ciphertexts" (a.k.a., Ring-/Module-LWE
samples).

All of the compressed-LPR examples, everything starting from Example 2,
also have the following feature:

(S) Bob squeezes C into less space than an R_q element.

Based on the abundant prior art, any person of ordinary skill working in the area (or even someone just following it
closely) would have easily seen that feature (S) -- obtained using the methods of Examples 2 and 3 -- is generally
applicable to any combination of A, B, C, D, P (and even X, Y, Z to be named later) in the broad family of (Ring-/Module-
JLWE/LWR cryptosystems.

Indeed, the prior art has multiple explicit examples of various combinations (including most and possibly all of A, B, C, D,
P), along with remarks that the techniques apply generally to all manner of "LWE samples" (including LPR ciphertexts).
There would be no novelty or inventive step involved in applying them to yet-another-combination; they were by then a
widely used tool in the lattice-crypto toolbox.

The plaintiff's lawyer will pull out one expert
witness after another saying that efficiency improvements now
claimed in retrospect to be obvious weren't obvious at the time;
and will then pull out the big gun, 2014 Peikert.

Like Ding's patent, 2014 Peikert falls under Example 4. None of the NIST proposals use any of those methods or have any
of their distinguishing features, so 2014 Peikert is not even a starter pistol here.

How is the
defendant's lawyer supposed to argue that saving space compared to
LPR was obvious in 2012 to people of ordinary skill in the art,

3



given that 2014 Peikert claimed that saving space compared to LPR
was new, the result of an "innovation" in 2014 Peikert?

This is not "given," it is a blatant misrepresentation of 2014 Peikert's claims.

It did not claim that "saving [any] space compared to uncompressed LPR" was novel -- indeed, saving a small amount of
space was already explicit from the cited prior art.

It did claim (among other things) a particular, rigorous method for saving *almost 2x space* in an LPR-like key exchange,
by working similarly to Example 4. Again, this class of technique is unused by, and irrelevant to, the NIST proposals.

* The non-infringement argument. This time it's the defendant's
lawyer trying to argue that there's a "substantial" difference
between the patent claims and what the defendant is doing.

A competent non-infringement argument ought to win easily. To summarize:

The claims in Ding's patent are limited to (something very close to) Example 4, and definitely don't touch Example 2/3.
But the latter are all that Kyber/SABER use for compression, and they are well represented by prior art. Frankly, this
argument should be a slam dunk. But if you want more:

Another possible substantial difference is that SABER additionally compresses B (the ciphertext "preamble") by a decent
amount; e.g., level-3 SABER compresses each 13-bit integer to 10 bits, a 23% savings. | don't see Ding's patent as
describing any compression of B.

Another possible substantial difference is Example 2/3's ability to choose M freely (or have it be specified as an input) --
which Kyber/SABER do -- versus Example 4's restriction that M must depend on Ab. | understand this to be the "public-
key encryption" versus "key exchange" distinction that Vadim Lyubashevsky has brought up in prior messages. To turn
Example 4 into a PKE, one would need to somehow combine M with the intended message and send the result -- but
this costs more communication, undoing some of the benefits of the high compression.

In addition, there may be other limitations of the patent or substantial differences leading to good non-infringement
arguments (whether related to compression or not), and good attacks on the patent's validity in the first place.

Sincerely yours in cryptography,
Chris

Here is a (likely incomplete) list of prior art describing the compression techniques described in Example 2/3. These
works explicitly construct KEMs, public-key encryption, and other lattice-based cryptosystems, but the techniques'
general applicability to the entire LWE/LWR family is a recurring explicit theme. This list originally appeared in a previous
message of mine [link].

* 2009 https://web.eecs.umich.edu/~cpeikert/pubs/svpcrypto.pdf

-- Section 4.2: "When using a large value of q... the efficiency of the prior schemes is suboptimal... Fortunately, it is
possible to improve their efficiency (without sacrificing correctness) by discretizing the LWE distribution more ‘coarsely’
using a relatively small modulus g'..." The subsequent definition of KEM.Encaps uses rounding to compress the
ciphertext, just as described in the text.

The above text mentions only LWE, because it predates the publication of the more "structured" and efficient Ring-LWE
and Module-LWE (cf. Kyber, SABER, NTRU LPRime). But upon their introduction in 2010 and 2011, a skilled person would


https://web.eecs.umich.edu/~cpeikert/pubs/svpcrypto.pdf

easily recognize that rounding works just as well for those too. Indeed, the following prior art does just that, often
explicitly for compression purposes:

* 2011 https://eprint.iacr.org/2011/401 and https://web.eecs.umich.edu/~cpeikert/pubs/slides-prf.pdf introducing
(Ring-)LWR (cf. SABER):

-- "Our derandomization technique for LWE is very simple: instead of adding a small random error term to each inner
product, we just deterministically round it to the nearest element of a sufficiently 'coarse' public subset of p << g well-
separated values..." and

--"In the ring setting, the derandomization technique and hardness proof based on ring-LWE all go through without
difficulty as well" and

-- "We believe that this technique should be useful in many other settings" and "LWE: deterministic errors also gives
more practical PRGs, GGM-type PRFs, encryption, ..."

* 2011 https://eprint.iacr.org/2011/344 :

-- "Our dimension-modulus reduction idea enables us to take a ciphertext with parameters (n, log q) as above, and
convert it into a ciphertext of the same message, but with parameters (k, log p) which are much smaller than (n, log
g)..." and

-- "the underlying intuition is that Z_p can 'approximate' Z_qg by simple scaling, up to a small error..." and

-- "As a nice byproduct of this technique, the ciphertexts of the resulting fully homomorphic scheme become very
short!"

* 2011 https://eprint.iacr.org/2011/277 : more on modulus reduction (a.k.a. rounding), this time explicitly for Ring- and
Module-LWE:

-- "This is an abstract scheme that can be instantiated with either LWE or Ring LWE..." and
-- "The transformation from c to c¢' involves simply scaling by (p/q) and rounding..." and

-- "while they use modulus switching in 'one shot' to obtain a small ciphertext (to which they then apply Gentry’s
bootstrapping procedure), we will use it (iteratively, gradually) to keep the noise level essentially constant, while stingily
sacrificing modulus size..." and

-- defining what's now known as Module-LWE: "LWE is simply GLWE instantiated with d = 1. RLWE is GLWE
instantiated with n = 1. Interestingly, as far as we know, instances of GLWE between these extremes have not been
explored. One would suspect that GLWE is hard for any (n, d) such that ... "


https://eprint.iacr.org/2011/277
https://eprint.iacr.org/2011/344
https://web.eecs.umich.edu/~cpeikert/pubs/slides-prf.pdf
https://eprint.iacr.org/2011/401

From: Kirk Fleming <kpfleming@mail.com>

Sent: Monday, June 21, 2021 7:17 PM

To: Ruben Niederhagen

Cc: Christopher J Peikert; pgc-forum; pgc-comments

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece

In the Classic McEliece presentation at the recent NIST
post-quantum conference Tanja Lange gave estimates for
the security of mceliece-1024-50 and mceliece-1223-23
using the Markov chain analysis from BLP2010. She failed
to do the same for the parameter sets proposed in the
Round 3 submission.

For completeness, a limited search using the isdfq code
by Peters (github.com/christianepeters/isdfq) gave:

Parameter Set Bit Ops
mceliece-3488-064 2/145.2
mceliece-4608-096 27187.0
mceliece-6688-128 27261.9
mceliece-6960-119 27262.3
mceliece-8192-128 22297.1

The 27°262.3 estimate for mceliece-6960-119 corresponds
to the 4-bit reduction in security cited by Ruben.

Kirk



From: Christopher J Peikert <cpeikert@alum.mit.edu>

Sent: Monday, June 21, 2021 10:42 PM

To: Kirk Fleming

Cc: pqc-forum; pgc-comments

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece

For the record: in nearly six months there has been no response from the Classic McEliece team, nor update to the
specification, to this:

On Wed, Dec 30, 2020 at 7:49 PM Kirk Fleming <kpfleming@mail.com> wrote:
Dan Bernstein (on behalf of the Classic McEliece team) asked:
> Can you please clarify how you think that the numbers already
> in the literature don't already justify the assignments in the
> submission?

The only concrete security estimate given in the entire Classic
McEliece submission is:

"[Bernstein, Lange and Peters. 2008] reported that its attack
uses 2°266.94 bit operations to break the (13,6960,119)
parameter set."

This is not true. Bernstein, Lange and Peters actually say:

"For keys limited to 2716, 2717, 2718, 27°19, 2720 bytes, we
propose Goppa codes of lengths 1744, 2480, 3408, 4624, 6960
and degrees 35, 45, 67, 95, 119 respectively, with 36, 46,

68, 97, 121 errors added by the sender. These codes achieve
security levels 84.88, 107.41, 147.94, 191.18, 266.94 against
our attack."

The 27°266.94 estimate is not for mceliece-6960-119. It's for a
different parameter set that uses list decoding to increase the
number of errors that can be corrected.

A few hours ago, Dan Bernstein (one of the Classic McEliece submitters) wrote:

"Security claims regarding NISTPQC submissions have to be stated clearly for public review. When a reviewer disproves a
security claim, the claim has to be withdrawn, and the withdrawal has to properly credit the disproof. Any other
approach disincentivizes security review."

Shortly thereafter, Kirk Fleming wrote: "a limited search using the isdfq code by Peters
(github.com/christianepeters/isdfq)" gave an estimate for mceliece-6960-119 of 22262.3 bit operations. This is less than
the 27266.94 bit operations claimed in the submission.

Is this a "disproof" of the submission's security claim? If the code's output represents an actual attack, then yes, it is a
disproof.

In any case, the submission certainly contains a disproved description of BLP0O8's clear security claim. By the same
rationale from the above quote (do not disincentivize security review), the same remedy is required: withdraw the claim
and properly credit the disproof.

Sincerely yours in cryptography,
Chris 1



From: Ruben Niederhagen <ruben@polycephaly.org>

Sent: Tuesday, June 22, 2021 2:10 AM

To: Kirk Fleming

Cc: pqc-forum; pgc-comments

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece
Hi Kirk!

On 6/22/21 1:16 AM, Kirk Fleming wrote:

> In the Classic McEliece presentation at the recent NIST post-quantum

> conference Tanja Lange gave estimates for the security of

> mceliece-1024-50 and mceliece-1223-23 using the Markov chain analysis
> from BLP2010. She failed to do the same for the parameter sets

> proposed in the Round 3 submission.

Tanja did, however, on the very same slide link to the paper "A Finite Regime Analysis of Information Set Decoding
Algorithms" by Baldi, Barenghi, Chiaraluce, Pelosi, and Santini, advertising that it provides "bit operations & memory for
all Classic McEliece parameters".

> For completeness, a limited search using the isdfq code by Peters

> (github.com/christianepeters/isdfq) gave:

>  Parameter Set Bit Ops

mceliece-3488-064 27145.2

mceliece-4608-096 27187.0

mceliece-6688-128 27261.9

mceliece-6960-119 2/262.3

> mceliece-8192-128 27297.1

> The 27262.3 estimate for mceliece-6960-119 corresponds to the 4-bit
> reduction in security cited by Ruben.

V V V V

Thank you for doing the math!
I am happy that your calculations fit well to the proposed security levels of the Classic McEliece submission.

Ruben
(speaking for myself)



From: Ruben Niederhagen <ruben@polycephaly.org>

Sent: Tuesday, June 22, 2021 5:53 AM
To: pqc-forum; pgc-comments
Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece

On 6/22/21 4:42 AM, Christopher J Peikert wrote:

> A few hours ago, Dan Bernstein (one of the Classic McEliece

> submitters) wrote

> <https://groups.google.com/a/list.nist.gov/g/pgc-forum/c/YxOwZuZP6ag/m
> /rjimo2mYeCQAJ>

>

>

> "Security claims regarding NISTPQC submissions have to be stated

> clearly for public review. When a reviewer disproves a security claim,

> the claim has to be withdrawn, and the withdrawal has to properly

> credit the disproof. Any other approach disincentivizes security review."

| fail to see a point in the fact that Dan Bernstein is one of the Classic McEliece submitters (as am I); quite clearly his
individual statements are not a joint position of the Classic McEliece submitters.

> Shortly thereafter, Kirk Fleming wrote

> <https://groups.google.com/a/list.nist.gov/g/pgc-forum/c/EiwxGnfQgec/m/PyJCsL4iCQAJ>:

> "a limited search using the isdfg code by Peters (

> github.com/christianepeters/isdfq)" gave an estimate for

> mceliece-6960-119 of 22262.3 bit operations. This is less than the

> 27266.94 bit operations claimed in the submission.

>

> Is this a "disproof" of the submission's security claim? If the code's

> output represents an actual attack, then yes, it is a disproof.

>

> In any case, the submission certainly contains a disproved

> *description of* BLP0O8's clear security claim. By the same rationale

> from the above quote (do not disincentivize security review), the same remedy is required:

> withdraw the claim and properly credit the disproof.

Just for clarification and to avoid misunderstandings by readers of this

thread: The Classic McEliece submission proposes the mceliece-6960-119 parameter set (13,6960,119) for Category 5.
The estimated cost of

27262.3 bit operations according to this specific reference as computed by Kirk Fleming are well within Category 5 -
probably without any dispute also by Christopher Peikert.

Chris refers to a different (though interesting) discussion in the thread "Looseness, security risks, and LWR vs. LWE".

Best regards
Ruben (speaking for myself)



From: Christopher J Peikert <cpeikert@alum.mit.edu>

Sent: Tuesday, June 22, 2021 6:14 AM

To: Ruben Niederhagen

Cc: pqc-comments; pgc-forum

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece

On Tue, Jun 22, 2021 at 5:52 AM Ruben Niederhagen <ruben@polycephaly.org> wrote:
On 6/22/21 4:42 AM, Christopher J Peikert wrote:
> A few hours ago, Dan Bernstein (one of the Classic McEliece submitters)
> wrote
> <https://groups.google.com/a/list.nist.gov/g/pgc-forum/c/YxOwZuzZP6ag/m/rimo2mYeCQAJ>
>
>
> "Security claims regarding NISTPQC submissions have to be stated clearly
> for public review. When a reviewer disproves a security claim, the claim
> has to be withdrawn, and the withdrawal has to properly credit the
> disproof. Any other approach disincentivizes security review."

| fail to see a point in the fact that Dan Bernstein is one of the
Classic McEliece submitters (as am I); quite clearly his individual
statements are not a joint position of the Classic McEliece submitters.

Fair enough. My message can be taken as a request to know what *is* the joint position of the Classic McEliece team on
the highlighted discrepancy, which has been pending for almost six months, and seems easy to resolve. Moreover, there
are several other substantive but unaddressed points made by Kirk Fleming in this thread that deserve some response.

Just for clarification and to avoid misunderstandings by readers of this
thread: The Classic McEliece submission proposes the mceliece-6960-119
parameter set (13,6960,119) for Category 5. The estimated cost of
2/7262.3 bit operations according to this specific reference as computed
by Kirk Fleming are well within Category 5 - probably without any
dispute also by Christopher Peikert.

Yes, | don’t dispute that this is within Category 5. My prior message concerned the more precise security claims.

Sincerely yours in cryptography,
Chris



From: Kirk Fleming <kpfleming@mail.com>

Sent: Tuesday, June 22, 2021 8:19 PM

To: Ruben Niederhagen

Cc: pqc-forum; pgc-comments

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece
Hi Ruben,

Ruben Niederhagen wrote:
> Thank you for doing the math!

I did very little. Thank Christiane Peters for writing the code!

> I am happy that your calculations fit well to the proposed security
> levels of the Classic McEliece submission.

I disagree. I still believe mceliece-4608-096 is less secure than it
needs to be for Category 3.

This should not be a surprise when you realise the parameter sets
were chosen based on the size of the public key. The loose rule of
thumb is that increasing the size of the public key by a factor of 4
doubles the security so if a 218 byte public key is equivalent to
AES-128 then you might reasonably expect a 2720 byte public key
to be equivalent to AES-256. However, doubling the size of the public
key only increases the security by a factor of Sqrt(2) so you should
only expect a 2”19 byte public key to be equivalent to AES-181.

This is not a proof, of course, but it does suggest why the estimates
from the Markov chain analysis are lower for mceliece-4608-096,
relatively speaking, than the other parameter sets.

Kirk



From: Ruben Niederhagen <ruben@polycephaly.org>

Sent: Wednesday, June 23, 2021 7:25 AM

To: Kirk Fleming

Cc: pqc-forum; pgc-comments

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece
Hi Kirk!

On 6/23/21 2:18 AM, Kirk Fleming wrote:

> Ruben Niederhagen wrote:

>> | am happy that your calculations fit well to the proposed security

>> |evels of the Classic McEliece submission.

>

> | disagree. | still believe mceliece-4608-096 is less secure than it

> needs to be for Category 3.

>

> This should not be a surprise when you realise the parameter sets were

> chosen based on the size of the public key. The loose rule of thumb is

> that increasing the size of the public key by a factor of 4 doubles

> the security so if a 2218 byte public key is equivalent to

> AES-128 then you might reasonably expect a 2220 byte public key to be

> equivalent to AES-256.

How do you get to this rule of thumb? Be aware that there are several parameters in code-based crypto that are
contributing to the key size on the one hand and to the attack cost on the other hand; there are many parameter sets
with a public key size of, e.g., around 512 kB but varying attack costs - as there are many parameter sets for a cost of
around 27192 operations but with varying key sizes.

For example, the (not proposed) parameter sets (m=13, n=4750, t=90) and (m=13, n=7900, t=44) have a very similar
public key size of about 512 kB
- but significantly different attack costs.

> However, doubling the size of the public key only increases the

> security by a factor of Sqrt(2) so you should only expect a 2719 byte

> public key to be equivalent to AES-181. This is not a proof, of

> course, but it does suggest why the estimates from the Markov chain

> analysis are lower for mceliece-4608-096, relatively speaking, than

> the other parameter sets.

Well, applying well established formulas to assess the cost of an attack for specific parameter sets (as you did using
Christiane's script) sounds good enough to me; | hope you are not suggesting that the cost analysis itself is flawed.

Picking parameter sets according to key sizes is not uncommon; recommended RSA key sizes tend to be a power of two
or at least a multiple of 1024 bit. Also common security levels themselves like 128, 192, and 256 (also 160, 224, 320, ...)
are somewhat arbitrary and probably indeed were motivated by the corresponding key sizes of AES, ECC, etc. However,
you are of course entitled to your own opinion on whether or not parameter sets (as long as they provide the desired
security level) should be picked targeting a specific key size.

Ruben
(speaking for myself)



From: Kirk Fleming <kpfleming@mail.com>

Sent: Wednesday, June 23, 2021 8:17 AM

To: Ruben Niederhagen

Cc: pqc-forum; pgc-comments

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece
Hi Ruben,

Ruben Niederhagen wrote:
>>> I am happy that your calculations fit well to the proposed
>>> security levels of the Classic McEliece submission.

Kirk Fleming wrote:
>> I disagree. I still believe mceliece-4608-096 is less secure than it
>> needs to be for Category 3.

>> This should not be a surprise when you realise the parameter sets

>> were chosen based on the size of the public key. The loose rule of

>> thumb is that increasing the size of the public key by a factor of 4

>> doubles the security so if a 218 byte public key is equivalent to

>> AES-128 then you might reasonably expect a 2220 byte public key to be
>> equivalent to AES-256.

Ruben replied:
> How do you get to this rule of thumb?

See for example Section 8.1 of the Classic McEliece submission:

"Security level 2”~b thus uses key size (c_0+0(1))b”2 (Ig b)~2
where c0 = R/(1-R)(Ig(1—-R))"2 ."

If we ignore log factors, when R is fixed the size of the public key
is asymptotically quadratic in the security parameter.

> Be aware that there are several

> parameters in code-based crypto that are contributing to the key size on
> the one hand and to the attack cost on the other hand; there are many
> parameter sets with a public key size of, e.g., around 512 kB but

> varying attack costs - as there are many parameter sets for a cost of

> around 27192 operations but with varying key sizes.

> For example, the (not proposed) parameter sets (m=13, n=4750, t=90) and
> (m=13, n=7900, t=44) have a very similar public key size of about 512 kB
> - but significantly different attack costs.

Of course it is possible to choose parameters with similarly sized

public keys but varying security levels. However, the Classic McEliece
parameter sets were chosen to maximize security given an upper bound
on the public key size. This will tend to give parameter sets with similar
values for R.

>> However, doubling the size of the public key only increases the

>> security by a factor of Sqrt(2) so you should only expect a 2719 byte
>> public key to be equivalent to AES-181. This is not a proof, of

>> course, but it does suggest why the estimates from the Markov chain
>> analysis are lower for mceliece-4608-096, relatively speaking, than
>> the other parameter sets.



> Well, applying well established formulas to assess the cost of an attack
> for specific parameter sets (as you did using Christiane's script)

> sounds good enough to me; I hope you are not suggesting that the cost
> analysis itself is flawed.

No, I'm not suggesting that the analysis is flawed. I'm suggesting that the
analysis doesn't support the claimed security category for this parameter
set.

Picking parameter sets according to key sizes is not uncommon;
recommended RSA key sizes tend to be a power of two or at least a
multiple of 1024 bit. Also common security levels themselves like 128,
192, and 256 (also 160, 224, 320, ...) are somewhat arbitrary and
probably indeed were motivated by the corresponding key sizes of AES,
ECC, etc. However, you are of course entitled to your own opinion on
whether or not parameter sets (as long as they provide the desired
security level) should be picked targeting a specific key size.

VVVVVYVYVYV

I have no objection to choosing parameter sets that target specific key sizes
provided that they also meet the claimed security categories.

Kirk



From: Ruben Niederhagen <ruben@polycephaly.org>

Sent: Wednesday, June 23, 2021 10:17 AM

To: Kirk Fleming

Cc: pqc-forum; pgc-comments

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece
Hi Kirk!

On 6/23/21 2:16 PM, Kirk Fleming wrote:> Ruben replied:

>> How do you get to this rule of thumb?

>

> See for example Section 8.1 of the Classic McEliece submission: >  "Security level 2*b thus uses key size
(c_0+0(1))b"2 (Ig b)~r2

>  where c0 =R/(1-R)(Ig(1-R))*2."

> If we ignore log factors, when R is fixed the size of the public key

> is asymptotically quadratic in the security parameter.

Well - an asymptotic rule of thumb might be quite a bit off for concrete parameter sets - as illustrated by my example
parameter sets (m=13, n=4750, t=90) and (m=13, n=7900, t=44).

>> Well, applying well established formulas to assess the cost of an

>> attack for specific parameter sets (as you did using Christiane's

>> script) sounds good enough to me; | hope you are not suggesting that
>> the cost analysis itself is flawed.

>

> No, I'm not suggesting that the analysis is flawed. I'm suggesting

> that the analysis doesn't support the claimed security category for

> this parameter set.

| am confused; the very attack costs that you reported in one of your earlier mails for the Category-3 parameter sets
seems to support the claimed security category. Could you be more specific on why you consider this not to be the case?

I'd suggest to take this offline so we don't continue to 'spam' the mailing list; this discussion might be off-topic for many
readers. Maybe we can just report back with the results of our offline discussion afterwards.

Ruben



From: D. J. Bernstein <djb@cr.yp.to>

Sent: Wednesday, June 23, 2021 7:30 PM

To: pgc-comments

Cc: pqc-forum

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece
Attachments: signature.asc

> "Security level 2b thus uses key size (c_0+0o(1))b*2 (Ig b)*2

> where c0 =R/(1-R)(Ig(1-R))"2 ."

> If we ignore log factors, when R is fixed the size of the public key
> is asymptotically quadratic in the security parameter.

The argument here, together with the context, is

(1) claiming that the 1MB parameters are cutting things close for 256,
(2) claiming that o(1) can be treated as O,

(3) claiming that log factors can be ignored, giving a simple b"2,

(4) observing that sqrt(1/2) is 6% below sqrt(192/256), and

(5) concluding that the 1/2 MB parameters are 6% off for 192.

But if one _doesn't_ignore log factors then the b*2 (Ig b)*2 ratio between b=256 and b=192 is 1.98, which turns the 6%
into under 1%. The argument never claims that #1 is cutting things _that_ close.

Bigger picture: #3 is pointless oversimplification; the submission already specifically disclaims #2; #1 is ill-defined, and,
for people who understand what the literature says about the attacks, it's hard to imagine a realistic cost metric that
would make #1 correct. In general, basing such a minor quantitative complaint on such a large pile of assumptions can
simply be dismissed as too error-prone to consider.

The submission team officially requested last year that NIST "fully define the cost metric to be used for 'categories' so
that all submission teams can evaluate costs in this metric. NIST's failure to do this---despite the transparency rule in the
call for proposals---is the primary reason that we all keep wasting time on arguments founded upon ill-defined claims.
This is not how NISTPQC should work.

---Dan (speaking for myself)



From: ‘David A. Cooper' via pqc-forum <pqc-forum@list.nist.gov>

Sent: Thursday, June 24, 2021 11:06 AM
To: pgc-forum
Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece

| do not believe that Kirk attempted to make the argument that you ascribe to him at all. | believe that he was very clear
that he was not using what he described as a "loose rule of thumb" as the basis for questioning the security level of
mceliece-4608-096.

Kirk provided a table of security estimates and suggested that the estimate for one of the parameter sets seemed to be
lower than required for the claimed security level. | have not seen any response to these emails expressing
disagreement with the security estimates from the table or attempting to explain why mceliece-4608-096 should be
considered category 3 despite the security estimate of 24187.0 bit ops.

David (speaking only from myself)

On 6/21/21 7:16 PM, Kirk Fleming wrote:

For completeness, a limited search using the isdfq code
by Peters (github.com/christianepeters/isdfq) gave:

Parameter Set Bit Ops
mceliece-3488-064 2/145.2
mceliece-4608-096 27187.0
mceliece-6688-128 2/261.9
mceliece-6960-119 27262.3
mceliece-8192-128 27297.1

On 6/22/21 8:18 PM, Kirk Fleming wrote:

I still believe mceliece-4608-096 is less secure than it
needs to be for Category 3.

On 6/23/21 7:30 PM, D. J. Bernstein wrote:

"Security level 2”b thus uses key size (c_0+o(1l))b"2 (lg b)"2
where c0 = R/ (1-R) (1g(1-R))"2 ."
If we ignore log factors, when R is fixed the size of the public
key
is asymptotically quadratic in the security parameter.

The argument here, together with the context, is

(1) claiming that the 1MB parameters are cutting things close for 256,
(2) claiming that o(l) can be treated as O,

(3) claiming that log factors can be ignored, giving a simple b"2,

(4) observing that sqgrt(l/2) is 6% below sqrt(192/256), and

(5) concluding that the 1/2 MB parameters are 6% off for 192.

But if one doesn't ignore log factors then the b"2 (lg b)”"2 ratio
between b=256 and b=192 is 1.98, which turns the 6% into under 1%. The
argument never claims that #1 is cutting things that close.

1



Bigger picture: #3 is pointless oversimplification; the submission
already specifically disclaims #2; #1 is ill-defined, and, for people
who understand what the literature says about the attacks, it's hard to
imagine a realistic cost metric that would make #1 correct. In general,
basing such a minor quantitative complaint on such a large pile of
assumptions can simply be dismissed as too error-prone to consider.

The submission team officially requested last year that NIST "fully

define the cost metric to be used for 'categories'" so that all
submission teams can evaluate costs in this metric. NIST's failure to do
this---despite the transparency rule in the call for proposals---is the

primary reason that we all keep wasting time on arguments founded upon
ill-defined claims. This is not how NISTPQC should work.

---Dan (speaking for myself)

You received this message because you are subscribed to the Google Groups "pqc-forum" group.

To unsubscribe from this group and stop receiving emails from it, send an email to pgc-forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pgc-forum/c464659d-e77a-
deeb-4a57-e5¢cc9b0c61f9%40nist.gov.




From: pgc-forum@list.nist.gov on behalf of Ruben Niederhagen <ruben@polycephaly.org>

Sent: Thursday, June 24, 2021 12:55 PM
To: Cooper, David A. (Fed); pqc-forum
Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece

On 6/24/21 5:06 PM, 'David A. Cooper' via pgc-forum wrote:

> Kirk provided a table of security estimates and suggested that the

> estimate for one of the parameter sets seemed to be lower than

> required for the claimed security level. | have not seen any response

> to these emails expressing disagreement with the security estimates

> from the table or attempting to explain why mceliece-4608-096 should

> be considered category 3 despite the security estimate of 24187.0 bit ops.

Let me quote from page 46 of the Classic McEliece submission document:

"A closer look shows that the attack in [Bernstein, Lange and Peters.
2008] is bottlenecked by random access to a huge array (much larger than the public key being attacked), and that
subsequent ISD variants use even more memory."

Hence, | am feeling very comfortable with the quoted cost of 22187 bit operations for Category 3; the script that Kirk is
using counts only bit operations as well and does not take memory cost into consideration.

Let me refer you again to the paper "A Finite Regime Analysis of Information Set Decoding Algorithms" by Baldi,
Barenghi, Chiaraluce, Pelosi, and Santini, which covers several ISD attack variants and also reports memory cost. In that
paper, the interesting algorithms for the Category 3 parameter set are the MMT and BJMM variants of ISD, which both
come with significant memory cost.

As Dan mentioned, an official definition or general agreement on how to include the memory cost into the NIST security
categories is still open.
I'd argue that, including memory cost, all security categories are well covered by the Classic McEliece submission.

Nevertheless, being a code-based scheme, Classic McEliece allows to choose parameter sets quite flexibly - so if
eventually there was a definition or general agreement of how to handle memory cost to which the currently proposed
parameters did not fit, then suitable parameter sets could be chosen quite easily.

Ruben
(speaking for myself)

You received this message because you are subscribed to the Google Groups "pqc-forum" group.

To unsubscribe from this group and stop receiving emails from it, send an email to pgc-forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/84108d8f-d8be-
29b6-1ae4-30169bbc2561%40polycephaly.org.



From: pqc-forum@list.nist.gov on behalf of D. J. Bernstein <djb@cr.yp.to>

Sent: Thursday, June 24, 2021 7:16 PM

To: pgc-forum

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece
Attachments: signature.asc

Some procedural objections.

'David A. Cooper' (NIST) via pgc-forum writes:

> | have not seen any response to these emails expressing disagreement
> with the security estimates from the table or attempting to explain

> why mceliece-4608-096 should be considered category 3 despite the
> security estimate of 22187.0 bit ops.

In fact, the Classic McEliece team filed an OFFICIAL COMMENT dated 19 Nov 2020 13:37:46 +0100 responding in detail
to the first iteration of this claim regarding bit operations. Procedurally, it's not reasonable to have every subsequent
minor variation of the argument forcing the team to prepare a new response. The big problem pointed out in the
original response hasn't gone away.

If NIST didn't understand something in the team response, then NIST should have promptly asked for clarification. |
understand that you're speaking for yourself, but doesn't NIST have a central issue tracker making it easy for NIST
people to see what has been addressed already?

> | do not believe that Kirk attempted to make the argument that you
> ascribe to him at all.

Let's look at the facts. He
* quoted the "(c_0+0(1))b”2 (Ig b)A2" asymptotic;
* explicitly ignored "log factors"---that's #3 in my list---and

* ignored the o(1)---that's #2 in my list.

He used this to justify previously claiming a quadratic "rule of thumb".
He used this "rule of thumb", in turn, to say

* "you should only expect a 2”219 byte public key to be equivalent to
AES-181"---that's #4 and #5 in my list.

Here 181 arises as sqrt(1/2)*256. The logic here has a gaping hole when the 1MB key costs _much more_ to break than
AES-256, so he instead

* claimed "a 2720 byte public key to be equivalent to
AES-256"---that's #1 in my list.

The starting point before this is actually a claim about 128, which is equivalent to the claim about 256 for anyone who
believes the quadratic from #2 and #3; sqrt(2)*128 is the same 181.



So his argument for "you should only expect a 2719 byte public key to be equivalent to AES-181" is the argument that |
attributed to him. Please withdraw your statement to the contrary.

> | believe that he was very clear that he was not using what he
> described as a "loose rule of thumb" as the basis for questioning the
> security level of mceliece-4608-096.

Readers will understand his original 194.36 argument (from a script simplifying costs in one way), and his latest 187.0
argument (from a script simplifying costs in another way), to be claiming that 460896 is slightly less secure than AES-192.
The big problem with this claim was already covered in the team message from last year.

Readers will _also_ understand his new argument that "you should only expect a 2419 byte public key to be equivalent
to AES-181" as claiming that 460896 is slightly less secure than AES-192. Within this argument,
#1 starts from the same big problem as the other argument, but #2 and #3 aren't shared by the other argument.

| quoted #3, correctly summarized the whole argument, and then pointed out how the inaccuracy of #3 destroys the
argument (while also noting the problems with #1 and #2). | expected to see the argument withdrawn.

| didn't expect to have to contend with claims that the argument won't affect readers and claims that the argument
wasn't even presented.

---Dan

You received this message because you are subscribed to the Google Groups "pgc-forum" group.

To unsubscribe from this group and stop receiving emails from it, send an email to pgc-forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/20210624231533.1071360.gmail%40cr.yp.to.



From: Kirk Fleming <kpfleming@mail.com>

Sent: Friday, June 25, 2021 8:38 PM

To: Ruben Niederhagen

Cc: pqc-forum; pgc-comments

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece

Ruben wrote:

> I'd suggest to take this offline so we don't continue
> to 'spam' the mailing list; this discussion might be
> off-topic for many readers.

I was planning to agree but I now find myself being asked
to withdraw claims that I don't believe I made based on
objections that distort what I said.

Let's recap.

The Classic McEliece update included security estimates for
two challenge problems but did not extend the analysis to
the parameter sets proposed in the submission. I posted
those estimates as they illustrate Ruben's 4-bit gap in

the mceliece-6960-119 claim from the submission.

Ruben replied he was happy the estimates fit the claimed
security categories. I disagreed. I don't believe the
Category 3 claim for mceliece-4608-094 is supported by
the estimates.

So far so good.

I then made the observation that the parameter selection
criteria would not necessarily lead to a parameter set
meeting to Category 3. The rough heuristic I used was
that the public keys are quadratic in the size of the
security parameter. I thought I made it clear this wasn't
a rigorous argument. I certainly didn't use it to make
any claims about the security of specific parameter sets.
Heuristics like this can be useful guides for designers
when choosing parameters but they are no substitute for
proper analysis.

Am I being asked to withdraw the heuristic? I don't think
it should be controversial. When challenged by Ruben I
quoted a formula from the Classic McEliece submission as
that seemed particularly apt. I could equally have quoted
Philippe's rank metric talk from the NIST 2015 workshop.
None of the objections about ignoring o(1) or log terms
are relevant. I have never claimed that asymptotic results
give meaningful security estimates for finite parameters.

The wider objection is that the 187.0 estimate given for
mceliece-4608-094 doesn't include memory costs. This is
true but the Classic McEliece team won't commit to a
metric that does include memory costs. Fortunately, the
NTRUPrime team do and it's now being used by some of
the other submissions. I leave it as an exercise for the
reader to work out if mceliece-4608-094 meets Category 3
in that metric.

Kirk



From: pqc-forum@list.nist.gov on behalf of Kirk Fleming <kpfleming@mail.com>

Sent: Saturday, June 26, 2021 11:12 AM

To: Kirk Fleming

Cc: pqc-forum; pgc-comments

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece
I wrote:

> I don't believe the Category 3 claim for mceliece-4608-094
> is supported by the estimates.

> The wider objection is that the 187.0 estimate given for
> mceliece-4608-094 doesn't include memory costs.

> I leave it as an exercise for the reader to work out if
> mceliece-4608-094 meets Category 3 in that metric.

Those should all have been mceliece-4608-096.
Kirk

Sent: Saturday, June 26, 2021 at 12:37 AM

From: "Kirk Fleming" <kpfleming@mail.com>

To: "Ruben Niederhagen" <ruben@polycephaly.org>

Cc: "pgc-forum" <pgc-forum@list.nist.gov>, "pgc-comments" <pgc-comments@nist.gov>
Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece

Ruben wrote:

> I'd suggest to take this offline so we don't continue
> to 'spam' the mailing list; this discussion might be
> off-topic for many readers.

I was planning to agree but I now find myself being asked
to withdraw claims that I don't believe I made based on
objections that distort what I said.

Let's recap.

The Classic McEliece update included security estimates for
two challenge problems but did not extend the analysis to
the parameter sets proposed in the submission. I posted
those estimates as they illustrate Ruben's 4-bit gap in

the mceliece-6960-119 claim from the submission.

Ruben replied he was happy the estimates fit the claimed
security categories. I disagreed. I don't believe the
Category 3 claim for mceliece-4608-094 is supported by
the estimates.

So far so good.

I then made the observation that the parameter selection
criteria would not necessarily lead to a parameter set
meeting to Category 3. The rough heuristic I used was
that the public keys are quadratic in the size of the
security parameter. I thought I made it clear this wasn't
a rigorous argument. I certainly didn't use it to make
any claims about the security of specific parameter sets.
Heuristics like this can be useful guides for designers



when choosing parameters but they are no substitute for
proper analysis.

Am I being asked to withdraw the heuristic? I don't think
it should be controversial. When challenged by Ruben I
quoted a formula from the Classic McEliece submission as
that seemed particularly apt. I could equally have quoted
Philippe's rank metric talk from the NIST 2015 workshop.
None of the objections about ignoring o(1) or log terms
are relevant. I have never claimed that asymptotic results
give meaningful security estimates for finite parameters.

The wider objection is that the 187.0 estimate given for
mceliece-4608-094 doesn't include memory costs. This is
true but the Classic McEliece team won't commit to a
metric that does include memory costs. Fortunately, the
NTRUPrime team do and it's now being used by some of
the other submissions. I leave it as an exercise for the
reader to work out if mceliece-4608-094 meets Category 3
in that metric.

Kirk

You received this message because you are subscribed to the Google Groups "pgc-forum" group.

To unsubscribe from this group and stop receiving emails from it, send an email to pgc-
forum+unsubscribe@list.nist.gov.

To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msqid/pgc-forum/trinity-
c36a6550-4677-4b2b-b316-26eab54c11a5-1624667864960%403c-app-mailcom-Ixa09.

You received this message because you are subscribed to the Google Groups "pgc-forum" group.

To unsubscribe from this group and stop receiving emails from it, send an email to pgc-forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pgc-forum/trinity-457820a8-
4237-42bd-b8c1-d60f5b730f03-1624720330079%403c-app-mailcom-Ixal0.




From: pqc-forum@list.nist.gov on behalf of Blumenthal, Uri - 0553 - MITLL <uri@Il.mit.edu>

Sent: Saturday, June 26, 2021 10:08 PM

To: Kirk Fleming

Cc: pqc-forum

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece

>> I'd suggest to take this offline so we don't continue

>> to 'spam’' the mailing list; this discussion might be

>> off-topic for many readers.

>

>I was planning to agree but I now find myself being asked
>to withdraw claims that I don't believe I made based on
>objections that distort what I said.

Evaluation of the security claims of one of the PQC Round 3 finalists can hardly be off-topic for the PQC-forum
readers.

Thus, | would prefer that this discussion stays open — aka, on the list rather than turning “private”.

You received this message because you are subscribed to the Google Groups "pqc-forum" group.

To unsubscribe from this group and stop receiving emails from it, send an email to pgc-forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pgc-forum/FE413028-1DF5-
4EDC-8193-50643BAF5012%40Il.mit.edu.




From: Ruben Niederhagen <ruben@polycephaly.org>

Sent: Tuesday, June 29, 2021 9:22 AM
To: pqc-forum; pgc-comments
Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece

Statement by the Classic McEliece team:
The Classic McEliece submission document states on page 46:

"[Bernstein, Lange, and Peters. 2008] reported that its attack uses
27266.94 bit operations to break the (13,6960,119) parameter set."

However, Kirk Fleming brought to our attention that this quoted attack cost is for a similar parameter set with the same
length, dimension, and degree - but for adding 121 errors during encryption and not 119 errors as in our case. We
correct the corresponding sentence to:

"[Bernstein, Lange, and Peters. 2008] reported that its attack uses
2/7266.94 bit operations to break a related (13,6960,119) parameter
set with 121 errors."



From: Freja Elbro <davdavsen@gmail.com>

Sent: Friday, August 13, 2021 10:37 AM

To: pgc-forum

Cc: D. J. Bernstein; pqc-forum; pgc-comments; pgc-comments
Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece

Dear Dan and others,

| know that you say it is a thankless job, but | am considering being Caroline the cryptoanalyst. | know quite a bit about
the ISD algorithms, but | am a complete novice to different cost metrics, so | hope you can help by giving some direction
here.

1) I did a Google search on Ray Perlner's slides, but did not find anything. Can you be more specific in your reference? Or
give a link? Regardless of whether | choose to be Caroline the Cryptoanalyst, the slides sound mighty interesting.

2) Are there other resources on different cost metrics, which might be a good place to start?

3) Where do | find analyses of AES in different cost metrics? It only makes sense to do an analysis of McEliece in a
specific metric if there exists an analysis of AES in that metric, so | need to know which metrics AES has been analysed in
(and what the result was...)

4) You say that the attack is "bottlenecked by random access to a huge array". When analysing the complexity of the
algorithm, is this different from just "calls to memory"? In other words, why can we not "just" count the number of
operations and the number of accesses to memory? What makes this type of call to memory special?

| hope to hear from some of you, who have more experience with different cost metrics.

Best regards,
Freja Elbro

mandag den 7. december 2020 kl. 11.21.36 UTC+1 skrev D. J. Bernstein:
Speaking for myself in this message. As far as | can tell, the questions
specific to Classic McEliece have already been answered. There are some
broader NISTPQC process points here for NIST to address (as shown by the
inconsistent handling of different cryptosystems), and there are some
factual errors that I'll correct for the record.

As a starting point, there appears to be a misconception that NIST has
already defined metrics to be used for the NISTPQC "categories": namely,
(non-quantum and quantum) "gates" metrics, ignoring the costs of RAM.

If this were true then | would agree that all submissions have to report
security in these metrics. But it isn't true. NIST has never issued any

such definition. There are many different definitions of (non-quantum

and quantum) "gates" in the literature, with many variations (e.g.,
sometimes RAM gates, sometimes not), often producing radically different
cost numbers; NIST has never said which "gates" we're supposed to use.
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From: Michael Hamburg <mike@shiftleft.org>

Sent: Friday, August 13, 2021 11:16 AM

To: Freja Elbro; pgc-forum

Cc: D. J. Bernstein; pqc-forum; pgc-comments

Subject: RE: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece
Hi Freja,

On the subject of RAM, the cost of a memory read or write depends on size of the memory being accessed. The signal
indicating what to read, and the signal bringing the data back, must travel to and from the location where the data is
stored, and this takes time and dissipates energy along the way. If memory were organized as a 3-dimensional
structure, then this would take O(cbrt(n)) time and energy. But a large 3d structure of active electronics is difficult to
power and cool, so a 2d model and a sqgrt(n) cost model is probably more accurate, or perhaps somewhere in
between. This holds even on the scale of individual CPUs: it’s why they have multi-level caches. The exact costs are
debatable, but the fact that they increase as some power of the memory being accesses is important for even rough
estimation of real-world attack costs.

Note that if the attack is run on many parallel machines, and each machine accesses only its own RAM, then this is much
cheaper even if the total amount of memory is the same, because they don’t have to communicate as far. That is, each
lookup is into a smaller, local RAM, so it’s cheaper.

Taking a naive attack and multiplying its cost by sqrt(memory) isn’t optimal, of course. The cost can be balanced for a
meet-in-the-middle attack, and thus for ISD: you need to trade more computation for fewer memory accesses into
smaller memories. See egthe famous van Oorschot-Wiener paper [1]. This makes the attack significantly more
expensive than it would be if memory accesses cost O(1).

Brute-force attacks on AES don’t use very much memory, so they cost about the same in this model.

Cheers,
B Mike

[1] Parallel Collision Search with Cryptanalytic Applications. Paul van Oorschot and Michael Wiener, Journal of
Cryptology, 1999. https://link.springer.com/content/pdf/10.1007/PL00003816.pdf

From: Freja Elbro
Sent: Friday, August 13, 2021 2:36 PM

To: pgc-forum
Cc: D. J. Bernstein; pgc-...@list.nist.gov; pgc-co...@nist.gov; pgc-co...@nist.gov
Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece

Dear Dan and others,

| know that you say it is a thankless job, but | am considering being Caroline the cryptoanalyst. | know quite a bit about
the ISD algorithms, but | am a complete novice to different cost metrics, so | hope you can help by giving some direction
here.

1) I did a Google search on Ray Perlner's slides, but did not find anything. Can you be more specific in your reference? Or
give a link? Regardless of whether | choose to be Caroline the Cryptoanalyst, the slides sound mighty interesting.
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From: Perlner, Ray A. (Fed)

Sent: Friday, August 13, 2021 1:37 PM

To: Michael Hamburg; Freja Elbro; pgc-forum

Cc: D. J. Bernstein; pqc-forum; pgc-comments

Subject: RE: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece

Hi Freja and Mike

Just briefly adding. | think the slides of mine Dan is referring to are the ones linked in my August 17 email here:
https://groups.google.com/a/list.nist.gov/g/pac-forum/c/GR3pIWpSV4U/m/SChfTyNvBAAJ

Best,
Ray

From: Michael Hamburg <mike@shiftleft.org>

Sent: Friday, August 13,2021 11:16 AM

To: Freja Elbro <davdavsen@gmail.com>; pgc-forum <pgc-forum@list.nist.gov>

Cc: D. J. Bernstein <djb@cr.yp.to>; pgc-forum <pqc-forum@list.nist.gov>; pgc-comments <pgc-comments@nist.gov>
Subject: RE: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece

Hi Freja,

On the subject of RAM, the cost of a memory read or write depends on size of the memory being accessed. The signal
indicating what to read, and the signal bringing the data back, must travel to and from the location where the data is
stored, and this takes time and dissipates energy along the way. If memory were organized as a 3-dimensional
structure, then this would take O(cbrt(n)) time and energy. But a large 3d structure of active electronics is difficult to
power and cool, so a 2d model and a sqgrt(n) cost model is probably more accurate, or perhaps somewhere in
between. This holds even on the scale of individual CPUs: it’s why they have multi-level caches. The exact costs are
debatable, but the fact that they increase as some power of the memory being accesses is important for even rough
estimation of real-world attack costs.

Note that if the attack is run on many parallel machines, and each machine accesses only its own RAM, then this is much
cheaper even if the total amount of memory is the same, because they don’t have to communicate as far. That is, each
lookup is into a smaller, local RAM, so it’s cheaper.

Taking a naive attack and multiplying its cost by sqrt(memory) isn’t optimal, of course. The cost can be balanced for a
meet-in-the-middle attack, and thus for ISD: you need to trade more computation for fewer memory accesses into
smaller memories. See egthe famous van Oorschot-Wiener paper [1]. This makes the attack significantly more
expensive than it would be if memory accesses cost O(1).

Brute-force attacks on AES don’t use very much memory, so they cost about the same in this model.

Cheers,
B Mike

[1] Parallel Collision Search with Cryptanalytic Applications. Paul van Oorschot and Michael Wiener, Journal of
Cryptology, 1999. https://link.springer.com/content/pdf/10.1007/PL0O0003816.pdf
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From: D. J. Bernstein <djb@cr.yp.to>

Sent: Tuesday, August 17, 2021 6:36 AM

To: pqc-forum

Cc: pgc-comments

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece
Attachments: signature.asc

Freja Elbro writes:
> 2) Are there other resources on different cost metrics, which might be
> a good place to start?

A great starting point is Knuth's Art of Computer Programming, which (1) defines clear metrics for the cost of
computation, with (2) some efforts at realism, and then (3) precisely and (4) accurately analyzes the cost in these
metrics of (5) many important algorithms. For _some_ algorithms Knuth also (6) compares different metrics, including
(Metrics that account for communication cost (see, e.g., the analysis of external

sorting) and (8) parallel metrics (see, e.g., the analysis of sorting-network depth and the systolic array for multiplying
integers).

The literature on computational complexity theory has more of #6, usually backed by #1 and #4, sometimes with #7,
sometimes with #8. There are many pathways into this; the best starting point I've seen is
https://eprints.illc.uva.nl/id/eprint/1008/1/CT-1989-02.text.pdf (well, I've read the printed version, but | assume the
preprint is similar).

However, this side of the literature generally doesn't bother with #5, and deliberately sacrifices #3 in favor of simplicity,
which also compromises #2 and puts serious limits on the value of #7 and #8.

https://maths-people.anu.edu.au/~brent/pd/rpb055.pdf is a typical example of a cloud of papers that aim to do better
at #2 under the constraints of #1, #7, and #8. There's a split here between papers aiming for #3 for optimizing simple
algorithms (see, e.g., the AES attack papers in https://2012.sharcs.org/accepted.html and various other papers under
https://www.hyperelliptic.org/tanja/SHARCS/) and papers aiming to optimize more complicated algorithms at the
expense of #3 (see, e.g., https://cr.yp.to/papers.html#tbatchnfs).

There are many papers reporting speeds of computations on existing CPUs and networks. This includes, e.g., papers
reporting speed records for various cryptanalytic computations, scoring well on #5 and usually #3, sometimes with #7
and/or #8. The idea of using existing machines might sound great for #2 and #4, but for security analysis someone has to
extrapolate to large-scale attacks. If data-access time isn't obviously an issue in academic speed records, then people will
usually fall into the trap of assuming that it won't be an issue in much larger attacks, simply ignoring the research that
has gone into analyzing #1+#2+#7+#8.

---Dan


https://cr.yp.to/papers.html#batchnfs
https://www.hyperelliptic.org/tanja/SHARCS
https://2012.sharcs.org/accepted.html
https://maths-people.anu.edu.au/~brent/pd/rpb055.pdf
https://eprints.illc.uva.nl/id/eprint/1008/1/CT-1989-02.text.pdf

From: Freja Elbro <davdavsen@gmail.com>

Sent: Tuesday, August 31, 2021 11:23 AM

To: pgc-forum

Cc: D. J. Bernstein; pgc-comments; pgc-comments; pgc-forum
Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece

Dear NIST and others,
(and thank you so much, Mike, Ray and Dan for comprehensive answers!)

Sabine Pircher and | would like to do the security analysis of McEliece that NIST asked for at the PQCrypt02021: Count
the concrete number of bit operations needed to perform an ISD attack. However, as Dan and others point out, it is not
clear in which metric to do the analysis. Therefore, before we put in the work, we would like some feedback on whether
it will be appreciated.

Several authors have already done the count that NIST asks for:

e Christiane Peters code: https://github.com/christianepeters/isdfg Uses the algorithm presented in
https://eprint.iacr.org/2009/589 to estimate the security of McEliece. | am not sure how that algorithm
compares to BIMM below, but expect it to be slower. Note that the script does not automatically optimize
parameters, so to use the script, you have to manually search.

e "Afinite regime analysis of Information Set Decoding algorithms", Algorithms 12, no. 10 (2019). The paper can
be found at https://www.mdpi.com/1999-4893/12/10/209/pdf. Provides security estimates for McEliece based
on seven ISD-algorithms, but does not provide code to check their numbers. They also restrict BIMM to three
levels, where two levels would be better in this case. See answer By Elena below.

e Answer by Elena Kirshanova https://crypto.stackexchange.com/questions/92074/number-of-bit-operations-
required-for-information-set-decoding-attacks-on-code-b She estimates security of McEliece based on MMT and
BJMM and provides source code, but she excludes polynomial factors.

What is missing? All the work above assumes that lookup takes constant time.
What we can do: Optimize BJMM parameters in the different models

e Random access to memory costs square root of memory size
e Random access to memory costs cubic root of memory size

To find the security level of McEliece in those two metrics.
What do you think? Would this be helpful to the discussion?
(Thank you Dan by the way for your very comprehensive answer! We read some of the material, but had to stop at some

level, as was a bit deeper than we were hoping to go. We unfortunately do not have the time to understand models for
how computers work, but have to rely on superficial models like the two above to be able to estimate running time.)

tirsdag den 17. august 2021 kl. 12.36.29 UTC+2 skrev D. J. Bernstein:



From: Perlner, Ray A. (Fed)

Sent: Wednesday, September 1, 2021 2:51 PM

To: Freja Elbro; pgc-forum

Cc: D. J. Bernstein; pgc-comments; pgc-comments; pgc-forum
Subject: RE: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece

Dear Freja,

From our (NIST) perspective, better estimates for the cost of BIMM would be very helpful. You mention models where
random access memory costs are proportional to the square root and cube root of memory size, and these would be
helpful to have, but we would also like some confirmation that we have accurate estimates of the cost of BJIMM, when
the cost of RAM queries is constant or logarithmic in the size of the memory. As you note, Elena's estimates indicate that
BJMM depth 2 is best when determining cost in the RAM model. However, depth 3 seems likely to be better if the cost
of memory access is taken into account, unless the number of random accesses to the memory is very small relative to
the number of bit operations performed.

My guess is that a cube root memory cost is going to be the closest to the real world cost of an attack, but only because
departures from reality in both directions will roughly cancel. It’s also possible that the real cost of memory will be less
than suggested by models that don’t distinguish between true random access queries, and memory queries that can be
made local using strategies similar to Van-Oorschot Weiner, and it might be helpful to investigate that possibility when
looking at models that assume queries to large memories are significantly more expensive than queries to small
memories.

In any event, thank you for volunteering to help us in our evaluations.

Ray Perlner


https://people.scs.carleton.ca/~paulv/papers/JoC97.pdf

From: Edoardo Persichetti <epersichetti@fau.edu>

Sent: Friday, November 19, 2021 9:25 AM

To: pgc-comments

Cc: pqc-forum

Subject: ROUND 3 OFFICIAL COMMENT: Classic McEliece
Dear all

NIST has sent email to the Classic McEliece team requesting information
about "the concrete security of Classic McEliece's parameter sets." This
is a reply from the Classic McEliece team.

An optimized version of the latest BIMM/MMT variants in 2021 by Esser,
May, and Zweydinger, running on real hardware, is barely faster than a
2008 Stern-type attack. See the round-3 Classic McEliece talk:

https://www.nist.gov/video/third-pgc-standardization-conference-session-vii-performance-and-candidate-updates
https://csrc.nist.gov/CSRC/media/Presentations/classic-mceliece-round-3-presentation/images-media/session-7-
classic-mceliece-lange.pdf

As for cryptographic sizes, the state-of-the-art cost analyses are from
a 2021 script

https://github.com/Crypto-Tll/syndrome decoding estimator.git

by Bellini and Esser. See also https://eprint.iacr.org/2021/1243, the
accompanying paper by Esser and Bellini. Running

import sys
from sd_estimator.estimator import sd_estimate_display
for n,w in (1024,50),(3488,64),(4608,96),(6688,128),(6960,119),(8192,128):

m =10
while 2**m<n:m+=1
k =n-w*m

sd_estimate_display(n=n,k=k,w=w,memory_access=2)
sys.stdout.flush()

outputs the tables shown below. The tables again show how small the
improvements have been after Stern's 1989 attack. The smallest costs in
the tables (not counting quantum attacks) are

27158.6 for mceliece348864,
27201.0 for mceliece460896,
27278.2 for mceliece6688128,
27279.2 for mceliece6960119, and
27315.6 for mceliece8192128,

and footnote 11 of the paper indicates that the actual cost is higher.
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Changing "memory_access" to "0" gives bit-operation counts that much
more obviously underestimate actual costs, such as 2765.1 bit operations
for a Stern attack (using cost-0 access to megabytes of RAM) against
McEliece's original parameters, 22141 bit operations (using cost-0

access to >2280 RAM) for mceliece348864, and 2”246 bit operations for
mceliece6960119. (See Table 2 of https://eprint.iacr.org/2021/1243 for
more of these bit-operation counts.) This matches what Section 8.2 of
the Classic McEliece submission has always said regarding the originally
proposed mceliece6960119 size:

Subsequent ISD variants have reduced the number of bit operations
considerably below 24256. ... We expect that switching from a
bit-operation analysis to a cost analysis will show that this

parameter set is more expensive to break than AES-256 pre-quantum and
much more expensive to break than AES-256 post-quantum.

This 2021 script supersedes a 2019 paper by Baldi et al. The numbers in

the 2019 paper for MMT in particular were much better than for BIMM (and
Stern)---which is impossible since BIMM structurally includes MMT, so it

was always clear that the MMT numbers had to be disregarded. NIST stated
that BJMM "is widely considered to be an improvement over MMT" and asked
"Is this analysis correct? If so, it seems like this could threaten not

just some of the McEliece parameters, but also some of the parameters of

the other code-based schemes." Kirshanova explained in

https://crypto.stackexchange.com/questions/92074/number-of-bit-operations-required-for-information-set-decoding-
attacks-on-code-b

the "conclusion that BJMM algorithm is worse than MMT is incorrect
because MMT is a special case of BIMM." An MMT/BJMM calculation error in
the 2019 paper is pinpointed in https://eprint.iacr.org/2021/1243,

Appendix A. The error would also have been caught by simple consistency
checks against experiments.

The tables output by the script appear below.

Complexity estimation to solve the (1024,524,50) syndrome decoding problem

The following table states bit complexity estimates of the corresponding algorithms including an approximation of the
polynomial factors inherent to the algorithm.

The quantum estimate gives a very optimistic estimation of the cost for a quantum aided attack with a circuit of limitted
depth (should be understood as a lowerbound).

<+ + 4+
T T T

| estimate | quantum |

<+ + 4 4+
T T T T

+ — + — +

algorithm | time | memory | time |
| Prange | 84.8 | 19.3| 49.2 |
| Stern | 73.2| 26.1| -- |
| Dumer | 74.1] 26.2| - |



| Ball Collision | 74.2 | 26.1| -- |

| BIMM (MMT) | 73.1| 242 - |
| BIMM-pdw | 71.8 | 21.1| - |
| May-Ozerov | 70.6 | 21.1| - |
| Both-May | 71.5| 21.2| - |

4 <+ + 4 4+
T T T T T

Complexity estimation to solve the (3488,2720,64) syndrome decoding problem

The following table states bit complexity estimates of the corresponding algorithms including an approximation of the
polynomial factors inherent to the algorithm.

The quantum estimate gives a very optimistic estimation of the cost for a quantum aided attack with a circuit of limitted
depth (should be understood as a lowerbound).

| | estimate | quantum |

| algorithm | time | memory | time |
| Prange | 178.3| 21.6| 954 |

| Stern | 162.8| 326| - |

| Dumer | 163.2 | 326 -- |

| Ball Collision | 163.2 | 32.6 | -- |

| BIMM (MMT) | 162.2| 30.6| - |
| BIMM-pdw | 160.3 | 26.8| - |
| May-Ozerov | 158.6 | 24.6| - |

| Both-May | 159.8 | 24.9| - |

4 4+ + + +
T T T T T

Complexity estimation to solve the (4608,3360,96) syndrome decoding problem

The following table states bit complexity estimates of the corresponding algorithms including an approximation of the
polynomial factors inherent to the algorithm.

The quantum estimate gives a very optimistic estimation of the cost for a quantum aided attack with a circuit of limitted
depth (should be understood as a lowerbound).

| | estimate | quantum |

| algorithm | time | memory | time |
| Prange | 222.1| 22.7 | 140.3 |

| Stern | 2053 | 336| - |

| Dumer | 205.8 | 33.6| -- |

| Ball Collision | 205.8 | 33.6 | -- |

| BIMM (MMT) | 204.8| 31.6| - |
| BIMM-pdw | 203.4| 28.7| - |
| May-Ozerov | 201.0| 25.5| - |

| Both-May | 202.2| 26.5| - |

4 4+ + +
T T T T T

Complexity estimation to solve the (6688,5024,128) syndrome decoding problem

The following table states bit complexity estimates of the corresponding algorithms including an approximation of the

3



polynomial factors inherent to the algorithm.
The quantum estimate gives a very optimistic estimation of the cost for a quantum aided attack with a circuit of limitted
depth (should be understood as a lowerbound).

4. 4 4
T T T

| estimate | quantum |

<+ + + +
T T T T

+ — + — +

algorithm | time | memory | time |
| Prange | 301.2 | 23.6] 219.9 |
| Stern | 283.0| 353 -- |
| Dumer | 2833 | 353 | - |

| Ball Collision | 283.3 | 35.3| -- |

| BIMM (MMT) | 282.3| 33.3| - |
| BIMM-pdw | 280.4| 29.4| - |
| May-Ozerov | 278.2| 264 | -- |

| Both-May | 279.4| 26.8| - |

4 4. +. 4
T T T T T

Complexity estimation to solve the (6960,5413,119) syndrome decoding problem

The following table states bit complexity estimates of the corresponding algorithms including an approximation of the
polynomial factors inherent to the algorithm.

The quantum estimate gives a very optimistic estimation of the cost for a quantum aided attack with a circuit of limitted
depth (should be understood as a lowerbound).

| | estimate | quantum |

| algorithm | time | memory | time |
| Prange | 302.2 | 23.6] 220.4 |

| Stern | 283.9| 356| - |

| Dumer | 2843 | 356 - |

| Ball Collision | 284.3 | 35.6| -- |

| BIMM (MMT) | 283.3| 33.6| - |
| BIMM-pdw | 281.4| 29.7| - |
| May-Ozerov | 279.2| 26.6| -- |

| Both-May | 280.3| 27.0| - |

4 4. +. +. 4
T T T T T

Complexity estimation to solve the (8192,6528,128) syndrome decoding problem

The following table states bit complexity estimates of the corresponding algorithms including an approximation of the
polynomial factors inherent to the algorithm.

The quantum estimate gives a very optimistic estimation of the cost for a quantum aided attack with a circuit of limitted
depth (should be understood as a lowerbound).

4+ 4. +
T T T

| estimate | quantum |

4+ + + +
T T T T

+ — + — +

algorithm | time | memory | time |
| Prange | 339.5| 23.9]| 257.6 |
| Stern |320.7| 363 - |



| Dumer | 321.0| 364 -- |

| Ball Collision | 321.0 | 36.3| -- |

| BJIMM (MMT) | 320.0| 34.4]| - |
| BIMM-pdw | 318.6| 314 - |
| May-Ozerov | 315.6 | 27.2| - |

| Both-May | 317.0| 27.6| - |

4 <+ + + +
T T T T T

Best,
Edoardo



From: pqc-forum@list.nist.gov on behalf of Kirk Fleming <kpfleming@mail.com>

Sent: Saturday, November 20, 2021 10:15 PM

To: pgc-forum

Cc: pgc-comments

Subject: Re: [pgc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece

Edoardo wrote:

> The smallest costs in the tables (not counting
> quantum attacks) are

>

27 158.6 for mceliece348864,

27201.0 for mceliece460896,

27278.2 for mceliece6688128,

27°279.2 for mceliece6960119, and
27315.6 for mceliece8192128,

VVVVYV

>
> and footnote 11 of the paper indicates that the
> actual cost is higher.

Footnote 11 explains that the memory access cost
uses the number of vectors instead of the number

of bits. The difference between Sqrt(vectors) and
Sgrt(memory)/275, the memory access cost used by
the NTRUPrime submission, is at most 1.5 bits for
May-Ozerov with these parameters.

In fact, the actual costs will be lower than the
figures given. The memory access cost is applied
as a fixed penalty but not all gates need a memory
access and not all memory accesses need the full
amount of memory.

This shows mceliece-4608-96 is 5 to 12 bits below
Category 3 when attacking a single ciphertext. If
you include the DOOM attack it's even worse.

Kirk

You received this message because you are subscribed to the Google Groups "pgc-forum" group.

To unsubscribe from this group and stop receiving emails from it, send an email to pgc-forum-+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pgc-forum/trinity-d0f5853d-
841d-4ca7-9c89-34e1dd389e69-1637464529778%403c-app-mailcom-Ixa03.




From: D. J. Bernstein <djb@cr.yp.to>

Sent: Monday, June 6, 2022 12:21 PM

To: pgc-comments

Cc: pqc-forum

Subject: ROUND 3 OFFICIAL COMMENT: Classic McEliece
Attachments: signature.asc

This is an official comment from the Classic McEliece team regarding a recent talk at Eurocrypt on
https://eprint.iacr.org/2021/1634, a paper reporting implementations of the MMT/BJMM algorithms using about 2260.7
cycles in total on 256 AMD EPYC 7742 CPU cores to break miniature versions of McEliece with length 1284.

For comparison, when the 2021 Bellini--Esser estimator
https://github.com/Crypto-Tll/syndrome_decoding_estimator.git

is told to ignore the cost of memory access ("memory_access=0"), it says

2/766.3 bit operations for 1989 Stern, followed by minor improvements from newer memory-intensive algorithms, such
as 2°65.8 bit operations for BJIMM and 2764.6 bit operations for May--Ozerov. These numbers are larger than 2260.7,
but the units are also different: bit operations rather than CPU cycles.

These algorithms were already accounted for in the Classic McEliece submission in 2017, which, regarding the
recommended 6960119 parameter set, wrote "ISD variants have reduced the number of bit operations considerably
below 27256". The submission also pointed out that this ignores the cost of memory access, and stated an expectation
that "switching from a bit-operation analysis to a cost analysis will show that this parameter set is more expensive to
break than AES-256 pre-quantum and much more expensive to break than AES-256 post-quantum."

This expectation was then confirmed by subsequent analysis. For example, the Bellini--Esser estimator with
"memory_access=2" reports cost 24279.2, as noted in the Classic McEliece team email to pgc-forum in November 2021.

Anyone who wants such a high security level _without_ relying on the cost of memory access can instead use the
8192128 parameter set, where the Bellini--Esser estimator with "memory_access=0" says 2"275.6 bit operations for
May--Ozerov, assigning zero cost to 24194.4 memory. The exponent here is about 10% better than attacks from the
1980s (e.g., the estimator says 2/307.4 bit operations for Dumer), but the changes in costs are much smaller if one
accounts for the real cost of memory.

The new paper and talk claim that some of the Classic McEliece parameter sets "fail to reach their security level by
roughly 20 and 10 bit", that "McEliece Slightly Overestimates Security", etc., giving the impression of challenging the
Classic McEliece security analysis and parameter selection. However, these claims are based on three serious errors.

The first error is comparing the cost of a memory-intensive attack to the cost of an AES attack "on our hardware," while
ignoring the fact that the machine puts a large volume of hardware into optimizing memory access and only a tiny
fraction of the hardware into AES circuits. It is easy to make an AES attack sound much more expensive than it actually is
if one uses a highly suboptimal AES attack machine.

The second error is modeling random access to an array of size 2280 as being as cheap as 80 bit operations. The way the
paper arrives at this physically implausible model is by arguing that logarithmic cost "most accurately models our
experimental data". The data points were selected from a limited range for which memory access has essentially
constant cost on that machine; this is selection bias, not a valid basis for extrapolation.

1



The third error is jumping from a comparison in this cheap-RAM model to a claim of a Classic McEliece "overestimate".
The submission has always said that the number of bit operations is "considerably below 27256"; obviously this does not
reach 27272 if one assigns merely logarithmic cost to RAM (changing the exponent by at most 8 bits). What the paper
says here is matching what the submission says, not disputing it. The Classic McEliece assignment of category 5 to the
6960119 parameter set has always been explicitly based on the real cost of memory access.



From: pqc-forum@list.nist.gov on behalf of Andre Esser <andre.r.esser@gmail.com>

Sent: Wednesday, June 8, 2022 5:20 AM

To: pgc-forum

Cc: D. J. Bernstein; pqc-forum; pgc-comments; pgc-comments
Subject: [pgc-forum] Re: ROUND 3 OFFICIAL COMMENT: Classic McEliece

The parameter selection process of Classic McEliece takes the asymptotic runtime exponent of Prange

and chooses the code parameters such that it approximately matches the respective AES-keysize, i.e., 128, 192 or 256.
The security analysis then relies on the not quantified statement that no algorithmic improvement over Prange needs
to be considered because in a real attack the memory access costs outweigh the improvement.

It does not need much to “challenge this security analysis and parameter selection”. And without a doubt this can not
be sufficient for a final standardization of parameter sets. For this, the McEliece team has to extend its submission
(in the forth round) by the necessary formalisms that support their security arguments.

Instead the team attacks the credibility of the authors of one of the first formal treatments, arriving at the conclusion
of a slight security overestimation. It seems unclear, how the team can rule out a security deficit of a few bits with such
certainty, but is failing to give a convincing argument / formalism in the submission.

> The first error is comparing the cost of a memory-intensive attack to

> the cost of an AES attack “on our hardware,” while ignoring the fact

> that the machine puts a large volume of hardware into optimizing memory
> access and only a tiny fraction of the hardware into AES circuits. It is

> easy to make an AES attack sound much more expensive than it actually is
> if one uses a highly suboptimal AES attack machine.

While we would not agree that a processor with AES hardware acceleration is a particularly suboptimal way of attacking
AES, there are of course more specialized systems, but so are for ISD attacks. This goes probably back to the vague
security definitions in form of category |, lll and V, which do not specify any benchmarking platform, model or metrics.
But here you are asking us to provide the formalisms on which you seem to have based the security of the parameter
sets.

We are happy to have a dialogue about it, but the “error” of missing formalisms for such a comparison is not on us.

Also note that the effect of the exact machine we used in comparison to a completely theoretical treatment is
insignificant.

We arrive at almost the same security-deficits as Esser-Bellini.

> The second error is modeling random access to an array of size 2780 as

> being as cheap as 80 bit operations. The way the paper arrives at this

> physically implausible model is by arguing that logarithmic cost “most

> accurately models our experimental data”. The data points were selected
> from a limited range for which memory access has essentially constant

> cost on that machine; this is selection bias, not a valid basis for

> extrapolation.

We are modeling the amortized memory access cost. This accounts for the fact that not every memory access is
completely



random. Moreover, our data structures are specifically designed to allow for good access patterns.

Of course, by the inherent limitation given by our hardware constraints the data points for extrapolation are selected
froma

limited range. However, the high memory experiments were run using about 1.6TB of RAM (which gives significant
access times).

And still we find the point where high memory beats low memory at code length 1400. If we theoretically model higher
memory

access costs this break even point should not exist.

> The third error is jumping from a comparison in this cheap-RAM model to
> a claim of a Classic McEliece “overestimate”. The submission has always
> said that the number of bit operations is “considerably below 24256";

> obviously this does not reach 27272 if one assigns merely logarithmic

> cost to RAM (changing the exponent by at most 8 bits). What the paper

> says here is matching what the submission says, not disputing it. The

> Classic McEliece assignment of category 5 to the 6960119 parameter set
> has always been explicitly based on the real cost of memory access.

The McEliece submission does never specify what the “real cost of memory access” is and to what extend it influences
the security

level. Making it easy to rule out any access cost that contradicts the security as “not rea
has now

been found repeatedly to not match the security guarantees even under higher memory access costs.

I”

. Moreover, the category 3 set

We do not claim that our work is the holy grail in terms of formalizing security arguments for McEliece, but the
introduction of

formalisms were overdue. Admittedly, the memory access models are quite idealized, but we are convinced that a cube-
root modeling

of the amortized cost overestimates the effort.

We are happy to have discussions about it and to see other models evolving that do a better job in capturing all real
world factors.
And finally, of course, we hope to see the results embedded in the Classic McEliece specification and security analysis.

However, we would like all discussions to be peace- and respectful. And preferably in person or in papers, to avoid the
time consuming
crafting of such long monologues.

Best Regards,
Andre, Alex and Floyd



From: D. J. Bernstein <djb@cr.yp.to>

Sent: Tuesday, June 14, 2022 12:06 AM

To: pgc-comments

Cc: pqc-forum

Subject: Re: [pgc-forum] Re: ROUND 3 OFFICIAL COMMENT: Classic McEliece
Attachments: signature.asc

Andre Esser writes:

> The parameter selection process of Classic McEliece takes the

> asymptotic runtime exponent of Prange and chooses the code parameters
> such that it approximately matches the respective AES-keysize, i.e.,

> 128,192 or 256.

No, that's not at all how the Classic McEliece parameters were chosen.
The parameter sets were explicitly selected as follows:

* 348864: "optimal security within 2218 bytes if n and t are required
to be multiples of 32".

* 460896: "optimal security within 2219 bytes if n and t are required
to be multiples of 32".

* 6688128: "optimal security within 2720 bytes if n and t are required
to be multiples of 32".

* 6960119: same without the multiples-of-32 restriction.

* 8192128: "taking both n and t to be powers of 2".

Parameter optimization for any specified key size is simpler and more robust than trying to work backwards from
comparisons between McEliece and unrelated cryptosystems. There's no inherent power-of-2 requirement for the key
sizes, but 1MB, 0.5MB, 0.25MB are easy to remember.

The quotes above are from the submission document that presented the current list of proposed parameters:

https://classic.mceliece.org/nist/mceliece-20190331-mods.pdf

Scientifically, this parameter-selection strategy for McEliece goes back at least to https://eprint.iacr.org/2008/318. See
the paragraph in that paper beginning "For keys limited to", in particular obtaining n = 6960 from a 1MB limit.

The underlying security evaluations have always been explicitly based on concrete analyses, _not_ asymptotics (even
though asymptotics are helpful for assessing security stability). This was already emphasized in Section 8.2 of the original
submission document:

https://classic.mceliece.org/nist/mceliece-20171129.pdf
The section begins as follows:

We emphasize that o(1) does not mean 0: it means something that

converges to 0 as n - oo, More detailed attack-cost evaluation is
therefore required for any particular parameters.



That section continues by pointing to the 2008 paper mentioned above, https://eprint.iacr.org/2008/318, as the source
of n = 6960. Anyone checking that paper sees that the paper obtained this value of n via a concrete analysis of that
paper's attack, not from asymptotics.

Furthermore, that attack is noticeably faster than Prange's algorithm.
Asymptotically, this cost difference disappears into a 1+0(1) factor in the exponent, but the parameter selection has
never relied on any such simplification.

To be clear, it's not that all of the parameter details are from 2008.

For example, to simplify KEM implementations, the Classic McEliece parameter choices avoid list decoding (which would
otherwise allow 1 or

2 extra errors). More importantly, the smaller parameter sets were not in the original 2017 proposal; they were added in
2019, in response to NIST making clear in 2019 that it wanted smaller options.

For any particular parameter set, evaluations of the Classic McEliece parameter proposals using the 2008 scripts and
various post-2008 scripts show some differences, mostly minor differences regarding exactly which attack overheads are
counted and exactly which attacks are covered. The largest quantitative differences come from the gaps between free
memory and realistic models.

The Classic McEliece team filed an OFFICIAL COMMENT years ago requesting that NIST "fully define the cost metric to be
used" for NISTPQC, so that all submission teams could evaluate costs in this metric:

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/EiwxGnfQgec/m/LackEVciAQA)

In the absence of action by NIST to settle on a metric for NISTPQC, the Classic McEliece team filed another OFFICIAL
COMMENT in November 2021 with numbers from a recent estimator for all proposed parameter sets:

https://groups.google.com/a/list.nist.gov/g/pgc-forum/c/dN_OOrvsLV4/m/QZAUjtxnAwAl

For example, that estimator says 24279.2 for the 6960119 parameter set, in line with the expectations stated in the
original Classic McEliece submission in 2017. This is not a surprise, given how stable the landscape of attack algorithms
has been.

> The security analysis then relies on the not quantified statement that
> no algorithmic improvement over Prange needs to be considered because
> in a real attack the memory access costs outweigh the improvement.

No. Section 8.2 of the 2017 submission document
https://classic.mceliece.org/nist/mceliece-20171129.pdf

started from the 2008 numbers (which are already better than Prange), explicitly considered subsequent algorithms (see
also Section 4.1 for references), observed that the 2008 algorithm and subsequent algorithms were bottlenecked by
memory access, and stated the following regarding the recommended 6960119 parameter set:

We expect that switching from a bit-operation analysis to a cost
analysis will show that this parameter set is more expensive to break
than AES-256 pre-quantum and much more expensive to break than
AES-256 post-quantum.

Adequate cost quantification wasn't in the literature at that point, but is now readily available from the November 2021
OFFICIAL COMMENT:



https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/dN_OO0rvsLV4/m/QZ4UjtxnAwA)

The submission has always stated that "ISD variants have reduced the number of bit operations considerably below
27256" for 6960119, so the

category-5 assignment for this parameter set relies on accounting for the costs of memory. For people who want
category 5 while ignoring memory costs, the 8192128 parameter set has always been fully specified and implemented as
part of the Classic McEliece proposal.

> While we would not agree that a processor with AES hardware
> acceleration is a particularly suboptimal way of attacking AES

Here is one way to see that an AES attacker using the same 7nm chip technology can do _five orders of magnitude_
better than the paper's AES
attack:

* https://www.ant-miner.store/product/antminer-s17-56th/ describes
real Bitcoin mining hardware carrying out 56 terahashes/second at
2520 watts, i.e., 45%107-12 joules per hash. If these hashes are
full Bitcoin hashes, 2xSHA-256, then they are roughly the same cost
as 16xAES-128, so a similar AES attack box would use roughly
3*107-12 joules per AES-128.

* The paper in question, https://eprint.iacr.org/2021/1634, reports
(in Section 7) 2.16*1079 "AES encryptions per second performed by
our cluster". The cluster has four EPYC 7742 CPUs (according to
Section 4). The power consumption of the cluster isn't reported,
but presumably is on the scale of 1000 watts, i.e., on the scale of
500000*107-12 joules per AES-128.

An easier analysis considers AT rather than energy. Each 64-core EPYC
7742 CPU has 32 billion transistors, meaning that each CPU core has half a billion transistors:

https://hexus.net/tech/reviews/cpu/133244-amd-epyc-7742-2p-rome-server/?page=2

The AES attack in question uses the AES instructions, which, on each of these cores, can at best carry out two parallel
AES rounds per cycle according to the Zen2 AESENC figures in Agner Fog's tables:

https://agner.org/optimize/instruction_tables.pdf
Each round uses a few thousand bit operations, with a small number of transistors per bit operation, accounting for only
a tiny fraction of the transistors in the CPU. Standard key-search circuits instead have almost all transistors performing
cipher operations at each moment, with minor overheads for key selection and comparison.

> but so are for ISD attacks.

Quantitatively, compared to their AES hardware, Intel and AMD put _much_ more of their hardware into optimizing
memory access---a serious chunk of each core, plus extensive off-chip resources---for obvious reasons.

The point here isn't that it's impossible to use special-purpose hardware to streamline memory-intensive attacks. The
point is that a claim regarding the quantitative costs of two attacks, namely AES key search and a memory-intensive ISD



attack, was comparing time but neglecting to account for vast differences in the hardware resources used by the attacks.
This is not a meaningful security comparison; it does not correctly predict what large-scale attackers can do.

> But here you are asking *us* to provide the formalisms on which you
> seem to have based the security of the parameter sets.

No. The Classic McEliece team asked "NIST to fully define the cost metric to be used for 'categories'". This is not

something that should be decided ad-hoc for particular attacks.

The submission has always explicitly advocated accounting for the real cost of memory ("switching from a bit-operation
analysis to a cost analysis"). If it turns out that NIST asks for category 5 with free
memory: as noted above, the 8192128 parameter set has always been available.

> We are modeling the *amortized* memory access cost.

All of these algorithms are bottlenecked by large-scale data motion for, e.g., sorting b-bit chunks of data, where b is
small. It is physically implausible that moving b bits of data large distances through an array of size 2280 can be as cheap
as 80b bit operations.

> Of course, by the inherent limitation given by our hardware
> constraints the data points for extrapolation are selected from a limited range.

The hardware does not require this selection: the same machine offers lower-cost caches (and higher-cost storage
beyond DRAM). Real graphs of memory-access cost such as

https://i0.wp.com/chipsandcheese.com/wp-content/uploads/2022/06/image-4.png
https://i0.wp.com/chipsandcheese.com/wp-content/uploads/2022/06/image-1.png
source: https://chipsandcheese.com/2022/06/07/sunny-cove-intels-lost-generation/

are forced by distance constraints to be worse than square-root lines in log space, and are then bumped to locally
horizontal line segments (L1 cache, L2 cache, etc.) to simplify the engineering. Taking experiments within one of those
horizontal line segments, and then extrapolating horizontally from this selection of data (or logarithmically, which on
such a small scale is difficult to robustly distinguish from horizontally), gives incorrect predictions for larger sizes.

---D. J. Bernstein (speaking for myself, beyond the quotes)



From: pqc-forum@list.nist.gov on behalf of D. J. Bernstein <djb@cr.yp.to>

Sent: Thursday, June 16, 2022 2:23 PM

To: pgc-comments

Cc: pqc-forum

Subject: [pqc-forum] ROUND 3 OFFICIAL COMMENT: Classic McEliece
Attachments: signature.asc

The following observation may be of interest for people quantifying the stability of state-of-the-art attacks against
Classic McEliece.

Our PQCrypto 2008 ISD algorithm is faster than the Eurocrypt 2022 ISD algorithm, on the CPUs selected in the new
paper, for the challenges selected in the new paper, according to a direct comparison of (1) our measurements of the
2008 software (the 2+2 case of the 2008 algorithm) and (2) the speeds reported in the new paper for that paper's
software.

Instructions for reproducing our measurements appear in README in the following package, along with a review of the
known opportunities for further speedups: https://cr.yp.to/software/lowweight-20220616.tar.gz

The new paper's comparison to previous work does not appear to account for various speedups described in the 2008
paper, such as the usage of 2/l-bit tables and the "c" parameter. These speedups are particularly important for the 2+2
case, also influencing comparisons of the 2+2 case to other cases.

---D. J. Bernstein, T. Lange, and C. Peters

You received this message because you are subscribed to the Google Groups "pqc-forum" group.

To unsubscribe from this group and stop receiving emails from it, send an email to pgc-forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/20220616182326.231314.gmail%40cr.yp.to.



From: Andre Esser <andre.r.esser@gmail.com>

Sent: Tuesday, June 21, 2022 7:17 AM

To: pgc-forum

Cc: D. J. Bernstein; pqc-forum; pgc-comments; pgc-comments
Subject: Re: ROUND 3 OFFICIAL COMMENT: Classic McEliece

We never claimed that advanced ISD procedures in the *low-memory regime* (2+2 case) would yield
significant improvements over Stern- or Dumer-like decoding.

Citation from our Eurocrypt 2022 paper:

"We find that our implementation performs 12.46 and 17.85 times faster on the McEliece-1284
challenge and 9.56 and 20.36 times faster on the McEliece-1223 instance than [other *Dumer*
implementations]"

>>The following observation may be of interest for people quantifying the stability of state-of-the-
>>art attacks against Classic McEliece.

Our work already shows "stability" in the sense that even though McEliece parameters were selected
according to a 60 year old algorithm, they miss the security levels only by a few bits. However,

the claimed stagnation makes the assumption that the 2+2 case would be the relevant one for
McEliece security estimates. Where it is the *high-memory regime* which yields the speedups. Our
results show that already for code length of about 1400 the high memory regime yields improvements
in practice. Hence, it cannot be neglected entirely in the security analysis.

>>0ur PQCrypto 2008 ISD algorithm is faster than the Eurocrypt 2022 ISD algorithm [...]

According to the uploaded benchmarks by not even 20%. However, inspecting the code reveals that
it is highly specialized and optimized for the *low-memory regime*. Opposed to our code, which allows
for high-memory instantiations.

A tuning to the special case together with the mentioned (only 2+2 relevant) improvements is likely
to bring us back to the above speedup range. Especially, since we already improved our
implementation by a factor of about 2.5. However, as said, an optimization for the high-memory
case is the way to go when focussing on McEliece security.

-Andre (speaking for myself)

D. J. Bernstein schrieb am Donnerstag, 16. Juni 2022 um 22:23:59 UTC+4:

The following observation may be of interest for people quantifying the
stability of state-of-the-art attacks against Classic McEliece.





