
   

      
     

     

  
  

                    
                  

                 
                
          

  
                     
              
                    

                  
                    

               
  

                         
                     

                     
                        

                     
                   

           
  

                      
                      

                     
                     

                
                  

                  
                  

                
  

                 
                
                    

           
  

   
      
       

  
              

                
        

 

--

From: pqc-forum@list.nist.gov on behalf of Mikhail Kudinov <mkudinov@qapp.tech> 
Sent: Thursday, July 23, 2020 11:10 AM 
To: pqc-forum 
Subject: [pqc-forum] ROUND 3 OFFICIAL COMMENT: SPHINCS+ 

Dear all, 

In this comment, we would like to point out a flaw of existing security proofs of the SPHINCS+ hash-based scheme. 
Particularly, we would like to pay attention to security proofs of the underlying WOTS+ scheme with preimage resistance 
(PRE) requirement replaced by second preimage resistance (SPR) + “at least two preimages for every image” 
requirements [see eq. (14) in Round 2 submission] or decisional second preimage resistance (DSPR) + SPR 
requirements [see Bernstein et al. “The SPHINCS+ signature framework” 2019]. 

Both of these approaches are based on the claim that in the case where the given image has several preimages under 
some cryptographic hash function, the original preimage is information-theoretically hidden among all preimages (see 
"Case 2" in the Proof of Theorem 2 in [Hülsing et al. "Mitigating Multi-Target Attacks in Hash-based Signatures" 2016] and 
"SM-DSPR success probability" in the proof of Claim 23 in [Bernstein et al. “The SPHINCS+ signature framework” 2019]). 
Though this claim is quite reasonable in the case of a single hash function query, the situation becomes much more 
complicated when one deals with a chain of hash functions like in the WOTS+ scheme. 

Let h_i with i=1,...,w-1 be a hash function used to obtain a value at i’th level of the WOTS+ scheme from the one at (i-1)’th 
level. That is pk_j = h_{w-1}(h_{w-2}( … h_1(sk_j) … )), where sk_j and pk_j are elements of secret and public key 
respectively and w is a Winternitz parameter (commonly w = 16). Here we assume that all bitmasks are included in h_i. 
Let IMG_i be an image set of h_i, and let PREIMG_i(y) be a set of all preimages for given y taken from IMG_i. The 
proposed security proofs are based either on assumption that for each y one has |PREIMG_i(y)| > 1, or that it is 
computationally hard to recognize whether |PREIMG_i(y)| = 1 or not. The latter is called a DSPR property [D.J. Bernstein, 
A. Hülsing "Decisional second-preimage resistance: When does SPR imply PRE?" 2019].

Consider the set WOTS_IMG_i = h_i(h_{i-1}( ... h_1({0,1}^n) ... )) that is an image set of the whole WOTS+ chain up to 
level i from a set of all possible secret keys {0,1}^n (n is a security parameter, typically equals to 256). One can 
reasonably expect that for a secure hash function built in the chain functions and i > 1, |WOTS_IMG_i| < |IMG_i| because 
of collisions at levels 1, … , i-1. Let WOTS_PREIMG_i(y) be a set of preimages of y under h_i belonging to 
WOTS_IMG_{i-1}. Having a Challenger’s signature, a WOTS+-breaking adversary is able to choose a position in the 
chain where |WOTS_PREIMG_i(y)| = 1, even though |PREIMG_i(y)| > 1 for some known element y in the WOTS+ 
structure. In the result, the adversary manages to forge a signature avoiding breaking SPR property (because the forgery 
consists of the same element used by the Challenger), and by choosing elements having |PREIMG_i(y)| > 1 or 
|PREIMG_i(y)| = 1 with a proper probability, avoiding breaking DSPR property. Thus the reduction proof fails. 

We note that the security proof of the original SPHINCS scheme [Bernstein et al. “SPHINCS: practical stateless hash-
based signature” 2015] which is based on PRE+SPR+undetectability (UD) assumptions does not have this flaw, though 
shows lower security level for the same scheme parameters. We also note that the updated detailed security proof of the 
WOTS+ scheme based on PRE+SPR+UD assumptions can be found in https://arxiv.org/abs/2002.07419. 

With kind regards, 
Mikhail Kudinov, Evgeniy Kiktenko, Aleksey Fedorov 
Russian Quantum Center (www.rqc.ru) and QApp (www.qapp.tech) 

You received this message because you are subscribed to the Google Groups "pqc-forum" group. 
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-forum+unsubscribe@list.nist.gov. 
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/2276541595516964%40mail.yandex.ru. 
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From: pqc-forum@list.nist.gov on behalf of Andreas Hülsing <ietf@huelsing.net>
Sent: Friday, July 31, 2020 7:27 AM
To: Mikhail Kudinov; pqc-forum
Cc: contact@sphincs.org
Subject: Re: [pqc-forum] ROUND 3 OFFICIAL COMMENT: SPHINCS+

Dear Mikhail, Evgeniy, and Aleksey, dear all, 

Due to the summer holidays, the following is not agreed on with the whole SPHINCS+ team and hence should be 
considered my personal opinion. 

Thank you for evaluating our proposal and pointing us to this mistake in the proof. You are right that our reasoning that 
the input used to compute the image is information theoretically hidden is incorrect in the context of hash chains. It 
should be noted that  

a) this a mere mistake in the proof and does not imply an attack, and

b) in any case, the non-tight proof still applies (as you also state).

The state of affairs is as follows. Looking into the existing proof, there seems not to be any quick fix for this issue that 
corrects the existing proof. However, this motivated another look at the whole thing and there seems to be an easier 
proof (following the non-tight proof) that works specifically for SPHINCS+. The very rough outline is as follows: The 
critical part of the tight proof was written for stateful schemes where WOTS is used to sign adversarialy chosen 
messages. However,  in SPHINCS and SPHINCS+ the messages signed using WOTS are fully controlled by the honest user 
(or the reduction). That means that we only require security under known-message attacks for which case  the non-tight 
proof becomes tight as the reduction does not have to guess.  

We will work on an update after the vacation time is over. We will also continue to look into actual fixes for the existing 
proof as the above idea only works for stateful schemes when modelling the message digest function as a (quantum-
accessible) random oracle, or making additional, stronger hardness assumptions like the existence of chameleon hash 
functions. 

Best wishes, 

Andreas 

On 23-07-2020 17:09, Mikhail Kudinov wrote: 

Dear all, 

In this comment, we would like to point out a flaw of existing security proofs of the SPHINCS+ hash-
based scheme. Particularly, we would like to pay attention to security proofs of the underlying WOTS+ 
scheme with preimage resistance (PRE) requirement replaced by second preimage resistance (SPR) 
+ “at least two preimages for every image” requirements [see eq. (14) in Round 2 submission] or
decisional second preimage resistance (DSPR) + SPR requirements [see Bernstein et al. “The 
SPHINCS+ signature framework” 2019]. 

Both of these approaches are based on the claim that in the case where the given image has several 
preimages under some cryptographic hash function, the original preimage is information-theoretically 
hidden among all preimages (see "Case 2" in the Proof of Theorem 2 in [Hülsing et al. "Mitigating Multi-
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Kerman, Sara J. (Fed)

From: Михаил Кудинов <outlook_B4764F62462D62E4@outlook.com>
Sent: Sunday, October 31, 2021 5:23 PM
To: pqc-comments
Cc: pqc-forum; andreas@huelsing.net
Subject: ROUND 3 OFFICIAL COMMENT: SPHINCS+
Attachments: SPHINCS+-updated.pdf

Dear all, 
 
Attached you find a paper that describes a new, tight security proof for SPHINCS+. Our paper fixes the flaw that was 
pointed out by Kudinov, Kiktenko, and Fedorov last year, following the outline we gave in the response to that message 
back then. More details can be found in the attached file.  
 
Best regards, 
Mikhail & Andreas 



Security of WOTS-TW scheme with a weak
adversary

Andreas Hülsing1 and Mikhail Kudinov1,2

1 Eindhoven University of Technology, Eindhoven, Netherlands
2 Russian Quantum Center, QApp, Skolkovo, Moscow 143025, Russia

Abstract. In 2020, Kudinov, Kiktenko, and Fedorov pointed out a flaw
in the tight security proof of the SPHINCS+ construction. This work
gives a new tight security proof for SPHINCS+. The flaw can be traced
back to the security proof for the used Winternitz one-time signature
scheme (WOTS).
We give the first standalone description of the WOTS variant used
in SPHINCS+ that we call WOTS-TW. We provide a security proof
for WOTS-TW and and multi-instance WOTS-TW in the EU-naCMA
model, a non-adaptive chosen message attack setting where the adver-
sary only learns the full public key after it made its signature queries.
Afterwards, we show that this is sufficient to give a tight security proof
for SPHINCS+. We almost recover the same bound for the security of
SPHINCS+, with only a factor w loss, where w is the Winternitz param-
eter that is commonly set to 16.

Keywords: Post-quantum cryptography, hash-based signatures, SPHINCS+

W-OTS, WOTS-TW.

1 Introduction

Hash-based signatures recently received a lot of attention. Hash-based signatures
are widely considered the most conservative choice for post-quantum signature
schemes. At the time of writing, SPHINCS+, a stateless hash-based signature
scheme, is a third round alternate candidate in the NIST PQC competition.
However, NIST highlighted over and over that

“NIST sees SPHINCS+ as an extremely conservative choice for standard-
ization. If NIST’s confidence in better performing signature algorithms
is shaken by new analysis , SPHINCS+ could provide an immediately
available algorithm for standardization at the end of the third round.”
(Dustin Moody on the pqc-forum mailing list by after new attacks on
Rainbow and GeMSS were published, January 21, 2021)

This work was funded by an NWO VDI grant (Project No. VI.Vidi.193.066). Part of
this work was done while M.K. was still affiliated with the Russian Quantum Center,
QApp. Date: October 31, 2021
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One more supporting argument for the security of SPHINCS+ would be a
tight security reduction that allows to derive attack complexities for a given set of
parameters. However, the tight proof for SPHINCS+ that was given in [BHK+19]
turned out to be flawed [MK]. The flaw, pointed out by Kudinov, Kiktenko, and
Fedorov is related to the proof of security of the used WOTS scheme. Although
the flaw could not be translated into an attack, this resulted in an unsatisfac-
tory situation. While there still exists a non-tight reduction for the security of
SPHINCS+, this reduction can not support the claimed security of the used
SPHINCS+ parameters.

In this work we give a new tight security proof for SPHINCS+ that closes
the gap again without modifying the scheme.

To make the proof easier accessible, we first extract the variant of WOTS
scheme that is used in SPHINCS+ and formally define it, naming it WOTS-TW.
WOTS-TW is different from other WOTS variants in that it uses tweakable
hash functions, introduce in [BHK+19], to construct the function chains. We
then prove the security of WOTS-TW in the EU-naCMA model. This model
differs from the common EU-CMA model in that the adversary only receives the
public key after it made its signature query. We choose this model because it
allows for a tight security proof while it suffices for a proof of applications like
SPHINCS+. The important feature here is that a reduction can generate the
WOTS-TW public key based on the signature query and does not have to guess
that query. This is possible as WOTS-TW is used to sign roots of hash trees in
applications like SPHINCS+. Our new proof combines the work of Dods, Smart,
and Stam [DSS05] that uses undetectability to plant preimage challenges, with
the second-preimage resistance version of Hülsing [Hül13], and the approach of
multi-target mitigation by Hülsing, Rijneveld, and Song [HRS16] and lifts it to
the setting of tweakable hash functions.

While the single instance proof allows us to state the new proof in a more
accessible setting, SPHINCS+ uses multiple instances at once. Hence, we af-
terwards extend the result to multiple instances. This setting turns out to be
slightly more involved as we have to allow for messages to depend on public
keys of previously used instances. We end up with a proof in a slightly more in-
volved model that, however, allows us to use the result in the security proof for
SPHINCS+. We conclude the work with the tight security proof for SPHINCS+.

While we give a full proof for SPHINCS+, we leave one aspect for future
work. In section 2.5 we collect bounds on the success probability of generic
attacks against the used properties of tweakable hash functions. So far only one
of these bounds is fully proven. All others make some form of conjecture. We
hope to be able to close this gap in future work.

The paper is organized as follows. We introduce necessary definitions and
notations as well as describe the EU-naCMA security model in Section 2. At
the end of Section 2 we also summarize the state of the art for generic secu-
rity bounds. The description of the WOTS-TW scheme is given in Section 3.
In Section 4 we provide a security reduction for WOTS-TW in the single in-
stance setting and in Section 5 we lift the result to the multi-instance setting
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with possibly dependent messages. The security proof for SPHINCS+ that uses
WOTS-TW as a building block is then given in Section 6.

2 Preliminaries

In this section we introduce the definitions of building blocks, and security no-
tions for hash functions and signatures that we use. We begin with the notion of a
tweakable hash function, introduced in the construction of SPHINCS+ [BHK+19],
and its security. Afterwards we move on to digital signatures.

2.1 Tweakable hash functions.

In this section we recall the definition of tweakable hash functions and related
security notions from [BHK+19]. These properties will later be used to prove the
security of our WOTS-TW scheme.

Function definition. A tweakable hash function takes public parameters P and
context information in form of a tweak T in addition to the message input. The
public parameters might be thought of as a function key or index. The tweak
might be interpreted as a nonce.

Definition 1 (Tweakable hash function). Let n,m ∈ N, P the public pa-
rameters space and T the tweak space. A tweakable hash function is an efficient
function

Th : P × T × {0, 1}m → {0, 1}n, MD← Th(P, T,M)

mapping an m-bit message M to an n-bit hash value MD using a function key
called public parameter P ∈ P and a tweak T ∈ T .

We will sometimes denote Th(P, T,M) as ThP,T (M). In SPHINCS+, a pub-
lic seed Seed is used as public parameter which is part of the SPHINCS+ public
key. As tweak a so-called hash function address (ADRS) is used that identifies
the position of the hash function call within the virtual structure defined by a
SPHINCS+ key pair. We use the same approach for WOTS-TW, i.e., the public
parameter is a seed value that becomes part of the public key if WOTS-TW is
used standalone. If it is used in a bigger structure like SPHINCS+, the public
parameters will typically be those used in the bigger structure and are therefore
only part of that bigger structure public key. In this case, the hash addresses
have to be unique within the whole bigger structure. Therefore, the address may
contain a prefix determined by the calling structure.

Security notions. To provide a security proof for WOTS-TW we require that
the used tweakable hash functions have certain security properties. We require
the following properties or some variations of them which will be discussed below:

– post-quantum single function, multi-target-collision resistance for distinct
tweaks (PQ-SM-TCR);
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– post-quantum single function, multi-target-preimage resistance for distinct
tweaks (PQ-SM-DT-PRE);

– post-quantum single function, multi-target-undetectability for distinct tweaks
(PQ-SM-DT-UD).

These properties were already considered in previous work. We only slightly
adapt them, introducing a weak variant that adds some limitation on when the
adversary is allowed to get access to the tweakable hash function and in what
way. Moreover, in the context of multi-instance constructions like SPHINCS+,
we need another generic extension to collections of tweakable hash functions,
discussed at the end of the subsection.

We generally consider post-quantum security in this work. Therefore, we will
omit the PQ prefix from now on and consider it understood that we always con-
sider quantum adversaries. Since we are working in the post-quantum setting, we
assume that adversaries have access to a quantum computer but honest parties
do not. Hence, any oracles that implement secretly keyed functions only allow
for classical queries.

In all of the properties an adversary can influence the challenges by specifying
the tweaks used in challenges. We generally restrict this control in so far as we do
not allow more than one challenge for the same tweak. As we have this restriction
for all of our properties we do not add any label to the security notions for this.

Now we will discuss above properties and their variations.

SM-TCR.One can view SM-TCR as a variant of target-collision resistance [RSM09].
Consider an adversary A which consists of two parts A1 and A2. A will play
a two-stage game. A1 is allowed to adaptively specify p targets (multi-target).
The target specification is implemented via access to an oracle implementing
the function with a fixed public parameter (single-function as the same public
parameter is used for all targets). Every query to this oracle defines a target.
It is important that A is not allowed to query the oracle with the same tweak
more than once. The adversary wins if it finds a collision for one of the targets.

Lets consider a variant of SM-TCR in which the adversary gets the descrip-
tion of the tweakable function only after he has made the queries. This variation
allows to make quantum queries to the hash function only after the targets are
specified. We call it Weak-SM-TCR. In the reduction we will use this variant
of the property. We will denote such a variant as W-SM-TCR. Notice that our
reduction proof will show that if the scheme is broken at least one of the required
properties of the tweakable hash function is broken. One can see that breaking
the W-SM-TCR is harder than SM-TCR (at least not easier), hence it is less
likely that the property will be broken and this leads to a higher security of the
scheme.

We formalize the above in the following definition.

Definition 2 (W-SM-TCR). In the following let Th be a tweakable hash func-
tion as defined above. We define the success probability of any adversary A =
(A1,A2) against the W-SM-TCR security of Th. The definition is parameter-
ized by the number of targets p for which it must hold that p ≤ |T |. In the
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definition, A1 is allowed to make p queries to an oracle Th(P, ·, ·). We de-
note the set of A1’s queries by Q = {(Ti,Mi)}pi=1 and define the predicate
DIST({Ti}pi=1) = (∀i, k ∈ [1, p], i 6= k) : Ti 6= Tk, i.e., DIST({Ti}pi=1) out-
puts 1 iff all tweaks are distinct.

SuccW−SM−TCR
Th,p (A) = Pr[P

$← P;S ← ATh(P,·,·)
1 ( );

(j,M)← A2(Q,S, P,Th) : Th(P, Tj ,Mj) = Th(P, Tj ,M)

∧M 6=Mj ∧DIST({Ti}pi=1)]

We define the insecurity of a tweakable hash function against p target, time
ξ, W-SM-TCR adversaries as the maximum success probability of any possibly
quantum adversary A with p targets and running time ≤ ξ :

InSecW−SM−TCR(Th; ξ, p) = max
A
{SuccW−SM−TCR

Th,p (A)}

SM-PRE. As for W-SM-TCR, SM-PRE is a two-stage game and can be seen
as a variant of preimage resistance. Adversary A1 is allowed to specify p targets
during the first stage. The speciation is again done by using an oracle that imple-
ments a tweakable hash function with a fixed public parameter. The adversary
wins if it finds a preimage for one of the targets.

We again consider a weaker version of SM-PRE in which the adversary gets
the description of the tweakable function only after he has made the queries. We
will denote such a variant as W-SM-PRE. The intuition behind this variant is
the same as in W-SM-TCR.

We formalize the above in the following definition.

Definition 3 (W-SM-PRE). In the following let Th be a tweakable hash func-
tion as defined above. We define the success probability of any adversary A =
(A1,A2) against the W-SM-PRE security of Th. The definition is parameter-
ized by the number of targets p for which it must hold that p ≤ |T |. In the
definition, A1 is allowed to make p queries to an oracle Th(P, ·, xi), where xi is
chosen uniformly at random for the query i (the value of xi stays hidden from
A). We denote the set of A1’s queries by Q = {Ti}pi=1 and define the predicate
DIST({Ti}pi=1) as we did in the definition above.

SuccW−SM−PRE
Th,p (A) = Pr[P

$← P;S ← ATh(P,·,xi)
1 ( );

(j,M)← A2(Q,S, P,Th) : Th(P, Tj ,M) = Th(P, Tj , xj)

∧DIST({Ti}pi=1)]

We define the insecurity of a tweakable hash function against p target, time
ξ, W-SM-PRE adversaries as the maximum success probability of any possibly
quantum adversary A with p targets and running time ≤ ξ :

InSecW−SM−PRE(Th; ξ, p) = max
A
{SuccW−PRE

Th,p (A)}



6 A. Hülsing, M. Kudinov

SM-UD. Also SM-UD is a variant of an established notion, in this case unde-
tectability [DSS05], that makes use of a two stage adversary A = (A1,A2). A1

specifies p targets during the first stage through oracle interactions. The oracle
is initialized either with the tweakable hash function with a fixed public param-
eter or a random function. The adversary wins if it answers correctly whether
it interacted with a random function or with a function Th. We formalize the
above in the following definition. As for the previous notions, we consider the
weak variant where A gets the description of the tweakable hash function only
after the challenge queries are made.

Definition 4 (W-SM-UD). In the following let Th be a tweakable hash function
as defined above. We define the success probability of any adversary A = (A1,A2)
against the W-SM-UD security of Th. The definition is parameterized by the
number of targets p for which it must hold that p ≤ |T |. First the challenger
flips a fair coin b and and chooses a public parameter P $← P. Next consider an
oracle OP (T , {0, 1}), which works the following: OP (T, 0) returns Th(P, T, xi),
where xi is chosen uniformly at random for the query i; OP (T, 1) returns yi,
where yi is chosen uniformly at random for the query i. In the definition, A1

is allowed to make p queries to an oracle OP (·, b). We denote the set of A1’s
queries by Q = {Ti}pi=1 and define the predicate DIST({Ti}pi=1) as we did above.

SuccW−SM−UD
Th,p (A) = Pr[P

$← P; b $← {0, 1};S ← AOP (·,b)
1 ( );

b′ ← A2(Q,S, P.Th) : b′ = b

∧DIST({Ti}pi=1)]

We define the insecurity of a tweakable hash function against p target, time
ξ, W-SM-UD adversaries as the maximum success probability of any possibly
quantum adversary A with p targets and running time ≤ ξ:

InSecW−SM−UD(Th; ξ, p) = max
A
{SuccW−SM−UD

Th,p (A)}

Here we have finished describing the properties that will be needed to con-
struct a reduction proof for WOTS-TW. But for the further analysis of those
properties and analysis of bigger schemes such as SPHINCS+ one would need
several more properties, which will be listed below.

First we start with the notion of Decisional Second Preimage Resistance
(DSPR) and it variants that was introduced in [BH19a]. This notion helps to
reduce the property of preimage resistance to properties of second preimage
resistance and DSPR. It is used in SPHINCS+ to analyze the security of FORS
scheme (this scheme will be described later). This property will be also utilized
to analyze quantum generic security of W-SM-PRE. The initial description of
the property and its justification can be found in [BH19a], here we will use the
definitions from [BHK+19] that fit the notion of a tweakable hash function.

We will go straight to a multi-target version of DSPR which is denoted as
SM-DSPR. To do so first we need to introduce a predicate SPexists.
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Definition 5 (SPexistsP,T). A second preimage exists SPexists predicate of tweak-
able hash function Th : P × T × {0, 1}m → {0, 1}n with a fixed P ∈ P, T ∈ T
is the function SPP,T : {0, 1}m → {0, 1} defined as follows:

SPP,T (x)
def
=

{
1 if |Th−1P,T (ThP,T (x))| ≥ 2

0 otherwise,

where Th−1P,T refers to the inverse of the tweakable hash function with fixed public
parameter and a tweak.

In other words SPP,T (x) = 0 is there is no second preimage for x under
function Th(P, T, ·). Theoretically you can find a second preimage of x under
Th(P, T, ·) only of SPP,T (x) = 1.

Now we present the definition of SM-DSPR from [BHK+19].

Definition 6 (SM-DSPR). Let Th be a tweakable hash function. Let A =
(A1,A2) be a two stage adversary. The number of targets is denoted with p, where
the following inequality must hold: p ≤ |T |. A1 is allowed to make p queries to
an oracle Th(P, ·, ·). We denote the query set Q and predicate DIST({Ti}p1) as
in previous definitions.

AdvSM−DSPR
Th,p (A) = max{0, succ− triv},

where

Succ = Pr[P
$← P;S ← ATh(P,·,·)

1 (); (j, b)← A2(Q,S, P ) :

SPP,Tj (Mj) = b ∧ DIST({Ti}p1)].

triv = Pr[P
$← P;S ← ATh(P,·,·)

1 (); (j, b)← A2(Q,S, P ) :

SPP,Tj (Mj) = 1 ∧ DIST({Ti}p1)].

We define the SM-DSPR insecurity of a tweakable hash function against p
target, time ξ adversaries as the maximum advantage of any (possibly quantum)
adversary A with p targets and running time ≤ ξ:

InSecSM−DSPR(Th; ξ, p) = max
A
{AdvSM−DSPR

Th,p (A)}

W-SM-DSPR is a variant in which the description of the underlying hash
function is given only after all the challenge queries are done.

Security for a collection of tweakable hash functions. In more complex
constructions like SPHINCS+, we make use a collection of tweakable hash func-
tions which we call Thλ. In this case Th consists of a set of tweakable hash
functions Thm that differ in terms of m, the length of messages they process.
This notion of a collection of tweakable hash functions is necessary as we use the
same public parameters for all functions in the collection. Especially, it is neces-
sary to make the security notions above usable in the context of SPHINCS+. The
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problem is that when used in constructions like SPHINCS+ or XMSS queries
to the challenge oracle queries may depend on the outputs of other functions
in the collection, or even the same function but with different tweaks. This is
incompatible with above definitions as the public parameters are only given to
the adversary after all challenge queries are made.

We solve this issue extending all the above standalone security properties to
the case of collections. The definitions for functions that are part of a collection
only differ from the above in a single spot. We give the first adversary A1, that
makes the challenge queries, access to another oracle Thλ(P, ·, ·), initialized with
P . The oracle takes an input M and a tweak T and, depending on the length
m = |M | of M returns Thm(P,M, T ). The only limitation is that A is not
allowed to use a tweak in queries to both oracles, the challenge oracle and the
collection oracle. In general, A is allowed to query the challenge oracle as well
as Thλ with a message of length x, as long as the used tweak is never used in a
query to the challenge oracle.

Definition 7 (W-SM-TCR, W-SM-PRE, W-SM-UD, SM-DSPR for mem-
bers of a collection). Let Th be a tweakable hash function as defined above
with message length x. Moreover, let Th be an element of a collection of tweak-
able hash functions Thλ as described above. Consider an adversary A = (A1,A2)
against the W-SM-TCR (, W-SM-PRE, W-SM-UD, SM-DSPR) security of Th
in presence of collection Thλ. Let Thλ(P, ·, ·) denote an oracle for Thλ as de-
scribed above and denote by {Tλi }

pλ
1 the tweaks used in the queries made by A.

We define the success probability of A against W-SM-TCR (, W-SM-PRE, W-
SM-UD, SM-DSPR) security of Th in presence of collection Thλ as the success
probability of A against standalone W-SM-TCR (, W-SM-PRE, W-SM-UD, SM-
DSPR) security of Th defined above, when A1 is additionally given oracle access
to Thλ(P, ·, ·) with the condition that {Ti}p1 ∩ {Tλi }

pλ
1 = ∅.

In the case of W-SM-TCR, we will abuse notation when it comes to the
security of SPHINCS+ and consider the joined security of several members of a
collection of tweakable hash functions.

2.2 Message digest computation

In SPHINCS+ a special function to compute message digest will be introduced.
An expected property of that function is interleaved target subset resilience. Let
give a formal definition of this property.

Definition 8 (ITSR [BHK+19]). Let H : {0, 1}K × {0, 1}α → {0, 1}m be a
keyed hash function. Also consider a mapping function MAPh,k,t : {0, 1}m →
{0, 1}h× [0, t− 1]k which maps an m-bit string to a set of k indexes. We denote
those indexes as ((I, 1, J1), . . . , (I, k, Jk)), where I is chosen from [0, 2h− 1] and
each Ji is chosen from [0, t− 1].

The success probability of an adversary A against ITSR of H is defined as
follows. Let G = MAPh,k,t ◦H. Let O(·) be an oracle which on input of an α-bit
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message Mi samples a key Ki
$← {0, 1}K and returns G(Ki,Mi). The adversary

A is allowed to query the oracle with massages of its choice. Denote the amount
of queries with q.

SuccITSR
H,q (A) = Pr[(R,M)← AO(·)(1n)

s.t. G(K,M) ⊆
q⋃
j=1

G(Kj ,Mj) ∧ (K,M) /∈ {(Kj ,Mj)}qj=1],

where {(Kj ,Mj)}qj=1 represent the responses of the oracle O(·). We define the
ITSR insecurity of a keyed hash function against q-query, time-ξ adversaries as
the maximum advantage of any quantum adversary A with running time ≤ ξ ,
that makes no more than q queries:

InSecITSR(H; ξ, p) = max
A
{SuccITSR

H,q (A)}

2.3 Pseudorandom functions

To construct a scheme we will need pseudorandom functions. In this subsection
we give a definition of pseudorandom functions, provide security notions.

Function definition. A pseudorandom function takes a secret parameter S
and context information in form of a tweak T . The secret parameter might be
thought of as a function key or index. The tweak might be interpreted as a nonce.

Definition 9 (Pseudorandom function). Let n ∈ N, S the secret parameters
space and T the tweak space. A pseudorandom function is an efficient function

F : S × T → {0, 1}n

generating an n-bit value out of secret parameter and a tweak.

Security notion In the following we give the definition for PRF security of
a function F : S × T → {0, 1}n. In the definition of the PRF distinguishing
advantage the adversary A gets (classical) oracle access to either F (S, ·) for a
uniformly random secret parameter S ∈ S or to a function G drawn from the
uniform distribution over the set G(T , n) of all functions with domain T and
range {0, 1}n. The goal of A is to distinguish both cases.

Definition 10 (PRF). Let F be defined as above. We define the PRF distin-
guishing advantage of an adversary A as

AdvPRF
F (A) = | Pr

S
$←S

[AF (S,·) = 1]− Pr
G

$←G(T ,n)
[AG(·) = 1]|.

We define the PRF insecurity of a pseudorandom function F against q-query,
time-ξ adversaries as the maximum advantage of any possibly quantum adversary
that runs in time ξ and makes no more then q queries to its oracle:

InSecPRF(F ; ξ, q) = max
A
{AdvPRF

F (A)}.
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2.4 Security model

In this part we describe the security model in which we will prove the security
of the one-time digital signature scheme.

Definition 11 (Digital signature schemes). Let M be a message space. A
digital signature scheme Dss = (Kg,Sign,Vf) is a triple of probabilistic polyno-
mial time algorithms:

– Kg(1n) on input of a security parameter 1n outputs a private key sk and a
public key pk;

– Sign(sk,M) outputs a signature σ under secret key sk for message M ∈M;
– Vf(pk, σ,M) outputs 1 iff σ is a valid signature on M under pk;

such that ∀(pk, sk)← Kg(1n),∀(M ∈M) : Vf(pk,Sign(sk,M),M) = 1.

Consider a signature scheme Dss(1n), where n is the security parameter. We
introduce a definition for the security of Dss(1n), which we call the existential
unforgeability under non-adaptive chosen message attack (EU-naCMA). It is de-
fined using the following experiment.

Experiment ExpEU−naCMA
Dss(1n) (A)

(sk, pk)← Kg(1n).
{M1, . . . ,Mq} ← A().
Compute {(Mi, σi)}qi=1 using Sign(sk, ·).
(M?, σ?)← A({(Mi, σi)}qi=1, pk)
Return 1 iff Vf(pk, σ?,M?) = 1 and M? /∈ {Mi}qi=1.

The adversary is forced to output a list of messages M1, ...,Mq it wants to see
signed before obtaining the public key pk. In our work we consider one-time
signatures, so the number of allowed messages q is set to 1.

Let SuccEU−naCMA
Dss(1n) (A) = Pr

[
ExpEU−naCMA

Dss(1n) (A) = 1
]
be the success probability

of an adversary A in the above experiment.

Definition 12 (EU-naCMA). Let t, n ∈ N, t = poly(n), Dss(1n) is a digital
signature scheme. We call Dss EU− naCMA-secure if the maximum success
probability InSecEU−naCMA(Dss(1n), t) of all possibly probabilistic adversaries A
running in time ≤ t is negligible in n:

InSecEU−naCMA(Dss(1n); t)
def
= max

A

{
SuccEU−naCMA

Dss(1n) (A)
}
= negl(n).

2.5 Estimated security

In this section we collect bounds on the complexity of generic attacks against the
described properties. A (tweakable) hash function Th is commonly considered
a good function if there are no attacks known for any security property that
perform better against Th than against a random function. Table 1 summarizes
the current situation.
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Table 1: Success probability of generic attacks – In the “Success probabil-
ity” column we give the bound for a quantum adversary A that makes q
quantum queries to the function and p classical queries to the challenge or-
acle. The security parameter n is the output length of Th. We use X =∑
γ

(
1−

(
1− 1

t

)γ)k (p
γ

) (
1− 1

2h

)p−γ 1
2hγ

.

Property Success probability Status

W-SM-TCR Θ((q + 1)2/2n) proven ( [BHK+19,HRS16])

SM-DSPR Θ((q + 1)2/2n) conjecture ( [BHK+19])

W-SM-PRE Θ((q + 1)2/2n) conjecture ( [BH19a,BHK+19])

PRF Θ((q + 1)2/2n) conjecture ( [HRS16])

W-SM-UD O((q + 1)2/2n) conjecture (this work / [DSS05])

ITSR Θ((q + 1)2 ·X) conjecture ( [BHK+19])

The success probability of generic attacks against W-SM-TCR was analyzed
in [BHK+19]. Assuming that Th behaves like a random function a reduction to
an average-case search problem was given. A generic attack using Grover search
against plain TCR is given in [HRS16]. That attack is also applicable against
W-SM-TCR – as it simply runs a second preimage search when all information
is available – and has a success probability matching the proven bound.

A conjecture for the success probability against SM-DSPR was also given
in [BHK+19]. There is a proof for single target DSPR property in [BH19a] that
gives the following bound: O((q + 1)2/2n). A non-tight proof for a multi-target
version is also analyzed in [BH19a]. The best attack against DSPR for now is a
second-preimage search that gives the same bound for the multi-target case.

For PRE and also multi-function, multi-target PRE of a hash function h,
a bound of SuccPRE

h,p (A) = Θ((q + 1)2/2n) is given in [HRS16]. The bound is
proven for h that are compressing by at least a factor 2 in the message length
and it is conjectured that it also applies for length preserving hash functions,
i.e., functions that map n-bit messages to n-bit outputs, ignoring additional
inputs like function keys or tweaks. This is exactly the case that we are in-
terested in. Another way to support the conjecture is a tight bound using
W-SM-TCR and SM-DSPR (SuccW−SM−PRE

Th,p (A) ≤ 3 · SuccW−SM−TCR
Th,p (A) +

AdvSM−DSPR
Th,p (A)) given in [BHK+19,BH19a]. With this we can derive the same

bound of SuccW−SM−PRE
Th,p (A) = Θ((q+1)2/2n). Also in this case it is a conjecture

as the bound for SM-DSPR is only conjectured for now.
Exhaustive search on an unstructured space is traditionally considered to be

the best known attack for the PRF property. Considering this as a preimage
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search for a random function and using the results from [HRS16] we obtain the
stated bound. We note it as conjectured as we are not aware of a formal proof
for this result.

The notion of undetectability was introduced in [DSS05]. In that work, the
authors give a bound for one target undetectability considering classical adver-
saries as O(q/2n). The notion was not used in more recent works and we are not
aware of a proven bound against quantum adversaries. We conjecture a bound
of O(q2/2n) for quantum adversaries. The reasoning behind this is that as long
as the adversary does not know if a target (likely) has a preimage under Th,
it cannot do better than guessing. This suggests the same bound as for W-SM-
PRE.

For all notions we conjecture that the bounds are exactly the same for the
case of collections. The reason is that for a random tweakable function, every
tweak is related to an independent random function. Hence, giving access to
those does not give any information about the targets to the adversary. This is
also reflected in the reductions that we know so far. In these, the function for
a tweak that is not used for a challenge is simulate by an independent random
function and we can give access to this function in parallel to the challenge oracle
as we do not touch it in the reduction.

3 WOTS-TW

SPHINCS+ [BHK+19] developed its own variant of the Winternitz OTS. How-
ever, the authors never explicitly defined that variant. As the flaw in the SPHINCS+
security proof was in the proof for their WOTS scheme, we give a separate de-
scription of the scheme in this section. As the distinguishing feature of this
variant is the use of tweakable hash functions, we call it WOTS-TW.

3.1 Parameters

WOTS-TW uses several parameters. The main security parameter is n ∈ N. m
is the message length, which we sign. In case of SPHINCS+ m = n. The tweak
space T must be at least of size lw. The size of tweak space should be bigger if we
use several instances of WOTS-TW in a bigger construction such as SPHINCS+
so we can use a different tweak for each hash function call. Here w ∈ N is a
so-called Winternitz parameter, which determines a base of the representation
that is used in the scheme, and l is defined through the following constants:

l1 =

⌈
m

log(w)

⌉
, l2 =

⌊
log(l1(w − 1))

log(w)

⌋
+ 1, l = l1 + l2.

We also need a pseudorandom function PRF : {0, 1}n × T → {0, 1}n, and a
tweakable hash function Th : {0, 1}n × T × {0, 1}n → {0, 1}n.
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3.2 Addressing scheme

For the tweakable hash functions to guarantee security, they have to be called
with different tweaks. This is achieved using what was called an addressing
scheme in SPHINCS+. Such addressing scheme assigns a unique address to ev-
ery tweakable hash function call in the scheme and the address space is part of the
tweak space such that addresses can be used as tweaks. We do not specify a con-
crete addressing scheme in this work (see the SPHINCS+ specification [ABB+20]
for an example). Abstractly, we achieve unique addresses the following way. A
Winternitz key pair defines a structure of l hash chains, each of which makes
w− 1 calls to the tweakable hash function. For a unique addressing scheme, one
may use any injective function that takes as input i ∈ [0, l−1], j ∈ [0, w−2], and
possibly a prefix, and maps into the address space. The prefix is necessary to
ensure uniqueness if many instances of WOTS-TW are used in a single construc-
tion. We will use ADRS to denote that prefix. The tweak associated with the
j-th function call in the i-th chain is then defined as the output of this function
on input i, j (and a possible prefix) and denoted as Ti,j .

3.3 WOTS-TW scheme

The main difference between WOTS variants is in the way they do hashing.
Previously, the distinction was made in the definition of the so called chaining
function that describes how the hash chains are computed. For WOTS-TW this
distinction is further shifted into the construction of the tweakable hash function
Th. The chaining function then looks as follows:

Chaining function cj,k(x, i,Seed): The chaining function takes as inputs a
message x ∈ {0, 1}n, iteration counter k ∈ N, start index j ∈ N, chain index
i, and public parameters Seed (the name comes from a specific construction of
a tweakable hash function that uses the public parameters as seed for a PRG).
The chaining function then works the following way. In case k ≤ 0, c returns x,
i.e., cj,0(x, i,Seed) = x. For k > 0 we define c recursively as

cj,k(x, i,Seed) = Th(Seed, Ti,j+k−1, c
j,k−1(x, i,Seed)) .

If we consider several instances of WOTS-TW than we will use cj,kADRS(x, i,Seed)
to denote that tweaks that are used to construct the chain have ADRS as a
prefix. With this chaining function, we can describe the algorithms of WOTS-
TW.

Key Generation Algorithm (SK,PK)←WOTS.kg(C;S): The key gener-
ation algorithm optionally takes as input context information C = (Seed,ADRS),
consisting of a public seed Seed ∈ {0, 1}n and a global address ADRS, as well
as randomness S ∈ {0, 1}n which we call the secret seed. These inputs are meant
for the use in more complex protocols. If they are not provided, key generation
randomly samples the seeds and sets ADRS to 0. The key generation algorithm
then computes the internal secret key sk = (sk1, . . . , skl) as ski ← PRF(S, Ti,0)),
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i.e., the l · n bit secret key elements are derived form the secret key seed using
addresses. The element of the public key pk is computed as

pk = (pk1, . . . , pkl) = (c0,w−1(sk1, 1,Seed), . . . , c
0,w−1(skl, l, Seed))

The key generation algorithm returns SK = (S, C) and PK = (pk, C) Note that
we can compute sk and pk from SK.

Signature Algorithm σ ← WOTS.sign(M, SK): On input of an m-bit
message M , and the secret key SK = (S, C), the signature algorithm first com-
putes a base w representation of M : M = (M1, . . . ,Ml1), Mi ∈ {0, . . . , w − 1}.
That is, M is treated as the binary representation of a natural number x and
then the w-ary representation of x is computed. Next it computes the checksum
C =

∑l
i=1(w − 1 −Mi) and its base w representation C = (C1, . . . , Cl2). We

set B = (b1, . . . , bl) =M ||C, the concatenation of the base w representations of
M and C. Then the internal secret key is regenerated using ski ← PRF(S, Ti,0)
the same way as during key generation. The signature is computed as

σ = (σ1, . . . , σl) = (c0,b1(sk1, 1,Seed), . . . , c
0,bl(skl, l, Seed))

Verification Algorithm ({0, 1} ←WOTS.vf(M,σ,PK)): On input of m-
bit message M, a signature σ, and public key PK = (pk, C), the verification
algorithm first computes the bi, 1 ≤ i ≤ l as described above. Then it checks if

pk
?
= pk′ = (pk′1, . . . , pk

′
l) = (cb1,w−1−b1(σ1, 1,Seed), . . . , c

bl,w−1−bl(σl, l, Seed)) .

On the equality the algorithm outputs true and false otherwise.

4 Security of WOTS-TW

Now we will reduce the security of WOTS-TW to the security properties of the
tweakable hash function Th and the pseudorandom function family PRF. To
do so we will give a standard game hopping proof. Intuitively the proof goes
through the following steps.

– First, we replace the inner secret key elements that are usually generated
using PRF by uniformly random values. The two cases must be computa-
tionally indistinguishable if PRF is indeed pseudorandom.

– Next we replace the blocks in the chains that become part of the signature
by the hash of random values. We need this so that we can later place
preimage challenges at these positions of the chain. Here it is important
to note that preimage challenges are exactly such hashes of random domain
elements and not random co-domain elements. To argue that these two cases
are indistinguishable, we need a hybrid argument since for most chains we
replace the outcome of several iterations of hashing with a random value.

– Next we show that breaking the EU-naCMA property of our scheme in this
final case will either allow us to extract a target-collision or a preimage for
a given challenge.
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Theorem 1. Let n, w ∈ N and w = poly(n). Let Th : P × T × {0, 1}n →
{0, 1}n be a W-SM-TCR, W-SM-PRE, and W-SM-UD function. Let PRF :
S×T → {0, 1}n be a pseudorandom function. Then the insecurity of the WOTS-
TW scheme against EU-nCMA attack is bounded by

InSecEU-nCMA(WOTS − TW (1n, w); t, 1) <

InSecPRF(PRF; t̃, l) + InSecW−SM−TCR(Th; t̃, lw)+

InSecW−SM−PRE(Th; t̃, l) + w · InSecW−SM−UD(Th; t̃, l)

with t̃ = t+ lw, where time is given in number of Th evaluations.

Proof. First consider the following two games: GAME.1 is the original EU-nCMA
game and GAME.2 is the same as GAME.1 but instead of using pseudorandom
elements from PRF a truly random function RF : S × T → {0, 1}n is used.
We claim that the difference in the success probability of A playing these games
must be bound by InSecPRF(PRF; t̃, l).

Next we consider GAME.3 which is the same as GAME.2 but to answer the
message signing request we build the signature from nodes that are computed
applying Th only once instead of bi times (except if bi = 0, then we return a
random value as in the previous game). The public key is constructed from that
signature by finishing the chain according to the usual algorithm. We will detail
the process in the proof below. We claim that the difference in the success prob-
ability of A playing these games must be bound by w · InSecW−SM−UD(Th; t̃, l).

Afterwards, we consider GAME.4, which differs from GAME.3 in that we are
considering the game lost if an adversary outputs a valid forgery (M ′, σ′) where
there exists an i such that b′i < bi and c(b

′
i,bi−b

′
i)(σ′i, i,Seed) 6= σi. We claim that

the difference in the success probability of A playing these games must be bound
by InSecW−SM−TCR(Th; t̃, lw).

If we now consider how A can win in GAME.4 there is just we viable case
left. Namely, this is the case where the values that get computed from the forgery
during verification fully agree with those values that are computed during the
verification of the signature. As the checksum ensures that there is at least we
index for the forgery that is smaller than the respective index of the signature,
this means that we can use an A that wins in GAME.4 to find preimages.
We claim that the success probability of the adversary A in GAME.4 must be
bounded by InSecW−SM−PRE(Th; t̃, l).

So we get the following claims:

Claim 1. |SuccGAME.1(A)− SuccGAME.2(A)| ≤ InSecPRF(PRF; t̃, l)

Claim 2. |SuccGAME.2(A)− SuccGAME.3(A)| ≤ w · InSecW−SM−UD(Th; t̃, l)

Claim 3. |SuccGAME.3(A)− SuccGAME.4(A)| ≤ InSecW−SM−TCR(Th; t̃, lw)

Claim 4. SuccGAME.4(A) ≤ InSecW−SM−PRE(Th; t̃, l)
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The remainder of the proof consists of proving these claims. We then combine
the bounds from the claims to obtain the bound of the theorem.

Proof of Claim 1

Claim 1. |SuccGAME.1(A)− SuccGAME.2(A)| ≤ InSecPRF(PRF; t̃, l)

Proof. Our argument proceeds in two steps. First, we replace PRF in GAME.1
by the oracle provided by the PRF game and output 1 whenever A succeeds. If
the oracle is the real PRF function keyed with a random secret key, the view
of A is identical to that in GAME.1. If the oracle is the truly random function
the argument is a bit more involved. In this case, it is important to note that
A never gets direct access to the oracle but only receives outputs of the oracle.
The inputs on which the oracle is queried to obtain these outputs are all unique.
Hence, the outputs are uniformly random values. Therefore, the view of A in this
case is exactly that of GAME.2. Consequently, the difference of the probabilities
that the reduction outputs we in either of the two cases (which is the PRF
distinguishing advantage) is exactly the difference of the success probabilities of
A in the two games.

Proof of Claim 2 We first give a more detailed description of GAME.3. In the
EU-nCMA game the adversary A asks to sign a message M without knowing
the public key. This message M gets encoded as B = b1, . . . , bl. In GAME.3 to
answer the query we will perform the following operations. First we generate l
values uniformly at random: ui

$← {0, 1}n, i ∈ {1, . . . , l}. Next we answer the
signing query with a signature σ = (σ1, . . . , σl), where σi = Th(Seed, Ti,bi−1, ui)
if bi > 0 and σi = ui if bi = 0. Then the public key is constructed as

pk = (pk1, . . . , pkl) = (cb1,w−1−b1(σ1, 1,Seed), . . . , c
bl,w−1−bl(σl, l, Seed)) , (1)

and public key and signature are returned to the adversary. The reason we
consider this game is that to bound the final success probability in GAME.4 we
will have a reduction replace the ui with W-SM-PRE challenges. The resulting
signatures have exactly the same distribution as the ones we get here. To show
that this cannot change the adversary’s success probability in a significant way,
we now prove the following claim.

Claim 2. |SuccGAME.2(A)− SuccGAME.3(A)| ≤ w · InSecW−SM−UD(Th; t̃, l)

Proof. Consider the following scenario. Let the adversary’s query be M . During
the signing algorithm M is encoded as B = {b1, . . . , bl}. Consider two distribu-
tions D0 = {ξ1, . . . , ξl}, where ξi

$← {0, 1}n, i ∈ [1, l] and DKg = {y1, . . . , yl},
where yi = c0,bi−1(ξi, i,Seed), ξi

$← {0, 1}n, i ∈ [1, l]. Samples from the first
distribution are just random values, and the samples from DKg are distributed
the same way as the (bi − 1)-th values of valid WOTS-TW chains. Assume
we play a game where we get access to an oracle Oφ that on input B returns
φ = {φ1, . . . , φl}, either initialized with a sample from D0 or with a sample from
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Algorithm 1:MA2−3
Input : Access to a distribution oracle Oφ and forger A
Output: 0 or 1.

1 Start A to obtain query with a message M .
2 Encode M as B = b1, . . . , bl as in signature algorithm.
3 Call Oφ(B) to obtain sample φ
4 Construct the signature σ doing we chain step on each sample and compute

the public key from the signature:
5 for 1 ≤ i ≤ l do
6 σi = cbi−1,1(φi, i, Seed)

7 pki = cbi,w−1−bi(σi, i, Seed)

8 Send PK = (pk, Seed) and σ to A.
9 if A returns a valid forgery (M ′, σ′) then

10 return 1
11 else
12 return 0

DKg. Each case occurs with probability 1/2. Then we can construct an algorithm
MA2−3 as in Algorithm 1 that can distinguish these two cases using a forger A.

Let us consider the behavior of MA2−3 when Oφ samples from DKg. In this
case all the elements in the chains are distributed the same as in GAME.2. The
probability that MA2−3 outputs 1 is the same as the success probability of the
adversary in GAME.2.

If φ instead is from DU , then the distribution of the elements in the chains
is the same as in GAME.3. Hence the probability that MAUD outputs 1 is the
same as the success probability of the adversary in GAME.3.

By definition, the advantage ofMA2−3 in distinguishing DU from DKg is hence
given by

AdvDU ,DKg (MA2−3) = |Succ
GAME.2(A)− SuccGAME.3(A)| (2)

The remaining step is to derive an upper bound for AdvDU ,DKg (MA
UD) using

the insecurity of the W-SM-UD property. For this purpose we use a hybrid
argument.

Let bmax = max{b1, . . . , bl} be the maximum of the values in the message en-
coding of M . Let Hk be the distribution obtained by computing the values in φ
as φi = ck,bi−1−k(ξi, i, Seed), ξi

$← {0, 1}n. Then H0 = DKg and Hbmax−1 = D0

(Note that the chaining function returns the identity when asked to do a negative
amount of steps). As MA2−3 distinguishes the extreme cases, by a hybrid argu-
ment there are two consecutive hybrids Hj and Hj+1 that can be distinguished
with probability ≥ AdvDU ,DKg (MA2−3)/(bmax − 1).

To bound the success probability of an adversary in distinguishing two such
consecutive hybrids, we build a second reductionMBUD that uses B =MA2−3 to
break W-SM-UD. For this purpose,MBUD simulates Oφ. To answer a query for
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B = b1, . . . , bl,MBUD plays in the W-SM-UD game, interacting with the W-SM-
UD oracle OUD(·, b) to construct hybrid Hj+b, depending on the secret bit b of
the oracle. To do so MBUD makes queries to OUD with tweaks {T1,j , . . . , Tl,j}.
Then, depending on b, the responses ψ of OUD are either l random values or
ψ = (cj,1(ξ1, 1, Seed), . . . , c

j,1(ξl, l, Seed), ξi
$← {0, 1}n, i ∈ [1, l]). After that

MBUD requests Seed from the W-SM-UD challenger. Next, MBUD applies the
hash chain to the oracle responses ψ to compute samples

φi =

{
cj+1,bi−1−(j+1)(ψi, i, Seed), if j < bi − 1

ξi
$← {0, 1}n, otherwise ,

and returns it toMA2−3.MBUD returns whateverMA2−3 returns.
If ψ consisted of random values the distribution was Hj+1, otherwise Hj .

Consequently, the advantage of distinguishing any two hybrids must be bound
by InSecW−SM−UD(Th; ξ, l).

Putting things together, we see that bmax ≤ w for any message M . Hence we
get

|SuccGAME.2(A)− SuccGAME.3(A)| = AdvDU ,DKg (MA2−3)
≤ w · SuccW−SM−UD

Th,l (MBUD) ≤ w · InSec
W−SM−UD(Th; ξ, l)

which concludes the proof.

Proof of Claim 3 Recall that GAME.4 differs from GAME.3 in that we are
considering the game lost if an adversary outputs a valid forgery (M ′, σ′) where
there exist such i that b′i < bi and c(b

′
i,bi−b

′
i)(σ′i, i,Seed) 6= σi. So the difference

in success probability is exactly the probability that A outputs a valid forgery
and there exists an i such that b′i < bi and c(b

′
i,bi−b

′
i)(σ′i, i,Seed) 6= σi. We will

now prove Claim 3 which claims the following bound on this probability:

Claim 3. |SuccGAME.3(A)− SuccGAME.4(A)| ≤ InSecW−SM−TCR(Th; t̃, lw)

Proof. To prove the claim we construct an algorithmMATCR that reduces W-SM-
TCR of Th to the task of forging a signature that fulfills the above condition.
The algorithm is based on the following idea. MATCR simulates GAME.4. In
Game.4 the adversary sends a query to sign a message M . To answer this query
and compute the public key,MATCR interacts with the W-SM-TCR oracle. This
way, MATCR obtains target-collision challenges corresponding to the nodes in
the signature and all intermediate values in the chain computations made to
compute the public key. Then MATCR requests the public parameters P from
the W-SM-TCR challenger. We set the public seed Seed of WOTS-TW equal to
P . We answer on the query with the constructed signature and public key. Per
assumption there now exists i such that b′i < bi and c(b

′
i,bi−b

′
i)(σ′i, i,Seed) 6= σi,

hence by a pigeon hole argument there must be a collision on the way to public
key element. MATCR extracts this collision and returns it. Algorithm 2 gives a
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Algorithm 2:MATCR

Input : Security parameter n, oracle access to W-SM-TCR challenger C and
EU-nCMA forger A.

Output: A pair (j,M) or fail.
1 begin Challenge placement
2 Start A to obtain query with a message M .
3 Encode M as B = b1, . . . , bl as in signature algorithm.
4 for i ∈ {1, . . . , l} do
5 if bi = 0 then
6 Set σi

$← {0, 1}n.
7 else
8 Sample ξi

$← {0, 1}n,
9 Query C for W-SM-TCR challenge with inputs ξi, T1,bi−1.

10 Store answer as σi. // i.e., σi = Th(P, Ti,bi−1, ξi)

11 Compute public key element pki = cbi,w−1−bi(σi, i, ·) as in the
verification algorithm but using the W-SM-TCR challenge oracle
provided by C in place of Th. // That is why no Seed is
needed

12 Get public parameters P from the challenger and set Seed = P .
13 Set signature σ = (σ1, . . . , σl) and pk = (pk1, . . . , pkl).

14 begin Obtaining the result
15 Return σ and PK = (pk, Seed) to the adversary A.
16 if The adversary returns a valid forgery (M ′, σ′) then
17 Encode M ′ as B′ = (b′1, . . . , b

′
l) according to sign.

18 if ∃ i such that b′i < bi and c(b
′
i,bi−b

′
i)(σ′i, i, Seed) 6= σi then

19 Let j be the smallest integer such that the chains collide:
cbi,j(yi, i, Seed) = cb

′
i,j(σ′i, i, Seed)).

20 return W-SM-TCR solotion (i, cb
′
i,(j−1)(σ′i, i, Seed))

21 else
22 return fail

23 else
24 return fail
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Fig. 1: Example of a case in claim 3

detailed description ofMATCR in pseudocode. The algorithm is broken into two
logically separated parts: Challenge placement and obtaining the result.

Here we detail which W-SM-TCR challenges we create per chain in line 11
of Algorithm 2. Assume we have σi at position bi. Then the first query will be
(Ti,bi , σi). Lets denote the answer for that query as c1. The next query will be
(Ti,bi+1, c1). We denote the answer for that query as c2. In general we will make
queries of the form (Ti,bi+k, ck). And the answers for that queries we denote as
ck+1. We make queries until we get cw−1−bi . We set pki to be cw−1−bi .

As we are set to bound the probability of those cases where the adversary out-
puts a valid forgery and there exists such i that b′i < bi and c(b

′
i,bi−b

′
i)(σ′i, i,Seed) 6=

σi, MATCR never runs into the fail cases in lines 22 and 24. Moreover, the dis-
tribution of inputs to A when run by MATCR is identical to that in GAME.4.
Therefore,MATCR returns a target-collision with probability |SuccGAME.3(A)−
SuccGAME.4(A)| which concludes the proof.

Proof of Claim 4 It remains to prove the last claim. Consider a forgery σ′

and the positions b′i of the σ′ elements. There must exist a j such that b′j < bj
by the properties of the checksum. Remember that in GAME.4, the case where
c(b

′
j ,bj−b

′
j)(σ′j , j, Seed) 6= σj is excluded for all such j. Hence, it must hold for

these j that c(b
′
j ,bj−b

′
j)(σ′j , j, Seed) = σj . Therefore, we can use A to compute a

preimage of σj . We use this to prove Claim 4.

Claim 4. SuccGAME.4(A) ≤ InSecW−SM−PRE(Th; t̃, l)

Proof. As for the previous claim, we construct an algorithm MAPRE that uses
a forger in GAME.4 to solve a W-SM-PRE challenge. In the beginning,MAPRE

receives a query to sign a message M from the adversary A and encodes it
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into bi’s. To answer the queryMAPRE interacts with the W-SM-PRE challenger
to receive preimage challenges yi for tweaks that make the challenges fit into
positions bi. That way,MAPRE can use the challenges as signature values σi = yi.
Then MAPRE asks the W-SM-PRE challenger to return public parameters P .
Given P ,MAPRE can construct the public key using the recomputation method
used in the signature verification algorithm. MA sets the public seed Seed of
WOTS-TW to be P and returns the constructed signature and public key to A.
When A returns a valid forgery, this forgery must contain a signature value σj
with index j such that b′j < bj and cb

′
j ,(bj−b

′
j)(σ′j , j, Seed) = σj per definition of

the game. MAPRE returns preimage (j, cb
′
j ,(bj−b

′
j−1)(σ′j , j, Seed)). A pseudocode

version of MAPRE is given as Algorithm 3. The algorithm is broken into two
logically separated parts: Challenge placement and obtaining the result.

Due to the properties of GAME.4,MAPRE succeeds whenever A succeeds, as
the failure case in line 19 never occurs when A succeeds. Moreover, the distribu-
tion of the inputs to A when run byMAPRE is identical to that in GAME.4 (this
was ensured in the game hop to GAME.3). Therefore,MAPRE returns preimages
with probability SuccGAME.4(A) which proves the claim.

5 Extension to multiple instances with same public seed

One-time signatures are often used in more complex constructions. Indeed, WOTS-
TW was developed as part of SPHINCS+. The distinguishing feature of this
setting is that many WOTS-TW instances are used within one instance of the
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Algorithm 3:MAPRE

Input : Security parameter n, access to W-SM-PRE challenger C and forger
A.

Output: A pair (j,M) or fail.
1 begin Challenge placement
2 Run A to receive initial query for a signature on message M .
3 Encode M as B = b1, . . . , bl following the steps in the signature algorithm.
4 for 1 ≤ i ≤ l do
5 if bi > 0 then
6 Query C for preimage challenge yi with tweak T1,bi−1.

// yi = Th(P, Ti,bi−1, ξi)

7 else
8 yi

$← {0, 1}n.
9 Set σi = yi.

10 Get the seed P from C and set Seed = P .
11 Compute public key pk = (pk1, . . . pkl), as pki = cw−1−bi(yi, i, Seed).

12 begin Obtaining the result
13 Return σ and PK = (pk, P ) to A.
14 if A returns a valid forgery (M ′, σ′) then
15 Compute B′ = (b′1, . . . , b

′
l) encoding M

′

16 if ∃1 ≤ j ≤ l such that b′j < bj and c(b
′
j ,bj−b

′
j)(σ′j , j,Seed) = σj then

17 return W-SM-PRE solution (j, cb
′
j ,(bj−b

′
j−1)(σ′j , j,Seed))

18 else
19 return fail

20 else
21 return fail
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construction. In this section we will show that we can reduce the security of mul-
tiple WOTS-TW instances to the same multi-target security properties used for
a single instance. While, obviously, the number of targets increases, we argued
in Section 2.5 that the complexity of generic attacks is not influenced by the
number of targets for these notions. Hence, there is no decrease in security to
be expected when using multiple instances. We will show that this even works
when the same public seed is used for all instances, as long as different prefixes
are used for the tweaks.

In SPHINCS-like constructions WOTS-TW is used to sign the roots of trees
which are not controlled by an adversary against the construction but by the
signer. More generally, this is the case in many such constructions. Hence we use
an extension of the EU-nCMA model from last section to d instances as security
model.

We formally define EU-nCMA security for d instances. We introduce a defi-
nition for the security of Dss(1n), which we call the d-existential unforgeability
under non-adaptive chosen message attack (d-EU-naCMA). It is defined using
the following experiment. In this experiment a two-stage adversary A = (A1, A2)
is allowed to make signing queries to an oracle sign(·, ·,S, Seed) and query or-
acle Thλ. The signing oracle takes ADRS as a first input an message M as a
second input. First it runs (SK,PK)←WOTS.kg(C = (Seed,ADRS);S). Then
it computes σ ← WOTS.sign(M ;SK). Let us denote PK′ which is equal to PK
but there is no Seed in PK′, i.e. PK′ = (pk,ADRS). The signing oracle return
(σ,M,PK′) to the adversary. We also restrict A from querying Thλ with tweaks
for ADRS-s that are used in signature queries. We define a function adrs(·)
that takes a tweak as an input and returns ADRS of that tweak. We denote
the set of queries to signing oracle as Q = {(ADRS1,M1), . . . , (ADRSd,Md)}
and the set of tweaks that are used to query Thλ is T = {T1, . . . Tp}. We are
concerned with one-time signatures, so the number of allowed signing queries for
each ADRS is restricted to 1.

Experiment Expd−EU−naCMA
Dss(1n) (A)

– Seed
$← {0, 1}n

– S $← {0, 1}n

– state← Asign(·,·,Seed,S),Thλ(Seed,·,·)
1 ()

– (M?, σ?, j)← A2(state, Seed), j ∈ [1, d]

– Return 1 iff [Vf(PKj , σ
?,M?) = 1]∧ [M? 6=Mj ]∧ [∀ADRSi ∈ Q,ADRSi /∈

T ′ = {adrs(Ti)}pi=1].

The following theorem can be proved by generalization of the proof of the-
orem 1. The main idea behind the proof is the following. First of all we use
different tweaks in different instances of WOTS-TW as we use different ADRS
for each instance. Next point is that we obtain d times more challenges and we
separate them in d sets. Each set will be used for appropriate instance of WOTS.
Then the proof follows the same path as in theorem 1.
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Theorem 2. Let n, w ∈ N and w = poly(n). Let Th : P × T × {0, 1}n →
{0, 1}n be a W-SM-TCR, W-SM-PRE, W-SM-UD function. Let PRF : S ×
T → {0, 1}n be a pseudorandom function. Then the insecurity of the WOTS-
TW scheme against d-EU-naCMA attack is bounded by

InSecd−EU−naCMA(WOTS-TW(1n, w); t, 1) <

InSecPRF(PRF; t̃, d · l) + InSecW−SM−TCR(Th; t̃, d · lw)+
InSecW−SM−PRE(Th; t̃, d · l) + w · InSecW−SM−UD(Th; t̃, d · l) (3)

with t̃ = t+ d · lw, where time is given in number of Th evaluations.

Proof sketch. Let us give a brief description how the generalization will be ob-
tain. We have the same game hopping as in Theorem 1.

GAME.1 is the original EU-nCMA game and GAME.2 is the same as GAME.1
but instead of using pseudorandom elements from PRF a truly random func-
tion RF : S × T → {0, 1}n is used. |SuccGAME.1(A) − SuccGAME.2(A)| ≤
InSecPRF(PRF; t̃, d · l) The reasoning here is the same as in Claim 1 in Theo-
rem 1. Note that here inputs on which the oracle in PRF game is queried are
all unique due to the unique ADRS-s for each instance. Hence, the outputs are
uniformly random values as desired.

GAME.3 is different from GAME.2 in that for each signing query we answer
with a hash of random value rather than building it with a chaining function. In
Claim 2 of Theorem 1 we reduced it to W-SM-UD property by using hybrid ar-
gument. Here we need to apply the same reasoning. To obtain needed hybrids in
case of d instances we will do the following. Let us denote the transformation of
Mi into b1, . . . , bl with extra index. SoMi is transferred into bi,1, . . . , bi,l. We de-
note two distributions where Dd−Kg = {y1,1, . . . , y1,l, . . . , yd,1, . . . , yd,l}, where
yi,j = c

0,bj−1
ADRSi

(ξi,j , j, Seed), ξi,j
$← {0, 1}n, i ∈ [1, d], j ∈ [1, l], and Dd−0 =

{ξ1,1, . . . , ξ1,l, . . . , ξd,1, . . . , ξd,l}, where ξi,j
$← {0, 1}n, i ∈ [1, d], j ∈ [1, l]. The

distinguishing advantage of adversary of those two distributions is exactly the
difference of success probability this game hop. To limit this distinguishing ad-
vantage we need to build hybrids. We do this is the same manner as in Theorem 1.
Let bmax = max{b1,1, . . . , b1,l . . . , bd,1, . . . , bd,l} be the maximum of the values in
the message encoding of all Mi. Let Hk be the distribution obtained by com-
puting the values as ck,bi,j−1−kADRSi

(ξi,j , j, Seed), ξi,j
$← {0, 1}n. One can notice that

H0 = DKg and Hbmax−1 = D0. There must be two consecutive hybrids Hγ and
Hγ+1 that we can distinguish with probability close to distinguishing advantage.
By playing W-SM-UD and interacting with the oracle O(·, b) we can construct
hybrid Hγ+b this is done in just the same way as in Claim 2 of Theorem 1. Hence
we obtain the following bound:

|SuccGAME.2(A)− SuccGAME.3(A)| ≤ w · InSecW−SM−UD(Th; t̃, d · l)

Notice that in case of one instance we obtained Seed from W-SM-UD challenger
that we used to construct the hybrids and obtain WOTS-TW public key. Here
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instead of using Seed we need to interact with Thλ(Seed.·, ·) oracle. Only after
all of the signing queries are made we will obtain the Seed.

GAME.4 is different from GAME.3 in that we are considering the game lost
if an adversary outputs a valid forgery (M?, σ?, j) where there exist such i that
b?i,j < bi,j and c

(b?i,j ,bi,j−b
?
i,j)

ADRSi
(σ?j , j, Seed) 6= σj . To show that |SuccGAME.3(A) −

SuccGAME.4(A)| ≤ InSecW−SM−TCR(Th; t̃, d · lw) we can build the reduction
that works as follows.To answer signature queries query and compute the public
key, the reduction interacts with the W-SM-TCR oracle. The difference in case
of d instances from one instance is that we will need d times more interactions
with W-SM-TCR oracle. The chains that we build and chains obtained from the
forged signature are different but lead to the same public key. Hence by a pigeon
hole argument there must be a collision on the way to public key element. This
collision is a solution for W-SM-TCR challenge. So we proved that

|SuccGAME.3(A)− SuccGAME.4(A)| ≤ InSecW−SM−TCR(Th; t̃, d · lw)

To give a bound on success probability for GAME.4 we use W-SM-PRE
property. To answer signing queries we will interact with W-SM-PRE oracle
and place challenges obtained from that oracle in place of signatures. To con-
struct public keys of WOTS-TW instances we will behave in the same way as
in the undetectability case. By interacting with Thλ(Seed, ·, ·) we can build
the chains of WOTS-TW structures. Again there must exist a j such that
b?i,j < bi,j by the properties of the checksum. And since we excluded the case

where c
(b?i,j ,bi,j−b

?
i,j)

ADRSi
(σ?j , j, Seed) 6= σj we can obtain a preimage by computing

c
(b?i,j−1,bi,j−b

?
i,j)

ADRSi
(σ?j , j, Seed) So we obtained

|SuccGAME.4(A)| ≤ InSecW−SM−PRE(Th; t̃, d · l)

This concludes the sketch of the proof.

6 SPHINCS+

In this section we will recap the SPHINCS+ structure and afterwards give fixes
to the original SPHINCS+ proof. To obtain a fixed proof we will utilize the
results from Theorem 2.

6.1 Brief description

First we give a brief description of the SPHINCS+ signature scheme. An example
of SPHINCS+ structure can be seen on the following picture:
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Fig. 3: Example of a SPHINCS+ structure

The public key consists of two n-bit values: a random public seed PK.seed
and the root of the top tree in the hypertree structure. PK.seed is used as a first
argument for all of the tweakable hash functions calls. The private key contains
two more n-bit values SK.seed and SK.prf.

Lets describe the main parts of it. First we have to describe addressing
scheme. In this scheme, the addresses of certain structures and calls of hash
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functions will be used. This is for pseudo-random data generation. The address
is a 32 byte value. Address coding can be done in any convenient way. An address
will be represented with a tweak. Each tweak has a prefix that denotes to which
part of SPHINCS+ structure it belongs. We denoted this prefix as ADRS in
previous sections. So for each hashing in the structure a different tweak will be
used.

Then we need to discuss binary trees. In the SPHINCS+ algorithm, binary
trees of height γ always have 2γ leaves. Each leaf Li, i in[2γ − 1] is a bit string
of length n. Each node of the tree Ni,j , 0 < j ≤ γ, 0 ≤ i < 2γ−j is also a bit
string of length n. The values of the internal nodes of the tree are calculated as
a hash function from the children of that node. A leaf of a binary tree is a hash
of elements of public key of a WOTS-TW signature scheme instance.

Binary trees and WOTS-TW signature schemes are used to construct a hy-
pertree structure. WOTS-TW instances are used to sign root of binary trees on
lower levels. WOTS-TW instances on the lowest level used to signed the root
of a FORS structure. FORS is defined with the following parameters: k ∈ N,
t = 2a. This algorithm can sign messages of length ka-bits.

FORS key pair. The private key of FORS consists of kt pseudorandomly
generated n-bit values grouped into k sets of t elements each.

To get the public key k binary hash trees are constructed. The leaves in these
trees are k sets (one for each tree) which consist of t values. Thus we get k trees
of height a. As roots of k binary trees are calculated they are compressed using
a hash function. The resulting value will be the FORS public key.

FORS Signature. A message from ka bits is divided into k lines of a bits.
Each of these lines is interpreted as a leaf index corresponding to one of the k
trees. The signature consists of these sheets and their authentication paths. The
verifier reconstructs the tree roots, compresses them, and verifies them against
the public key. If there is a match, it is said that the signature was verified.
Otherwise, it is declared invalid.

The last thing to discuss is the way the message digest is calculated. First,
we will prepare the pseudo-random value R. It is calculated from SK.prf and
the message. Also, this value can be non-deterministic, this can be achieved by
adding a random value OptRand. Thus R = PRFmsg(SKprf ,OptRand,M). The
R value is part of the signature. Now, using R, we calculate the index of the
sheet with which the message will be signed and the hash of the message itself.
(MD||idx) = Hmsg(R,PK.seed,PK.root,M).

The signature consists of the randomness R, FORS signature (which corre-
sponds to index idx from Hmsg) of the message digest, the WOTS-TW signature
of the corresponding FORS public key, and a set of authentication paths and
WOTS-TW signatures of tree roots. To test this chain, the verifier iteratively
reconstructs the public keys and tree roots until it gets the root of the top tree.

Given the brief description of SPHINCS+ lets analyze the modifications of
its reduction proof.
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6.2 SPHINCS+ proof

In this part we want to update the proof of security of SPHINCS+ framework.
The security had several issues which are described in [MK,ABB+20]. One can
look up for the description of the SPHINCS+ scheme in [BHK+19].

For the SPHINCS+ construction we will need the following functions:

– F: P × T × {0, 1}n → {0, 1}n;
– H: P × T × {0, 1}2n → {0, 1}n;
– Thl: P × T × {0, 1}ln → {0, 1}n;
– PRF: {0, 1}n × {0, 1}256 → {0, 1}n;
– PRFmsg: {0, 1}n × {0, 1}n × {0, 1}∗ → {0, 1}n;
– Hmsg: {0, 1}n × {0, 1}n × {0, 1}n × {0, 1}∗ → {0, 1}m;

In this section, we prove the following Theorem. Note that F, H, Thl are
members of a collection of tweakable hash functions with different message
length.

Theorem 3. For parameters n,w, h, d,m, t, k as described in [BHK+19] the fol-
lowing bound can be obtained:

InSecEU−CMA(SPINCS+; ξ, qs) ≤
InSecPRF(PRF, ξ, q1) + InSecPRF(PRFmsg, ξ, qs)+

InSecITSR(Hmsg, ξ, qs) + w2 · InSecW−SM−UD(Th; ξ, q2)+

InSecW−SM−TCR(Th; ξ, q3) + InSecW−SM−PRE(Th; ξ, q4)+

3 · InSecW−SM−TCR(Th; ξ, q5) + InSecSM−DSPR(Th; ξ, q5)

where q1 < 2h+1(kt + l), q2 < 2h+1 · l, q3 < 2h+2(w · l + 2kt), q4 < 2h+1 · l · w,
q5 < 2h · kt and qs denotes the number of signing queries made by A.

Proof. We want to bound the success probability of a (quantum) adversary A
against the EU-CMA security of SPHINCS+. Towards this end we use the follow-
ing series of games. We start with GAME.0 which is the EU-CMA experiment
for SPHINCS+. Now consider a GAME.1 which is essentially GAME.0 but the
experiment makes use of a SPHINCS+ version where all the outputs of PRF, i.e.,
the WOTS-TW + and FORS secret-key elements, get replaced by truly random
values.

Next, consider a game GAME.2, which is the same as GAME.1 but in the
signing oracle PRFmsg(SK.prf, ·) is replaced by a truly random function.

Afterwards, we consider GAME.3, which differs from GAME.2 in that we
are considering the game lost if an adversary outputs a valid forgery (M,SIG)
where the FORS signature part of SIG contains only secret values which were
contained in previous signatures with that FORS key pair obtained by A via the
signing oracle.

Now consider what are the possibilities of the adversary to win the game.
The FORS signature in a forgery must include the preimage of a FORS leaf node
that was not previously revealed to it. There are two separate cases for that leaf:
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1. The FORS leaf is different to the leaf that we would generate for that place.
2. The FORS leaf is the same to the leaf that we would generate for that place;

Lets consider GAME.4 which differs from GAME.3 in that we are considering
that the WOTS-TW signatures are made as described in the proof of Claim 2
in Section 4, the game is lost in the first “leaf case” scenario or an adversary
outputs a valid forgery (M, SIG) which (implicitly or explicitly) contains a second
preimage for an input to Th that was part of a signature returned as a signing-
query response.

Now lets analyze those games.

GAME.0 - GAME.3 The hops between GAME.0 and GAME.3 are fully
presented in the SHINCS+ paper [BHK+19]. The bound for these games are

|SuccGAME.0
A − SuccGAME.1

A | ≤ InSecPRF(PRF, ξ, q1), (4)

|SuccGAME.1
A − SuccGAME.2

A | ≤ InSecPRF(PRFmsg, ξ, qs), (5)

|SuccGAME.2
A − SuccGAME.3

A | ≤ InSecITSR(Hmsg, ξ, qs), (6)

where q1 < 2h+1(kt+ l) and qs denotes the number of signing queries made
by A.

GAME.3 - GAME.4 Lets break the hop between GAME.3 and GAME.4 into
several steps. First assume GAME.3.1 in which random values are used to create
WOTS-TW signatures. This is the case that we discussed in the proof of Claim
2 in Section 4. But in this case we have several message queries as described
in previous section. Using Thλ oracle we first obtain FORS instances. Then
we can query W-SM-UD to obtain challenges that will be placed in WOTS-TW
instances. Again after placing those challenges we use Thλ to obtain WOTS-TW
public keys and build Merkle trees so we go to the next level of the hypertree.
Having the roots of Merkle trees we again interact with W-SM-UD challenger to
obtain challenges for this set of WOTS-TW instances. We continue this process
until we reach the root of the highest Merkle tree in our hypertree structure.
Then we obtain public parameter P and set PK.seed = P . By the reasoning
from previous section we obtain

|SuccGAME.3
A − SuccGAME.3.1

A | ≤ w · InSecW−SM−UD(Th; ξ, q2) (7)

where q2 < 2h+1 · len.
Next consider game GAME.3.2, which differs from GAME.3.1 in that we

are considering the game lost if an adversary outputs a valid forgery (M, SIG)
which (implicitly or explicitly) contains a second preimage for an input to Th
that was part of a signature returned as a signing-query response. By implicitly
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we here refer to a second preimage which is observed during the verification of
the signature.

We can build a reduction MA that breaks H-SM-TCR. Here we slightly
abuse the notation and we assume that we we obtain W-SM-TCR challenges
for different members of collection, i.e. playing against several instances of the
tweakable collection at one. We useThm (that differs inm) to compute the whole
SPHINCS+ structure. The reduction builds the whole SPHINCS+ structure of a
key pair (the key pair plus the whole hypertree including all FORS key pairs and
WOTS-TW) during setup using the H-SM-TCR and Thλ oracles and stores all
computed values. Assume the collision occurs in the WOTS-TW instances. Than
we deal with this case as was show in the Theorem 2. If the collision occurs not
in WOTS-TW instances then we can obtain challenges for those places through
interaction with W-SM-TCR oracle for several members. Here the difference
from [BHK+19] is only in the way we deal with WOTS-TW.

Thereby it defines all inputs to Thm as targets. In total,the reductionMA
makes q3 < 2h+2(w · len + 2kt) queries to its oracles. When MA is done, it
obtains the public parameters from the challenger and puts these into the public
key together with the generated root. Then it runs A with this public key as
input.MA can answer all signature queries and perfectly simulates the EU-CMA
game for SPHINCS+.

When A returns a forgery,MA runs verification and compares all computed
values to the values it computed during set-up. IfMA finds a second preimage
it outputs it together with its query index (indicating when it was sent to the
W-SM-TCR oracle).

Hence we obtain

|SuccGAME.3.1
A − SuccGAME.3.2

A | ≤ InSecW−SM−TCR(Th; ξ, q3) (8)

So the only case left to hop to GAME.4 is a WOTS-TW forgery that gives
us the preimage. Since iff there is no WOTS-TW forgery then there must be a
collision. And if there is the WOTS-TW forgery we can obtain either a collision
(this case we have already excluded) or a preimage. To do so we first obtain
preimage challenges for appropriate tweaks that were used in every WOTS-TW
instance. To obtain the positions to place challenges for WOTS-TW instances
we will again use Thλ oracle (in the same way as for W-SM-UD). We use it to
build WOTS-TW public keys and the whole SPHINCS+ structure. This is done
the same way as it was described in previous section. We obtain the following
bound

|SuccGAME.3.2
A − SuccGAME.4

A | ≤ InSecW−SM−PRE(Th; ξ, q4) (9)

where q4 < 2h+1 · l · w.

GAME.4 The analysis of the GAME.4 can be found in the SPHINCS+ pa-
per [BHK+19](Claim 23). Here we note that we can not use W-SM-PRE bound
as the reduction uses T-openPRE game that was introduced in [BH19b]. The
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only difference is that we have already excluded the WOTS-TW preimage case.
Hence we obtain the following bound:

SuccGAME.4
A ≤ 3 · InSecW−SM−TCR(Th; ξ, q5) + InSecSM−DSPR(Th; ξ, q5) (10)

where q5 < 2h · kt
Combining the inequalities we obtain the bound from the theorem.
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Hi all,  
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TL,DR: We fixed the tight SPHINCS+ security proof. 
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Andreas 

 
 
 
Dear all, 
  
Attached you find a paper that describes a new, tight security proof for SPHINCS+. Our paper fixes the flaw that was 
pointed out by Kudinov, Kiktenko, and Fedorov last year, following the outline we gave in the response to that message 
back then. More details can be found in the attached file.  
  
Best regards, 
Mikhail & Andreas 
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Abstract. In 2020, Kudinov, Kiktenko, and Fedorov pointed out a flaw
in the tight security proof of the SPHINCS+ construction. This work
gives a new tight security proof for SPHINCS+. The flaw can be traced
back to the security proof for the used Winternitz one-time signature
scheme (WOTS).
We give the first standalone description of the WOTS variant used
in SPHINCS+ that we call WOTS-TW. We provide a security proof
for WOTS-TW and and multi-instance WOTS-TW in the EU-naCMA
model, a non-adaptive chosen message attack setting where the adver-
sary only learns the full public key after it made its signature queries.
Afterwards, we show that this is sufficient to give a tight security proof
for SPHINCS+. We almost recover the same bound for the security of
SPHINCS+, with only a factor w loss, where w is the Winternitz param-
eter that is commonly set to 16.

Keywords: Post-quantum cryptography, hash-based signatures, SPHINCS+

W-OTS, WOTS-TW.

1 Introduction

Hash-based signatures recently received a lot of attention. Hash-based signatures
are widely considered the most conservative choice for post-quantum signature
schemes. At the time of writing, SPHINCS+, a stateless hash-based signature
scheme, is a third round alternate candidate in the NIST PQC competition.
However, NIST highlighted over and over that

“NIST sees SPHINCS+ as an extremely conservative choice for standard-
ization. If NIST’s confidence in better performing signature algorithms
is shaken by new analysis , SPHINCS+ could provide an immediately
available algorithm for standardization at the end of the third round.”
(Dustin Moody on the pqc-forum mailing list by after new attacks on
Rainbow and GeMSS were published, January 21, 2021)

This work was funded by an NWO VDI grant (Project No. VI.Vidi.193.066). Part of
this work was done while M.K. was still affiliated with the Russian Quantum Center,
QApp. Date: October 31, 2021
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One more supporting argument for the security of SPHINCS+ would be a
tight security reduction that allows to derive attack complexities for a given set of
parameters. However, the tight proof for SPHINCS+ that was given in [BHK+19]
turned out to be flawed [MK]. The flaw, pointed out by Kudinov, Kiktenko, and
Fedorov is related to the proof of security of the used WOTS scheme. Although
the flaw could not be translated into an attack, this resulted in an unsatisfac-
tory situation. While there still exists a non-tight reduction for the security of
SPHINCS+, this reduction can not support the claimed security of the used
SPHINCS+ parameters.

In this work we give a new tight security proof for SPHINCS+ that closes
the gap again without modifying the scheme.

To make the proof easier accessible, we first extract the variant of WOTS
scheme that is used in SPHINCS+ and formally define it, naming it WOTS-TW.
WOTS-TW is different from other WOTS variants in that it uses tweakable
hash functions, introduce in [BHK+19], to construct the function chains. We
then prove the security of WOTS-TW in the EU-naCMA model. This model
differs from the common EU-CMA model in that the adversary only receives the
public key after it made its signature query. We choose this model because it
allows for a tight security proof while it suffices for a proof of applications like
SPHINCS+. The important feature here is that a reduction can generate the
WOTS-TW public key based on the signature query and does not have to guess
that query. This is possible as WOTS-TW is used to sign roots of hash trees in
applications like SPHINCS+. Our new proof combines the work of Dods, Smart,
and Stam [DSS05] that uses undetectability to plant preimage challenges, with
the second-preimage resistance version of Hülsing [Hül13], and the approach of
multi-target mitigation by Hülsing, Rijneveld, and Song [HRS16] and lifts it to
the setting of tweakable hash functions.

While the single instance proof allows us to state the new proof in a more
accessible setting, SPHINCS+ uses multiple instances at once. Hence, we af-
terwards extend the result to multiple instances. This setting turns out to be
slightly more involved as we have to allow for messages to depend on public
keys of previously used instances. We end up with a proof in a slightly more in-
volved model that, however, allows us to use the result in the security proof for
SPHINCS+. We conclude the work with the tight security proof for SPHINCS+.

While we give a full proof for SPHINCS+, we leave one aspect for future
work. In section 2.5 we collect bounds on the success probability of generic
attacks against the used properties of tweakable hash functions. So far only one
of these bounds is fully proven. All others make some form of conjecture. We
hope to be able to close this gap in future work.

The paper is organized as follows. We introduce necessary definitions and
notations as well as describe the EU-naCMA security model in Section 2. At
the end of Section 2 we also summarize the state of the art for generic secu-
rity bounds. The description of the WOTS-TW scheme is given in Section 3.
In Section 4 we provide a security reduction for WOTS-TW in the single in-
stance setting and in Section 5 we lift the result to the multi-instance setting
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with possibly dependent messages. The security proof for SPHINCS+ that uses
WOTS-TW as a building block is then given in Section 6.

2 Preliminaries

In this section we introduce the definitions of building blocks, and security no-
tions for hash functions and signatures that we use. We begin with the notion of a
tweakable hash function, introduced in the construction of SPHINCS+ [BHK+19],
and its security. Afterwards we move on to digital signatures.

2.1 Tweakable hash functions.

In this section we recall the definition of tweakable hash functions and related
security notions from [BHK+19]. These properties will later be used to prove the
security of our WOTS-TW scheme.

Function definition. A tweakable hash function takes public parameters P and
context information in form of a tweak T in addition to the message input. The
public parameters might be thought of as a function key or index. The tweak
might be interpreted as a nonce.

Definition 1 (Tweakable hash function). Let n,m ∈ N, P the public pa-
rameters space and T the tweak space. A tweakable hash function is an efficient
function

Th : P × T × {0, 1}m → {0, 1}n, MD← Th(P, T,M)

mapping an m-bit message M to an n-bit hash value MD using a function key
called public parameter P ∈ P and a tweak T ∈ T .

We will sometimes denote Th(P, T,M) as ThP,T (M). In SPHINCS+, a pub-
lic seed Seed is used as public parameter which is part of the SPHINCS+ public
key. As tweak a so-called hash function address (ADRS) is used that identifies
the position of the hash function call within the virtual structure defined by a
SPHINCS+ key pair. We use the same approach for WOTS-TW, i.e., the public
parameter is a seed value that becomes part of the public key if WOTS-TW is
used standalone. If it is used in a bigger structure like SPHINCS+, the public
parameters will typically be those used in the bigger structure and are therefore
only part of that bigger structure public key. In this case, the hash addresses
have to be unique within the whole bigger structure. Therefore, the address may
contain a prefix determined by the calling structure.

Security notions. To provide a security proof for WOTS-TW we require that
the used tweakable hash functions have certain security properties. We require
the following properties or some variations of them which will be discussed below:

– post-quantum single function, multi-target-collision resistance for distinct
tweaks (PQ-SM-TCR);
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– post-quantum single function, multi-target-preimage resistance for distinct
tweaks (PQ-SM-DT-PRE);

– post-quantum single function, multi-target-undetectability for distinct tweaks
(PQ-SM-DT-UD).

These properties were already considered in previous work. We only slightly
adapt them, introducing a weak variant that adds some limitation on when the
adversary is allowed to get access to the tweakable hash function and in what
way. Moreover, in the context of multi-instance constructions like SPHINCS+,
we need another generic extension to collections of tweakable hash functions,
discussed at the end of the subsection.

We generally consider post-quantum security in this work. Therefore, we will
omit the PQ prefix from now on and consider it understood that we always con-
sider quantum adversaries. Since we are working in the post-quantum setting, we
assume that adversaries have access to a quantum computer but honest parties
do not. Hence, any oracles that implement secretly keyed functions only allow
for classical queries.

In all of the properties an adversary can influence the challenges by specifying
the tweaks used in challenges. We generally restrict this control in so far as we do
not allow more than one challenge for the same tweak. As we have this restriction
for all of our properties we do not add any label to the security notions for this.

Now we will discuss above properties and their variations.

SM-TCR.One can view SM-TCR as a variant of target-collision resistance [RSM09].
Consider an adversary A which consists of two parts A1 and A2. A will play
a two-stage game. A1 is allowed to adaptively specify p targets (multi-target).
The target specification is implemented via access to an oracle implementing
the function with a fixed public parameter (single-function as the same public
parameter is used for all targets). Every query to this oracle defines a target.
It is important that A is not allowed to query the oracle with the same tweak
more than once. The adversary wins if it finds a collision for one of the targets.

Lets consider a variant of SM-TCR in which the adversary gets the descrip-
tion of the tweakable function only after he has made the queries. This variation
allows to make quantum queries to the hash function only after the targets are
specified. We call it Weak-SM-TCR. In the reduction we will use this variant
of the property. We will denote such a variant as W-SM-TCR. Notice that our
reduction proof will show that if the scheme is broken at least one of the required
properties of the tweakable hash function is broken. One can see that breaking
the W-SM-TCR is harder than SM-TCR (at least not easier), hence it is less
likely that the property will be broken and this leads to a higher security of the
scheme.

We formalize the above in the following definition.

Definition 2 (W-SM-TCR). In the following let Th be a tweakable hash func-
tion as defined above. We define the success probability of any adversary A =
(A1,A2) against the W-SM-TCR security of Th. The definition is parameter-
ized by the number of targets p for which it must hold that p ≤ |T |. In the
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definition, A1 is allowed to make p queries to an oracle Th(P, ·, ·). We de-
note the set of A1’s queries by Q = {(Ti,Mi)}pi=1 and define the predicate
DIST({Ti}pi=1) = (∀i, k ∈ [1, p], i 6= k) : Ti 6= Tk, i.e., DIST({Ti}pi=1) out-
puts 1 iff all tweaks are distinct.

SuccW−SM−TCR
Th,p (A) = Pr[P

$← P;S ← ATh(P,·,·)
1 ( );

(j,M)← A2(Q,S, P,Th) : Th(P, Tj ,Mj) = Th(P, Tj ,M)

∧M 6=Mj ∧DIST({Ti}pi=1)]

We define the insecurity of a tweakable hash function against p target, time
ξ, W-SM-TCR adversaries as the maximum success probability of any possibly
quantum adversary A with p targets and running time ≤ ξ :

InSecW−SM−TCR(Th; ξ, p) = max
A
{SuccW−SM−TCR

Th,p (A)}

SM-PRE. As for W-SM-TCR, SM-PRE is a two-stage game and can be seen
as a variant of preimage resistance. Adversary A1 is allowed to specify p targets
during the first stage. The speciation is again done by using an oracle that imple-
ments a tweakable hash function with a fixed public parameter. The adversary
wins if it finds a preimage for one of the targets.

We again consider a weaker version of SM-PRE in which the adversary gets
the description of the tweakable function only after he has made the queries. We
will denote such a variant as W-SM-PRE. The intuition behind this variant is
the same as in W-SM-TCR.

We formalize the above in the following definition.

Definition 3 (W-SM-PRE). In the following let Th be a tweakable hash func-
tion as defined above. We define the success probability of any adversary A =
(A1,A2) against the W-SM-PRE security of Th. The definition is parameter-
ized by the number of targets p for which it must hold that p ≤ |T |. In the
definition, A1 is allowed to make p queries to an oracle Th(P, ·, xi), where xi is
chosen uniformly at random for the query i (the value of xi stays hidden from
A). We denote the set of A1’s queries by Q = {Ti}pi=1 and define the predicate
DIST({Ti}pi=1) as we did in the definition above.

SuccW−SM−PRE
Th,p (A) = Pr[P

$← P;S ← ATh(P,·,xi)
1 ( );

(j,M)← A2(Q,S, P,Th) : Th(P, Tj ,M) = Th(P, Tj , xj)

∧DIST({Ti}pi=1)]

We define the insecurity of a tweakable hash function against p target, time
ξ, W-SM-PRE adversaries as the maximum success probability of any possibly
quantum adversary A with p targets and running time ≤ ξ :

InSecW−SM−PRE(Th; ξ, p) = max
A
{SuccW−PRE

Th,p (A)}
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SM-UD. Also SM-UD is a variant of an established notion, in this case unde-
tectability [DSS05], that makes use of a two stage adversary A = (A1,A2). A1

specifies p targets during the first stage through oracle interactions. The oracle
is initialized either with the tweakable hash function with a fixed public param-
eter or a random function. The adversary wins if it answers correctly whether
it interacted with a random function or with a function Th. We formalize the
above in the following definition. As for the previous notions, we consider the
weak variant where A gets the description of the tweakable hash function only
after the challenge queries are made.

Definition 4 (W-SM-UD). In the following let Th be a tweakable hash function
as defined above. We define the success probability of any adversary A = (A1,A2)
against the W-SM-UD security of Th. The definition is parameterized by the
number of targets p for which it must hold that p ≤ |T |. First the challenger
flips a fair coin b and and chooses a public parameter P $← P. Next consider an
oracle OP (T , {0, 1}), which works the following: OP (T, 0) returns Th(P, T, xi),
where xi is chosen uniformly at random for the query i; OP (T, 1) returns yi,
where yi is chosen uniformly at random for the query i. In the definition, A1

is allowed to make p queries to an oracle OP (·, b). We denote the set of A1’s
queries by Q = {Ti}pi=1 and define the predicate DIST({Ti}pi=1) as we did above.

SuccW−SM−UD
Th,p (A) = Pr[P

$← P; b $← {0, 1};S ← AOP (·,b)
1 ( );

b′ ← A2(Q,S, P.Th) : b′ = b

∧DIST({Ti}pi=1)]

We define the insecurity of a tweakable hash function against p target, time
ξ, W-SM-UD adversaries as the maximum success probability of any possibly
quantum adversary A with p targets and running time ≤ ξ:

InSecW−SM−UD(Th; ξ, p) = max
A
{SuccW−SM−UD

Th,p (A)}

Here we have finished describing the properties that will be needed to con-
struct a reduction proof for WOTS-TW. But for the further analysis of those
properties and analysis of bigger schemes such as SPHINCS+ one would need
several more properties, which will be listed below.

First we start with the notion of Decisional Second Preimage Resistance
(DSPR) and it variants that was introduced in [BH19a]. This notion helps to
reduce the property of preimage resistance to properties of second preimage
resistance and DSPR. It is used in SPHINCS+ to analyze the security of FORS
scheme (this scheme will be described later). This property will be also utilized
to analyze quantum generic security of W-SM-PRE. The initial description of
the property and its justification can be found in [BH19a], here we will use the
definitions from [BHK+19] that fit the notion of a tweakable hash function.

We will go straight to a multi-target version of DSPR which is denoted as
SM-DSPR. To do so first we need to introduce a predicate SPexists.
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Definition 5 (SPexistsP,T). A second preimage exists SPexists predicate of tweak-
able hash function Th : P × T × {0, 1}m → {0, 1}n with a fixed P ∈ P, T ∈ T
is the function SPP,T : {0, 1}m → {0, 1} defined as follows:

SPP,T (x)
def
=

{
1 if |Th−1P,T (ThP,T (x))| ≥ 2

0 otherwise,

where Th−1P,T refers to the inverse of the tweakable hash function with fixed public
parameter and a tweak.

In other words SPP,T (x) = 0 is there is no second preimage for x under
function Th(P, T, ·). Theoretically you can find a second preimage of x under
Th(P, T, ·) only of SPP,T (x) = 1.

Now we present the definition of SM-DSPR from [BHK+19].

Definition 6 (SM-DSPR). Let Th be a tweakable hash function. Let A =
(A1,A2) be a two stage adversary. The number of targets is denoted with p, where
the following inequality must hold: p ≤ |T |. A1 is allowed to make p queries to
an oracle Th(P, ·, ·). We denote the query set Q and predicate DIST({Ti}p1) as
in previous definitions.

AdvSM−DSPR
Th,p (A) = max{0, succ− triv},

where

Succ = Pr[P
$← P;S ← ATh(P,·,·)

1 (); (j, b)← A2(Q,S, P ) :

SPP,Tj (Mj) = b ∧ DIST({Ti}p1)].

triv = Pr[P
$← P;S ← ATh(P,·,·)

1 (); (j, b)← A2(Q,S, P ) :

SPP,Tj (Mj) = 1 ∧ DIST({Ti}p1)].

We define the SM-DSPR insecurity of a tweakable hash function against p
target, time ξ adversaries as the maximum advantage of any (possibly quantum)
adversary A with p targets and running time ≤ ξ:

InSecSM−DSPR(Th; ξ, p) = max
A
{AdvSM−DSPR

Th,p (A)}

W-SM-DSPR is a variant in which the description of the underlying hash
function is given only after all the challenge queries are done.

Security for a collection of tweakable hash functions. In more complex
constructions like SPHINCS+, we make use a collection of tweakable hash func-
tions which we call Thλ. In this case Th consists of a set of tweakable hash
functions Thm that differ in terms of m, the length of messages they process.
This notion of a collection of tweakable hash functions is necessary as we use the
same public parameters for all functions in the collection. Especially, it is neces-
sary to make the security notions above usable in the context of SPHINCS+. The
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problem is that when used in constructions like SPHINCS+ or XMSS queries
to the challenge oracle queries may depend on the outputs of other functions
in the collection, or even the same function but with different tweaks. This is
incompatible with above definitions as the public parameters are only given to
the adversary after all challenge queries are made.

We solve this issue extending all the above standalone security properties to
the case of collections. The definitions for functions that are part of a collection
only differ from the above in a single spot. We give the first adversary A1, that
makes the challenge queries, access to another oracle Thλ(P, ·, ·), initialized with
P . The oracle takes an input M and a tweak T and, depending on the length
m = |M | of M returns Thm(P,M, T ). The only limitation is that A is not
allowed to use a tweak in queries to both oracles, the challenge oracle and the
collection oracle. In general, A is allowed to query the challenge oracle as well
as Thλ with a message of length x, as long as the used tweak is never used in a
query to the challenge oracle.

Definition 7 (W-SM-TCR, W-SM-PRE, W-SM-UD, SM-DSPR for mem-
bers of a collection). Let Th be a tweakable hash function as defined above
with message length x. Moreover, let Th be an element of a collection of tweak-
able hash functions Thλ as described above. Consider an adversary A = (A1,A2)
against the W-SM-TCR (, W-SM-PRE, W-SM-UD, SM-DSPR) security of Th
in presence of collection Thλ. Let Thλ(P, ·, ·) denote an oracle for Thλ as de-
scribed above and denote by {Tλi }

pλ
1 the tweaks used in the queries made by A.

We define the success probability of A against W-SM-TCR (, W-SM-PRE, W-
SM-UD, SM-DSPR) security of Th in presence of collection Thλ as the success
probability of A against standalone W-SM-TCR (, W-SM-PRE, W-SM-UD, SM-
DSPR) security of Th defined above, when A1 is additionally given oracle access
to Thλ(P, ·, ·) with the condition that {Ti}p1 ∩ {Tλi }

pλ
1 = ∅.

In the case of W-SM-TCR, we will abuse notation when it comes to the
security of SPHINCS+ and consider the joined security of several members of a
collection of tweakable hash functions.

2.2 Message digest computation

In SPHINCS+ a special function to compute message digest will be introduced.
An expected property of that function is interleaved target subset resilience. Let
give a formal definition of this property.

Definition 8 (ITSR [BHK+19]). Let H : {0, 1}K × {0, 1}α → {0, 1}m be a
keyed hash function. Also consider a mapping function MAPh,k,t : {0, 1}m →
{0, 1}h× [0, t− 1]k which maps an m-bit string to a set of k indexes. We denote
those indexes as ((I, 1, J1), . . . , (I, k, Jk)), where I is chosen from [0, 2h− 1] and
each Ji is chosen from [0, t− 1].

The success probability of an adversary A against ITSR of H is defined as
follows. Let G = MAPh,k,t ◦H. Let O(·) be an oracle which on input of an α-bit
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message Mi samples a key Ki
$← {0, 1}K and returns G(Ki,Mi). The adversary

A is allowed to query the oracle with massages of its choice. Denote the amount
of queries with q.

SuccITSR
H,q (A) = Pr[(R,M)← AO(·)(1n)

s.t. G(K,M) ⊆
q⋃
j=1

G(Kj ,Mj) ∧ (K,M) /∈ {(Kj ,Mj)}qj=1],

where {(Kj ,Mj)}qj=1 represent the responses of the oracle O(·). We define the
ITSR insecurity of a keyed hash function against q-query, time-ξ adversaries as
the maximum advantage of any quantum adversary A with running time ≤ ξ ,
that makes no more than q queries:

InSecITSR(H; ξ, p) = max
A
{SuccITSR

H,q (A)}

2.3 Pseudorandom functions

To construct a scheme we will need pseudorandom functions. In this subsection
we give a definition of pseudorandom functions, provide security notions.

Function definition. A pseudorandom function takes a secret parameter S
and context information in form of a tweak T . The secret parameter might be
thought of as a function key or index. The tweak might be interpreted as a nonce.

Definition 9 (Pseudorandom function). Let n ∈ N, S the secret parameters
space and T the tweak space. A pseudorandom function is an efficient function

F : S × T → {0, 1}n

generating an n-bit value out of secret parameter and a tweak.

Security notion In the following we give the definition for PRF security of
a function F : S × T → {0, 1}n. In the definition of the PRF distinguishing
advantage the adversary A gets (classical) oracle access to either F (S, ·) for a
uniformly random secret parameter S ∈ S or to a function G drawn from the
uniform distribution over the set G(T , n) of all functions with domain T and
range {0, 1}n. The goal of A is to distinguish both cases.

Definition 10 (PRF). Let F be defined as above. We define the PRF distin-
guishing advantage of an adversary A as

AdvPRF
F (A) = | Pr

S
$←S

[AF (S,·) = 1]− Pr
G

$←G(T ,n)
[AG(·) = 1]|.

We define the PRF insecurity of a pseudorandom function F against q-query,
time-ξ adversaries as the maximum advantage of any possibly quantum adversary
that runs in time ξ and makes no more then q queries to its oracle:

InSecPRF(F ; ξ, q) = max
A
{AdvPRF

F (A)}.
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2.4 Security model

In this part we describe the security model in which we will prove the security
of the one-time digital signature scheme.

Definition 11 (Digital signature schemes). Let M be a message space. A
digital signature scheme Dss = (Kg,Sign,Vf) is a triple of probabilistic polyno-
mial time algorithms:

– Kg(1n) on input of a security parameter 1n outputs a private key sk and a
public key pk;

– Sign(sk,M) outputs a signature σ under secret key sk for message M ∈M;
– Vf(pk, σ,M) outputs 1 iff σ is a valid signature on M under pk;

such that ∀(pk, sk)← Kg(1n),∀(M ∈M) : Vf(pk,Sign(sk,M),M) = 1.

Consider a signature scheme Dss(1n), where n is the security parameter. We
introduce a definition for the security of Dss(1n), which we call the existential
unforgeability under non-adaptive chosen message attack (EU-naCMA). It is de-
fined using the following experiment.

Experiment ExpEU−naCMA
Dss(1n) (A)

(sk, pk)← Kg(1n).
{M1, . . . ,Mq} ← A().
Compute {(Mi, σi)}qi=1 using Sign(sk, ·).
(M?, σ?)← A({(Mi, σi)}qi=1, pk)
Return 1 iff Vf(pk, σ?,M?) = 1 and M? /∈ {Mi}qi=1.

The adversary is forced to output a list of messages M1, ...,Mq it wants to see
signed before obtaining the public key pk. In our work we consider one-time
signatures, so the number of allowed messages q is set to 1.

Let SuccEU−naCMA
Dss(1n) (A) = Pr

[
ExpEU−naCMA

Dss(1n) (A) = 1
]
be the success probability

of an adversary A in the above experiment.

Definition 12 (EU-naCMA). Let t, n ∈ N, t = poly(n), Dss(1n) is a digital
signature scheme. We call Dss EU− naCMA-secure if the maximum success
probability InSecEU−naCMA(Dss(1n), t) of all possibly probabilistic adversaries A
running in time ≤ t is negligible in n:

InSecEU−naCMA(Dss(1n); t)
def
= max

A

{
SuccEU−naCMA

Dss(1n) (A)
}
= negl(n).

2.5 Estimated security

In this section we collect bounds on the complexity of generic attacks against the
described properties. A (tweakable) hash function Th is commonly considered
a good function if there are no attacks known for any security property that
perform better against Th than against a random function. Table 1 summarizes
the current situation.
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Table 1: Success probability of generic attacks – In the “Success probabil-
ity” column we give the bound for a quantum adversary A that makes q
quantum queries to the function and p classical queries to the challenge or-
acle. The security parameter n is the output length of Th. We use X =∑
γ

(
1−

(
1− 1

t

)γ)k (p
γ

) (
1− 1

2h

)p−γ 1
2hγ

.

Property Success probability Status

W-SM-TCR Θ((q + 1)2/2n) proven ( [BHK+19,HRS16])

SM-DSPR Θ((q + 1)2/2n) conjecture ( [BHK+19])

W-SM-PRE Θ((q + 1)2/2n) conjecture ( [BH19a,BHK+19])

PRF Θ((q + 1)2/2n) conjecture ( [HRS16])

W-SM-UD O((q + 1)2/2n) conjecture (this work / [DSS05])

ITSR Θ((q + 1)2 ·X) conjecture ( [BHK+19])

The success probability of generic attacks against W-SM-TCR was analyzed
in [BHK+19]. Assuming that Th behaves like a random function a reduction to
an average-case search problem was given. A generic attack using Grover search
against plain TCR is given in [HRS16]. That attack is also applicable against
W-SM-TCR – as it simply runs a second preimage search when all information
is available – and has a success probability matching the proven bound.

A conjecture for the success probability against SM-DSPR was also given
in [BHK+19]. There is a proof for single target DSPR property in [BH19a] that
gives the following bound: O((q + 1)2/2n). A non-tight proof for a multi-target
version is also analyzed in [BH19a]. The best attack against DSPR for now is a
second-preimage search that gives the same bound for the multi-target case.

For PRE and also multi-function, multi-target PRE of a hash function h,
a bound of SuccPRE

h,p (A) = Θ((q + 1)2/2n) is given in [HRS16]. The bound is
proven for h that are compressing by at least a factor 2 in the message length
and it is conjectured that it also applies for length preserving hash functions,
i.e., functions that map n-bit messages to n-bit outputs, ignoring additional
inputs like function keys or tweaks. This is exactly the case that we are in-
terested in. Another way to support the conjecture is a tight bound using
W-SM-TCR and SM-DSPR (SuccW−SM−PRE

Th,p (A) ≤ 3 · SuccW−SM−TCR
Th,p (A) +

AdvSM−DSPR
Th,p (A)) given in [BHK+19,BH19a]. With this we can derive the same

bound of SuccW−SM−PRE
Th,p (A) = Θ((q+1)2/2n). Also in this case it is a conjecture

as the bound for SM-DSPR is only conjectured for now.
Exhaustive search on an unstructured space is traditionally considered to be

the best known attack for the PRF property. Considering this as a preimage
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search for a random function and using the results from [HRS16] we obtain the
stated bound. We note it as conjectured as we are not aware of a formal proof
for this result.

The notion of undetectability was introduced in [DSS05]. In that work, the
authors give a bound for one target undetectability considering classical adver-
saries as O(q/2n). The notion was not used in more recent works and we are not
aware of a proven bound against quantum adversaries. We conjecture a bound
of O(q2/2n) for quantum adversaries. The reasoning behind this is that as long
as the adversary does not know if a target (likely) has a preimage under Th,
it cannot do better than guessing. This suggests the same bound as for W-SM-
PRE.

For all notions we conjecture that the bounds are exactly the same for the
case of collections. The reason is that for a random tweakable function, every
tweak is related to an independent random function. Hence, giving access to
those does not give any information about the targets to the adversary. This is
also reflected in the reductions that we know so far. In these, the function for
a tweak that is not used for a challenge is simulate by an independent random
function and we can give access to this function in parallel to the challenge oracle
as we do not touch it in the reduction.

3 WOTS-TW

SPHINCS+ [BHK+19] developed its own variant of the Winternitz OTS. How-
ever, the authors never explicitly defined that variant. As the flaw in the SPHINCS+
security proof was in the proof for their WOTS scheme, we give a separate de-
scription of the scheme in this section. As the distinguishing feature of this
variant is the use of tweakable hash functions, we call it WOTS-TW.

3.1 Parameters

WOTS-TW uses several parameters. The main security parameter is n ∈ N. m
is the message length, which we sign. In case of SPHINCS+ m = n. The tweak
space T must be at least of size lw. The size of tweak space should be bigger if we
use several instances of WOTS-TW in a bigger construction such as SPHINCS+
so we can use a different tweak for each hash function call. Here w ∈ N is a
so-called Winternitz parameter, which determines a base of the representation
that is used in the scheme, and l is defined through the following constants:

l1 =

⌈
m

log(w)

⌉
, l2 =

⌊
log(l1(w − 1))

log(w)

⌋
+ 1, l = l1 + l2.

We also need a pseudorandom function PRF : {0, 1}n × T → {0, 1}n, and a
tweakable hash function Th : {0, 1}n × T × {0, 1}n → {0, 1}n.
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3.2 Addressing scheme

For the tweakable hash functions to guarantee security, they have to be called
with different tweaks. This is achieved using what was called an addressing
scheme in SPHINCS+. Such addressing scheme assigns a unique address to ev-
ery tweakable hash function call in the scheme and the address space is part of the
tweak space such that addresses can be used as tweaks. We do not specify a con-
crete addressing scheme in this work (see the SPHINCS+ specification [ABB+20]
for an example). Abstractly, we achieve unique addresses the following way. A
Winternitz key pair defines a structure of l hash chains, each of which makes
w− 1 calls to the tweakable hash function. For a unique addressing scheme, one
may use any injective function that takes as input i ∈ [0, l−1], j ∈ [0, w−2], and
possibly a prefix, and maps into the address space. The prefix is necessary to
ensure uniqueness if many instances of WOTS-TW are used in a single construc-
tion. We will use ADRS to denote that prefix. The tweak associated with the
j-th function call in the i-th chain is then defined as the output of this function
on input i, j (and a possible prefix) and denoted as Ti,j .

3.3 WOTS-TW scheme

The main difference between WOTS variants is in the way they do hashing.
Previously, the distinction was made in the definition of the so called chaining
function that describes how the hash chains are computed. For WOTS-TW this
distinction is further shifted into the construction of the tweakable hash function
Th. The chaining function then looks as follows:

Chaining function cj,k(x, i,Seed): The chaining function takes as inputs a
message x ∈ {0, 1}n, iteration counter k ∈ N, start index j ∈ N, chain index
i, and public parameters Seed (the name comes from a specific construction of
a tweakable hash function that uses the public parameters as seed for a PRG).
The chaining function then works the following way. In case k ≤ 0, c returns x,
i.e., cj,0(x, i,Seed) = x. For k > 0 we define c recursively as

cj,k(x, i,Seed) = Th(Seed, Ti,j+k−1, c
j,k−1(x, i,Seed)) .

If we consider several instances of WOTS-TW than we will use cj,kADRS(x, i,Seed)
to denote that tweaks that are used to construct the chain have ADRS as a
prefix. With this chaining function, we can describe the algorithms of WOTS-
TW.

Key Generation Algorithm (SK,PK)←WOTS.kg(C;S): The key gener-
ation algorithm optionally takes as input context information C = (Seed,ADRS),
consisting of a public seed Seed ∈ {0, 1}n and a global address ADRS, as well
as randomness S ∈ {0, 1}n which we call the secret seed. These inputs are meant
for the use in more complex protocols. If they are not provided, key generation
randomly samples the seeds and sets ADRS to 0. The key generation algorithm
then computes the internal secret key sk = (sk1, . . . , skl) as ski ← PRF(S, Ti,0)),
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i.e., the l · n bit secret key elements are derived form the secret key seed using
addresses. The element of the public key pk is computed as

pk = (pk1, . . . , pkl) = (c0,w−1(sk1, 1,Seed), . . . , c
0,w−1(skl, l, Seed))

The key generation algorithm returns SK = (S, C) and PK = (pk, C) Note that
we can compute sk and pk from SK.

Signature Algorithm σ ← WOTS.sign(M, SK): On input of an m-bit
message M , and the secret key SK = (S, C), the signature algorithm first com-
putes a base w representation of M : M = (M1, . . . ,Ml1), Mi ∈ {0, . . . , w − 1}.
That is, M is treated as the binary representation of a natural number x and
then the w-ary representation of x is computed. Next it computes the checksum
C =

∑l
i=1(w − 1 −Mi) and its base w representation C = (C1, . . . , Cl2). We

set B = (b1, . . . , bl) =M ||C, the concatenation of the base w representations of
M and C. Then the internal secret key is regenerated using ski ← PRF(S, Ti,0)
the same way as during key generation. The signature is computed as

σ = (σ1, . . . , σl) = (c0,b1(sk1, 1,Seed), . . . , c
0,bl(skl, l, Seed))

Verification Algorithm ({0, 1} ←WOTS.vf(M,σ,PK)): On input of m-
bit message M, a signature σ, and public key PK = (pk, C), the verification
algorithm first computes the bi, 1 ≤ i ≤ l as described above. Then it checks if

pk
?
= pk′ = (pk′1, . . . , pk

′
l) = (cb1,w−1−b1(σ1, 1,Seed), . . . , c

bl,w−1−bl(σl, l, Seed)) .

On the equality the algorithm outputs true and false otherwise.

4 Security of WOTS-TW

Now we will reduce the security of WOTS-TW to the security properties of the
tweakable hash function Th and the pseudorandom function family PRF. To
do so we will give a standard game hopping proof. Intuitively the proof goes
through the following steps.

– First, we replace the inner secret key elements that are usually generated
using PRF by uniformly random values. The two cases must be computa-
tionally indistinguishable if PRF is indeed pseudorandom.

– Next we replace the blocks in the chains that become part of the signature
by the hash of random values. We need this so that we can later place
preimage challenges at these positions of the chain. Here it is important
to note that preimage challenges are exactly such hashes of random domain
elements and not random co-domain elements. To argue that these two cases
are indistinguishable, we need a hybrid argument since for most chains we
replace the outcome of several iterations of hashing with a random value.

– Next we show that breaking the EU-naCMA property of our scheme in this
final case will either allow us to extract a target-collision or a preimage for
a given challenge.
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Theorem 1. Let n, w ∈ N and w = poly(n). Let Th : P × T × {0, 1}n →
{0, 1}n be a W-SM-TCR, W-SM-PRE, and W-SM-UD function. Let PRF :
S×T → {0, 1}n be a pseudorandom function. Then the insecurity of the WOTS-
TW scheme against EU-nCMA attack is bounded by

InSecEU-nCMA(WOTS − TW (1n, w); t, 1) <

InSecPRF(PRF; t̃, l) + InSecW−SM−TCR(Th; t̃, lw)+

InSecW−SM−PRE(Th; t̃, l) + w · InSecW−SM−UD(Th; t̃, l)

with t̃ = t+ lw, where time is given in number of Th evaluations.

Proof. First consider the following two games: GAME.1 is the original EU-nCMA
game and GAME.2 is the same as GAME.1 but instead of using pseudorandom
elements from PRF a truly random function RF : S × T → {0, 1}n is used.
We claim that the difference in the success probability of A playing these games
must be bound by InSecPRF(PRF; t̃, l).

Next we consider GAME.3 which is the same as GAME.2 but to answer the
message signing request we build the signature from nodes that are computed
applying Th only once instead of bi times (except if bi = 0, then we return a
random value as in the previous game). The public key is constructed from that
signature by finishing the chain according to the usual algorithm. We will detail
the process in the proof below. We claim that the difference in the success prob-
ability of A playing these games must be bound by w · InSecW−SM−UD(Th; t̃, l).

Afterwards, we consider GAME.4, which differs from GAME.3 in that we are
considering the game lost if an adversary outputs a valid forgery (M ′, σ′) where
there exists an i such that b′i < bi and c(b

′
i,bi−b

′
i)(σ′i, i,Seed) 6= σi. We claim that

the difference in the success probability of A playing these games must be bound
by InSecW−SM−TCR(Th; t̃, lw).

If we now consider how A can win in GAME.4 there is just we viable case
left. Namely, this is the case where the values that get computed from the forgery
during verification fully agree with those values that are computed during the
verification of the signature. As the checksum ensures that there is at least we
index for the forgery that is smaller than the respective index of the signature,
this means that we can use an A that wins in GAME.4 to find preimages.
We claim that the success probability of the adversary A in GAME.4 must be
bounded by InSecW−SM−PRE(Th; t̃, l).

So we get the following claims:

Claim 1. |SuccGAME.1(A)− SuccGAME.2(A)| ≤ InSecPRF(PRF; t̃, l)

Claim 2. |SuccGAME.2(A)− SuccGAME.3(A)| ≤ w · InSecW−SM−UD(Th; t̃, l)

Claim 3. |SuccGAME.3(A)− SuccGAME.4(A)| ≤ InSecW−SM−TCR(Th; t̃, lw)

Claim 4. SuccGAME.4(A) ≤ InSecW−SM−PRE(Th; t̃, l)
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The remainder of the proof consists of proving these claims. We then combine
the bounds from the claims to obtain the bound of the theorem.

Proof of Claim 1

Claim 1. |SuccGAME.1(A)− SuccGAME.2(A)| ≤ InSecPRF(PRF; t̃, l)

Proof. Our argument proceeds in two steps. First, we replace PRF in GAME.1
by the oracle provided by the PRF game and output 1 whenever A succeeds. If
the oracle is the real PRF function keyed with a random secret key, the view
of A is identical to that in GAME.1. If the oracle is the truly random function
the argument is a bit more involved. In this case, it is important to note that
A never gets direct access to the oracle but only receives outputs of the oracle.
The inputs on which the oracle is queried to obtain these outputs are all unique.
Hence, the outputs are uniformly random values. Therefore, the view of A in this
case is exactly that of GAME.2. Consequently, the difference of the probabilities
that the reduction outputs we in either of the two cases (which is the PRF
distinguishing advantage) is exactly the difference of the success probabilities of
A in the two games.

Proof of Claim 2 We first give a more detailed description of GAME.3. In the
EU-nCMA game the adversary A asks to sign a message M without knowing
the public key. This message M gets encoded as B = b1, . . . , bl. In GAME.3 to
answer the query we will perform the following operations. First we generate l
values uniformly at random: ui

$← {0, 1}n, i ∈ {1, . . . , l}. Next we answer the
signing query with a signature σ = (σ1, . . . , σl), where σi = Th(Seed, Ti,bi−1, ui)
if bi > 0 and σi = ui if bi = 0. Then the public key is constructed as

pk = (pk1, . . . , pkl) = (cb1,w−1−b1(σ1, 1,Seed), . . . , c
bl,w−1−bl(σl, l, Seed)) , (1)

and public key and signature are returned to the adversary. The reason we
consider this game is that to bound the final success probability in GAME.4 we
will have a reduction replace the ui with W-SM-PRE challenges. The resulting
signatures have exactly the same distribution as the ones we get here. To show
that this cannot change the adversary’s success probability in a significant way,
we now prove the following claim.

Claim 2. |SuccGAME.2(A)− SuccGAME.3(A)| ≤ w · InSecW−SM−UD(Th; t̃, l)

Proof. Consider the following scenario. Let the adversary’s query be M . During
the signing algorithm M is encoded as B = {b1, . . . , bl}. Consider two distribu-
tions D0 = {ξ1, . . . , ξl}, where ξi

$← {0, 1}n, i ∈ [1, l] and DKg = {y1, . . . , yl},
where yi = c0,bi−1(ξi, i,Seed), ξi

$← {0, 1}n, i ∈ [1, l]. Samples from the first
distribution are just random values, and the samples from DKg are distributed
the same way as the (bi − 1)-th values of valid WOTS-TW chains. Assume
we play a game where we get access to an oracle Oφ that on input B returns
φ = {φ1, . . . , φl}, either initialized with a sample from D0 or with a sample from
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Algorithm 1:MA2−3
Input : Access to a distribution oracle Oφ and forger A
Output: 0 or 1.

1 Start A to obtain query with a message M .
2 Encode M as B = b1, . . . , bl as in signature algorithm.
3 Call Oφ(B) to obtain sample φ
4 Construct the signature σ doing we chain step on each sample and compute

the public key from the signature:
5 for 1 ≤ i ≤ l do
6 σi = cbi−1,1(φi, i, Seed)

7 pki = cbi,w−1−bi(σi, i, Seed)

8 Send PK = (pk, Seed) and σ to A.
9 if A returns a valid forgery (M ′, σ′) then

10 return 1
11 else
12 return 0

DKg. Each case occurs with probability 1/2. Then we can construct an algorithm
MA2−3 as in Algorithm 1 that can distinguish these two cases using a forger A.

Let us consider the behavior of MA2−3 when Oφ samples from DKg. In this
case all the elements in the chains are distributed the same as in GAME.2. The
probability that MA2−3 outputs 1 is the same as the success probability of the
adversary in GAME.2.

If φ instead is from DU , then the distribution of the elements in the chains
is the same as in GAME.3. Hence the probability that MAUD outputs 1 is the
same as the success probability of the adversary in GAME.3.

By definition, the advantage ofMA2−3 in distinguishing DU from DKg is hence
given by

AdvDU ,DKg (MA2−3) = |Succ
GAME.2(A)− SuccGAME.3(A)| (2)

The remaining step is to derive an upper bound for AdvDU ,DKg (MA
UD) using

the insecurity of the W-SM-UD property. For this purpose we use a hybrid
argument.

Let bmax = max{b1, . . . , bl} be the maximum of the values in the message en-
coding of M . Let Hk be the distribution obtained by computing the values in φ
as φi = ck,bi−1−k(ξi, i, Seed), ξi

$← {0, 1}n. Then H0 = DKg and Hbmax−1 = D0

(Note that the chaining function returns the identity when asked to do a negative
amount of steps). As MA2−3 distinguishes the extreme cases, by a hybrid argu-
ment there are two consecutive hybrids Hj and Hj+1 that can be distinguished
with probability ≥ AdvDU ,DKg (MA2−3)/(bmax − 1).

To bound the success probability of an adversary in distinguishing two such
consecutive hybrids, we build a second reductionMBUD that uses B =MA2−3 to
break W-SM-UD. For this purpose,MBUD simulates Oφ. To answer a query for
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B = b1, . . . , bl,MBUD plays in the W-SM-UD game, interacting with the W-SM-
UD oracle OUD(·, b) to construct hybrid Hj+b, depending on the secret bit b of
the oracle. To do so MBUD makes queries to OUD with tweaks {T1,j , . . . , Tl,j}.
Then, depending on b, the responses ψ of OUD are either l random values or
ψ = (cj,1(ξ1, 1, Seed), . . . , c

j,1(ξl, l, Seed), ξi
$← {0, 1}n, i ∈ [1, l]). After that

MBUD requests Seed from the W-SM-UD challenger. Next, MBUD applies the
hash chain to the oracle responses ψ to compute samples

φi =

{
cj+1,bi−1−(j+1)(ψi, i, Seed), if j < bi − 1

ξi
$← {0, 1}n, otherwise ,

and returns it toMA2−3.MBUD returns whateverMA2−3 returns.
If ψ consisted of random values the distribution was Hj+1, otherwise Hj .

Consequently, the advantage of distinguishing any two hybrids must be bound
by InSecW−SM−UD(Th; ξ, l).

Putting things together, we see that bmax ≤ w for any message M . Hence we
get

|SuccGAME.2(A)− SuccGAME.3(A)| = AdvDU ,DKg (MA2−3)
≤ w · SuccW−SM−UD

Th,l (MBUD) ≤ w · InSec
W−SM−UD(Th; ξ, l)

which concludes the proof.

Proof of Claim 3 Recall that GAME.4 differs from GAME.3 in that we are
considering the game lost if an adversary outputs a valid forgery (M ′, σ′) where
there exist such i that b′i < bi and c(b

′
i,bi−b

′
i)(σ′i, i,Seed) 6= σi. So the difference

in success probability is exactly the probability that A outputs a valid forgery
and there exists an i such that b′i < bi and c(b

′
i,bi−b

′
i)(σ′i, i,Seed) 6= σi. We will

now prove Claim 3 which claims the following bound on this probability:

Claim 3. |SuccGAME.3(A)− SuccGAME.4(A)| ≤ InSecW−SM−TCR(Th; t̃, lw)

Proof. To prove the claim we construct an algorithmMATCR that reduces W-SM-
TCR of Th to the task of forging a signature that fulfills the above condition.
The algorithm is based on the following idea. MATCR simulates GAME.4. In
Game.4 the adversary sends a query to sign a message M . To answer this query
and compute the public key,MATCR interacts with the W-SM-TCR oracle. This
way, MATCR obtains target-collision challenges corresponding to the nodes in
the signature and all intermediate values in the chain computations made to
compute the public key. Then MATCR requests the public parameters P from
the W-SM-TCR challenger. We set the public seed Seed of WOTS-TW equal to
P . We answer on the query with the constructed signature and public key. Per
assumption there now exists i such that b′i < bi and c(b

′
i,bi−b

′
i)(σ′i, i,Seed) 6= σi,

hence by a pigeon hole argument there must be a collision on the way to public
key element. MATCR extracts this collision and returns it. Algorithm 2 gives a
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Algorithm 2:MATCR

Input : Security parameter n, oracle access to W-SM-TCR challenger C and
EU-nCMA forger A.

Output: A pair (j,M) or fail.
1 begin Challenge placement
2 Start A to obtain query with a message M .
3 Encode M as B = b1, . . . , bl as in signature algorithm.
4 for i ∈ {1, . . . , l} do
5 if bi = 0 then
6 Set σi

$← {0, 1}n.
7 else
8 Sample ξi

$← {0, 1}n,
9 Query C for W-SM-TCR challenge with inputs ξi, T1,bi−1.

10 Store answer as σi. // i.e., σi = Th(P, Ti,bi−1, ξi)

11 Compute public key element pki = cbi,w−1−bi(σi, i, ·) as in the
verification algorithm but using the W-SM-TCR challenge oracle
provided by C in place of Th. // That is why no Seed is
needed

12 Get public parameters P from the challenger and set Seed = P .
13 Set signature σ = (σ1, . . . , σl) and pk = (pk1, . . . , pkl).

14 begin Obtaining the result
15 Return σ and PK = (pk, Seed) to the adversary A.
16 if The adversary returns a valid forgery (M ′, σ′) then
17 Encode M ′ as B′ = (b′1, . . . , b

′
l) according to sign.

18 if ∃ i such that b′i < bi and c(b
′
i,bi−b

′
i)(σ′i, i, Seed) 6= σi then

19 Let j be the smallest integer such that the chains collide:
cbi,j(yi, i, Seed) = cb

′
i,j(σ′i, i, Seed)).

20 return W-SM-TCR solotion (i, cb
′
i,(j−1)(σ′i, i, Seed))

21 else
22 return fail

23 else
24 return fail
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detailed description ofMATCR in pseudocode. The algorithm is broken into two
logically separated parts: Challenge placement and obtaining the result.

Here we detail which W-SM-TCR challenges we create per chain in line 11
of Algorithm 2. Assume we have σi at position bi. Then the first query will be
(Ti,bi , σi). Lets denote the answer for that query as c1. The next query will be
(Ti,bi+1, c1). We denote the answer for that query as c2. In general we will make
queries of the form (Ti,bi+k, ck). And the answers for that queries we denote as
ck+1. We make queries until we get cw−1−bi . We set pki to be cw−1−bi .

As we are set to bound the probability of those cases where the adversary out-
puts a valid forgery and there exists such i that b′i < bi and c(b

′
i,bi−b

′
i)(σ′i, i,Seed) 6=

σi, MATCR never runs into the fail cases in lines 22 and 24. Moreover, the dis-
tribution of inputs to A when run by MATCR is identical to that in GAME.4.
Therefore,MATCR returns a target-collision with probability |SuccGAME.3(A)−
SuccGAME.4(A)| which concludes the proof.

Proof of Claim 4 It remains to prove the last claim. Consider a forgery σ′

and the positions b′i of the σ′ elements. There must exist a j such that b′j < bj
by the properties of the checksum. Remember that in GAME.4, the case where
c(b

′
j ,bj−b

′
j)(σ′j , j, Seed) 6= σj is excluded for all such j. Hence, it must hold for

these j that c(b
′
j ,bj−b

′
j)(σ′j , j, Seed) = σj . Therefore, we can use A to compute a

preimage of σj . We use this to prove Claim 4.

Claim 4. SuccGAME.4(A) ≤ InSecW−SM−PRE(Th; t̃, l)

Proof. As for the previous claim, we construct an algorithm MAPRE that uses
a forger in GAME.4 to solve a W-SM-PRE challenge. In the beginning,MAPRE

receives a query to sign a message M from the adversary A and encodes it
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into bi’s. To answer the queryMAPRE interacts with the W-SM-PRE challenger
to receive preimage challenges yi for tweaks that make the challenges fit into
positions bi. That way,MAPRE can use the challenges as signature values σi = yi.
Then MAPRE asks the W-SM-PRE challenger to return public parameters P .
Given P ,MAPRE can construct the public key using the recomputation method
used in the signature verification algorithm. MA sets the public seed Seed of
WOTS-TW to be P and returns the constructed signature and public key to A.
When A returns a valid forgery, this forgery must contain a signature value σj
with index j such that b′j < bj and cb

′
j ,(bj−b

′
j)(σ′j , j, Seed) = σj per definition of

the game. MAPRE returns preimage (j, cb
′
j ,(bj−b

′
j−1)(σ′j , j, Seed)). A pseudocode

version of MAPRE is given as Algorithm 3. The algorithm is broken into two
logically separated parts: Challenge placement and obtaining the result.

Due to the properties of GAME.4,MAPRE succeeds whenever A succeeds, as
the failure case in line 19 never occurs when A succeeds. Moreover, the distribu-
tion of the inputs to A when run byMAPRE is identical to that in GAME.4 (this
was ensured in the game hop to GAME.3). Therefore,MAPRE returns preimages
with probability SuccGAME.4(A) which proves the claim.

5 Extension to multiple instances with same public seed

One-time signatures are often used in more complex constructions. Indeed, WOTS-
TW was developed as part of SPHINCS+. The distinguishing feature of this
setting is that many WOTS-TW instances are used within one instance of the
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Algorithm 3:MAPRE

Input : Security parameter n, access to W-SM-PRE challenger C and forger
A.

Output: A pair (j,M) or fail.
1 begin Challenge placement
2 Run A to receive initial query for a signature on message M .
3 Encode M as B = b1, . . . , bl following the steps in the signature algorithm.
4 for 1 ≤ i ≤ l do
5 if bi > 0 then
6 Query C for preimage challenge yi with tweak T1,bi−1.

// yi = Th(P, Ti,bi−1, ξi)

7 else
8 yi

$← {0, 1}n.
9 Set σi = yi.

10 Get the seed P from C and set Seed = P .
11 Compute public key pk = (pk1, . . . pkl), as pki = cw−1−bi(yi, i, Seed).

12 begin Obtaining the result
13 Return σ and PK = (pk, P ) to A.
14 if A returns a valid forgery (M ′, σ′) then
15 Compute B′ = (b′1, . . . , b

′
l) encoding M

′

16 if ∃1 ≤ j ≤ l such that b′j < bj and c(b
′
j ,bj−b

′
j)(σ′j , j,Seed) = σj then

17 return W-SM-PRE solution (j, cb
′
j ,(bj−b

′
j−1)(σ′j , j,Seed))

18 else
19 return fail

20 else
21 return fail
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construction. In this section we will show that we can reduce the security of mul-
tiple WOTS-TW instances to the same multi-target security properties used for
a single instance. While, obviously, the number of targets increases, we argued
in Section 2.5 that the complexity of generic attacks is not influenced by the
number of targets for these notions. Hence, there is no decrease in security to
be expected when using multiple instances. We will show that this even works
when the same public seed is used for all instances, as long as different prefixes
are used for the tweaks.

In SPHINCS-like constructions WOTS-TW is used to sign the roots of trees
which are not controlled by an adversary against the construction but by the
signer. More generally, this is the case in many such constructions. Hence we use
an extension of the EU-nCMA model from last section to d instances as security
model.

We formally define EU-nCMA security for d instances. We introduce a defi-
nition for the security of Dss(1n), which we call the d-existential unforgeability
under non-adaptive chosen message attack (d-EU-naCMA). It is defined using
the following experiment. In this experiment a two-stage adversary A = (A1, A2)
is allowed to make signing queries to an oracle sign(·, ·,S, Seed) and query or-
acle Thλ. The signing oracle takes ADRS as a first input an message M as a
second input. First it runs (SK,PK)←WOTS.kg(C = (Seed,ADRS);S). Then
it computes σ ← WOTS.sign(M ;SK). Let us denote PK′ which is equal to PK
but there is no Seed in PK′, i.e. PK′ = (pk,ADRS). The signing oracle return
(σ,M,PK′) to the adversary. We also restrict A from querying Thλ with tweaks
for ADRS-s that are used in signature queries. We define a function adrs(·)
that takes a tweak as an input and returns ADRS of that tweak. We denote
the set of queries to signing oracle as Q = {(ADRS1,M1), . . . , (ADRSd,Md)}
and the set of tweaks that are used to query Thλ is T = {T1, . . . Tp}. We are
concerned with one-time signatures, so the number of allowed signing queries for
each ADRS is restricted to 1.

Experiment Expd−EU−naCMA
Dss(1n) (A)

– Seed
$← {0, 1}n

– S $← {0, 1}n

– state← Asign(·,·,Seed,S),Thλ(Seed,·,·)
1 ()

– (M?, σ?, j)← A2(state, Seed), j ∈ [1, d]

– Return 1 iff [Vf(PKj , σ
?,M?) = 1]∧ [M? 6=Mj ]∧ [∀ADRSi ∈ Q,ADRSi /∈

T ′ = {adrs(Ti)}pi=1].

The following theorem can be proved by generalization of the proof of the-
orem 1. The main idea behind the proof is the following. First of all we use
different tweaks in different instances of WOTS-TW as we use different ADRS
for each instance. Next point is that we obtain d times more challenges and we
separate them in d sets. Each set will be used for appropriate instance of WOTS.
Then the proof follows the same path as in theorem 1.
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Theorem 2. Let n, w ∈ N and w = poly(n). Let Th : P × T × {0, 1}n →
{0, 1}n be a W-SM-TCR, W-SM-PRE, W-SM-UD function. Let PRF : S ×
T → {0, 1}n be a pseudorandom function. Then the insecurity of the WOTS-
TW scheme against d-EU-naCMA attack is bounded by

InSecd−EU−naCMA(WOTS-TW(1n, w); t, 1) <

InSecPRF(PRF; t̃, d · l) + InSecW−SM−TCR(Th; t̃, d · lw)+
InSecW−SM−PRE(Th; t̃, d · l) + w · InSecW−SM−UD(Th; t̃, d · l) (3)

with t̃ = t+ d · lw, where time is given in number of Th evaluations.

Proof sketch. Let us give a brief description how the generalization will be ob-
tain. We have the same game hopping as in Theorem 1.

GAME.1 is the original EU-nCMA game and GAME.2 is the same as GAME.1
but instead of using pseudorandom elements from PRF a truly random func-
tion RF : S × T → {0, 1}n is used. |SuccGAME.1(A) − SuccGAME.2(A)| ≤
InSecPRF(PRF; t̃, d · l) The reasoning here is the same as in Claim 1 in Theo-
rem 1. Note that here inputs on which the oracle in PRF game is queried are
all unique due to the unique ADRS-s for each instance. Hence, the outputs are
uniformly random values as desired.

GAME.3 is different from GAME.2 in that for each signing query we answer
with a hash of random value rather than building it with a chaining function. In
Claim 2 of Theorem 1 we reduced it to W-SM-UD property by using hybrid ar-
gument. Here we need to apply the same reasoning. To obtain needed hybrids in
case of d instances we will do the following. Let us denote the transformation of
Mi into b1, . . . , bl with extra index. SoMi is transferred into bi,1, . . . , bi,l. We de-
note two distributions where Dd−Kg = {y1,1, . . . , y1,l, . . . , yd,1, . . . , yd,l}, where
yi,j = c

0,bj−1
ADRSi

(ξi,j , j, Seed), ξi,j
$← {0, 1}n, i ∈ [1, d], j ∈ [1, l], and Dd−0 =

{ξ1,1, . . . , ξ1,l, . . . , ξd,1, . . . , ξd,l}, where ξi,j
$← {0, 1}n, i ∈ [1, d], j ∈ [1, l]. The

distinguishing advantage of adversary of those two distributions is exactly the
difference of success probability this game hop. To limit this distinguishing ad-
vantage we need to build hybrids. We do this is the same manner as in Theorem 1.
Let bmax = max{b1,1, . . . , b1,l . . . , bd,1, . . . , bd,l} be the maximum of the values in
the message encoding of all Mi. Let Hk be the distribution obtained by com-
puting the values as ck,bi,j−1−kADRSi

(ξi,j , j, Seed), ξi,j
$← {0, 1}n. One can notice that

H0 = DKg and Hbmax−1 = D0. There must be two consecutive hybrids Hγ and
Hγ+1 that we can distinguish with probability close to distinguishing advantage.
By playing W-SM-UD and interacting with the oracle O(·, b) we can construct
hybrid Hγ+b this is done in just the same way as in Claim 2 of Theorem 1. Hence
we obtain the following bound:

|SuccGAME.2(A)− SuccGAME.3(A)| ≤ w · InSecW−SM−UD(Th; t̃, d · l)

Notice that in case of one instance we obtained Seed from W-SM-UD challenger
that we used to construct the hybrids and obtain WOTS-TW public key. Here
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instead of using Seed we need to interact with Thλ(Seed.·, ·) oracle. Only after
all of the signing queries are made we will obtain the Seed.

GAME.4 is different from GAME.3 in that we are considering the game lost
if an adversary outputs a valid forgery (M?, σ?, j) where there exist such i that
b?i,j < bi,j and c

(b?i,j ,bi,j−b
?
i,j)

ADRSi
(σ?j , j, Seed) 6= σj . To show that |SuccGAME.3(A) −

SuccGAME.4(A)| ≤ InSecW−SM−TCR(Th; t̃, d · lw) we can build the reduction
that works as follows.To answer signature queries query and compute the public
key, the reduction interacts with the W-SM-TCR oracle. The difference in case
of d instances from one instance is that we will need d times more interactions
with W-SM-TCR oracle. The chains that we build and chains obtained from the
forged signature are different but lead to the same public key. Hence by a pigeon
hole argument there must be a collision on the way to public key element. This
collision is a solution for W-SM-TCR challenge. So we proved that

|SuccGAME.3(A)− SuccGAME.4(A)| ≤ InSecW−SM−TCR(Th; t̃, d · lw)

To give a bound on success probability for GAME.4 we use W-SM-PRE
property. To answer signing queries we will interact with W-SM-PRE oracle
and place challenges obtained from that oracle in place of signatures. To con-
struct public keys of WOTS-TW instances we will behave in the same way as
in the undetectability case. By interacting with Thλ(Seed, ·, ·) we can build
the chains of WOTS-TW structures. Again there must exist a j such that
b?i,j < bi,j by the properties of the checksum. And since we excluded the case

where c
(b?i,j ,bi,j−b

?
i,j)

ADRSi
(σ?j , j, Seed) 6= σj we can obtain a preimage by computing

c
(b?i,j−1,bi,j−b

?
i,j)

ADRSi
(σ?j , j, Seed) So we obtained

|SuccGAME.4(A)| ≤ InSecW−SM−PRE(Th; t̃, d · l)

This concludes the sketch of the proof.

6 SPHINCS+

In this section we will recap the SPHINCS+ structure and afterwards give fixes
to the original SPHINCS+ proof. To obtain a fixed proof we will utilize the
results from Theorem 2.

6.1 Brief description

First we give a brief description of the SPHINCS+ signature scheme. An example
of SPHINCS+ structure can be seen on the following picture:
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Fig. 3: Example of a SPHINCS+ structure

The public key consists of two n-bit values: a random public seed PK.seed
and the root of the top tree in the hypertree structure. PK.seed is used as a first
argument for all of the tweakable hash functions calls. The private key contains
two more n-bit values SK.seed and SK.prf.

Lets describe the main parts of it. First we have to describe addressing
scheme. In this scheme, the addresses of certain structures and calls of hash
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functions will be used. This is for pseudo-random data generation. The address
is a 32 byte value. Address coding can be done in any convenient way. An address
will be represented with a tweak. Each tweak has a prefix that denotes to which
part of SPHINCS+ structure it belongs. We denoted this prefix as ADRS in
previous sections. So for each hashing in the structure a different tweak will be
used.

Then we need to discuss binary trees. In the SPHINCS+ algorithm, binary
trees of height γ always have 2γ leaves. Each leaf Li, i in[2γ − 1] is a bit string
of length n. Each node of the tree Ni,j , 0 < j ≤ γ, 0 ≤ i < 2γ−j is also a bit
string of length n. The values of the internal nodes of the tree are calculated as
a hash function from the children of that node. A leaf of a binary tree is a hash
of elements of public key of a WOTS-TW signature scheme instance.

Binary trees and WOTS-TW signature schemes are used to construct a hy-
pertree structure. WOTS-TW instances are used to sign root of binary trees on
lower levels. WOTS-TW instances on the lowest level used to signed the root
of a FORS structure. FORS is defined with the following parameters: k ∈ N,
t = 2a. This algorithm can sign messages of length ka-bits.

FORS key pair. The private key of FORS consists of kt pseudorandomly
generated n-bit values grouped into k sets of t elements each.

To get the public key k binary hash trees are constructed. The leaves in these
trees are k sets (one for each tree) which consist of t values. Thus we get k trees
of height a. As roots of k binary trees are calculated they are compressed using
a hash function. The resulting value will be the FORS public key.

FORS Signature. A message from ka bits is divided into k lines of a bits.
Each of these lines is interpreted as a leaf index corresponding to one of the k
trees. The signature consists of these sheets and their authentication paths. The
verifier reconstructs the tree roots, compresses them, and verifies them against
the public key. If there is a match, it is said that the signature was verified.
Otherwise, it is declared invalid.

The last thing to discuss is the way the message digest is calculated. First,
we will prepare the pseudo-random value R. It is calculated from SK.prf and
the message. Also, this value can be non-deterministic, this can be achieved by
adding a random value OptRand. Thus R = PRFmsg(SKprf ,OptRand,M). The
R value is part of the signature. Now, using R, we calculate the index of the
sheet with which the message will be signed and the hash of the message itself.
(MD||idx) = Hmsg(R,PK.seed,PK.root,M).

The signature consists of the randomness R, FORS signature (which corre-
sponds to index idx from Hmsg) of the message digest, the WOTS-TW signature
of the corresponding FORS public key, and a set of authentication paths and
WOTS-TW signatures of tree roots. To test this chain, the verifier iteratively
reconstructs the public keys and tree roots until it gets the root of the top tree.

Given the brief description of SPHINCS+ lets analyze the modifications of
its reduction proof.
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6.2 SPHINCS+ proof

In this part we want to update the proof of security of SPHINCS+ framework.
The security had several issues which are described in [MK,ABB+20]. One can
look up for the description of the SPHINCS+ scheme in [BHK+19].

For the SPHINCS+ construction we will need the following functions:

– F: P × T × {0, 1}n → {0, 1}n;
– H: P × T × {0, 1}2n → {0, 1}n;
– Thl: P × T × {0, 1}ln → {0, 1}n;
– PRF: {0, 1}n × {0, 1}256 → {0, 1}n;
– PRFmsg: {0, 1}n × {0, 1}n × {0, 1}∗ → {0, 1}n;
– Hmsg: {0, 1}n × {0, 1}n × {0, 1}n × {0, 1}∗ → {0, 1}m;

In this section, we prove the following Theorem. Note that F, H, Thl are
members of a collection of tweakable hash functions with different message
length.

Theorem 3. For parameters n,w, h, d,m, t, k as described in [BHK+19] the fol-
lowing bound can be obtained:

InSecEU−CMA(SPINCS+; ξ, qs) ≤
InSecPRF(PRF, ξ, q1) + InSecPRF(PRFmsg, ξ, qs)+

InSecITSR(Hmsg, ξ, qs) + w2 · InSecW−SM−UD(Th; ξ, q2)+

InSecW−SM−TCR(Th; ξ, q3) + InSecW−SM−PRE(Th; ξ, q4)+

3 · InSecW−SM−TCR(Th; ξ, q5) + InSecSM−DSPR(Th; ξ, q5)

where q1 < 2h+1(kt + l), q2 < 2h+1 · l, q3 < 2h+2(w · l + 2kt), q4 < 2h+1 · l · w,
q5 < 2h · kt and qs denotes the number of signing queries made by A.

Proof. We want to bound the success probability of a (quantum) adversary A
against the EU-CMA security of SPHINCS+. Towards this end we use the follow-
ing series of games. We start with GAME.0 which is the EU-CMA experiment
for SPHINCS+. Now consider a GAME.1 which is essentially GAME.0 but the
experiment makes use of a SPHINCS+ version where all the outputs of PRF, i.e.,
the WOTS-TW + and FORS secret-key elements, get replaced by truly random
values.

Next, consider a game GAME.2, which is the same as GAME.1 but in the
signing oracle PRFmsg(SK.prf, ·) is replaced by a truly random function.

Afterwards, we consider GAME.3, which differs from GAME.2 in that we
are considering the game lost if an adversary outputs a valid forgery (M,SIG)
where the FORS signature part of SIG contains only secret values which were
contained in previous signatures with that FORS key pair obtained by A via the
signing oracle.

Now consider what are the possibilities of the adversary to win the game.
The FORS signature in a forgery must include the preimage of a FORS leaf node
that was not previously revealed to it. There are two separate cases for that leaf:
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1. The FORS leaf is different to the leaf that we would generate for that place.
2. The FORS leaf is the same to the leaf that we would generate for that place;

Lets consider GAME.4 which differs from GAME.3 in that we are considering
that the WOTS-TW signatures are made as described in the proof of Claim 2
in Section 4, the game is lost in the first “leaf case” scenario or an adversary
outputs a valid forgery (M, SIG) which (implicitly or explicitly) contains a second
preimage for an input to Th that was part of a signature returned as a signing-
query response.

Now lets analyze those games.

GAME.0 - GAME.3 The hops between GAME.0 and GAME.3 are fully
presented in the SHINCS+ paper [BHK+19]. The bound for these games are

|SuccGAME.0
A − SuccGAME.1

A | ≤ InSecPRF(PRF, ξ, q1), (4)

|SuccGAME.1
A − SuccGAME.2

A | ≤ InSecPRF(PRFmsg, ξ, qs), (5)

|SuccGAME.2
A − SuccGAME.3

A | ≤ InSecITSR(Hmsg, ξ, qs), (6)

where q1 < 2h+1(kt+ l) and qs denotes the number of signing queries made
by A.

GAME.3 - GAME.4 Lets break the hop between GAME.3 and GAME.4 into
several steps. First assume GAME.3.1 in which random values are used to create
WOTS-TW signatures. This is the case that we discussed in the proof of Claim
2 in Section 4. But in this case we have several message queries as described
in previous section. Using Thλ oracle we first obtain FORS instances. Then
we can query W-SM-UD to obtain challenges that will be placed in WOTS-TW
instances. Again after placing those challenges we use Thλ to obtain WOTS-TW
public keys and build Merkle trees so we go to the next level of the hypertree.
Having the roots of Merkle trees we again interact with W-SM-UD challenger to
obtain challenges for this set of WOTS-TW instances. We continue this process
until we reach the root of the highest Merkle tree in our hypertree structure.
Then we obtain public parameter P and set PK.seed = P . By the reasoning
from previous section we obtain

|SuccGAME.3
A − SuccGAME.3.1

A | ≤ w · InSecW−SM−UD(Th; ξ, q2) (7)

where q2 < 2h+1 · len.
Next consider game GAME.3.2, which differs from GAME.3.1 in that we

are considering the game lost if an adversary outputs a valid forgery (M, SIG)
which (implicitly or explicitly) contains a second preimage for an input to Th
that was part of a signature returned as a signing-query response. By implicitly
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we here refer to a second preimage which is observed during the verification of
the signature.

We can build a reduction MA that breaks H-SM-TCR. Here we slightly
abuse the notation and we assume that we we obtain W-SM-TCR challenges
for different members of collection, i.e. playing against several instances of the
tweakable collection at one. We useThm (that differs inm) to compute the whole
SPHINCS+ structure. The reduction builds the whole SPHINCS+ structure of a
key pair (the key pair plus the whole hypertree including all FORS key pairs and
WOTS-TW) during setup using the H-SM-TCR and Thλ oracles and stores all
computed values. Assume the collision occurs in the WOTS-TW instances. Than
we deal with this case as was show in the Theorem 2. If the collision occurs not
in WOTS-TW instances then we can obtain challenges for those places through
interaction with W-SM-TCR oracle for several members. Here the difference
from [BHK+19] is only in the way we deal with WOTS-TW.

Thereby it defines all inputs to Thm as targets. In total,the reductionMA
makes q3 < 2h+2(w · len + 2kt) queries to its oracles. When MA is done, it
obtains the public parameters from the challenger and puts these into the public
key together with the generated root. Then it runs A with this public key as
input.MA can answer all signature queries and perfectly simulates the EU-CMA
game for SPHINCS+.

When A returns a forgery,MA runs verification and compares all computed
values to the values it computed during set-up. IfMA finds a second preimage
it outputs it together with its query index (indicating when it was sent to the
W-SM-TCR oracle).

Hence we obtain

|SuccGAME.3.1
A − SuccGAME.3.2

A | ≤ InSecW−SM−TCR(Th; ξ, q3) (8)

So the only case left to hop to GAME.4 is a WOTS-TW forgery that gives
us the preimage. Since iff there is no WOTS-TW forgery then there must be a
collision. And if there is the WOTS-TW forgery we can obtain either a collision
(this case we have already excluded) or a preimage. To do so we first obtain
preimage challenges for appropriate tweaks that were used in every WOTS-TW
instance. To obtain the positions to place challenges for WOTS-TW instances
we will again use Thλ oracle (in the same way as for W-SM-UD). We use it to
build WOTS-TW public keys and the whole SPHINCS+ structure. This is done
the same way as it was described in previous section. We obtain the following
bound

|SuccGAME.3.2
A − SuccGAME.4

A | ≤ InSecW−SM−PRE(Th; ξ, q4) (9)

where q4 < 2h+1 · l · w.

GAME.4 The analysis of the GAME.4 can be found in the SPHINCS+ pa-
per [BHK+19](Claim 23). Here we note that we can not use W-SM-PRE bound
as the reduction uses T-openPRE game that was introduced in [BH19b]. The
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only difference is that we have already excluded the WOTS-TW preimage case.
Hence we obtain the following bound:

SuccGAME.4
A ≤ 3 · InSecW−SM−TCR(Th; ξ, q5) + InSecSM−DSPR(Th; ξ, q5) (10)

where q5 < 2h · kt
Combining the inequalities we obtain the bound from the theorem.
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From: Sydney Antonov <ska84@protonmail.com>
Sent: Wednesday, April 20, 2022 7:21 PM
To: pqc-comments
Cc: pqc-forum
Subject: ROUND 3 OFFICIAL COMMENT: SPHINCS+

Dear all, 

SPHINCS+ relies on the distinct-function, multi-target second-preimage 
resistance (DM-SPR) of the underlying keyed hash function. This property can be broken for SHA-256(key||message) 
(which is used by 
SPHINCS+-SHA-256) using around (t-1)2**128 + 2^256/t compression  
SPHINCS+function 
calls when attacking t targets using the following attack: 

In this attack keys are initial hash values instead of message prefixes, without loss of generality. 

Let C: {0,1}^256 x {0,1}^512 -> {0,1}^256 be SHA-256's compression function. 

1. If there are multiple keys:
1.1. For each pair of keys (k, l):
1.1.1. Find an (x_k, x_l) such that y = C(k, x_k) = C(l, x_l).

 This can be done using around 2^128 compression function calls. 
1.1.2. Replace the pair with the single key y. 
1.2. If there's a remaining key k because there was an odd number of keys replace it with C(k, 0). 
1.3. Repeat step 1. 
2. Find a SHA-256 preimage of one of the targets using the final key as

an IV. This can be done using around 2^256/t compression function
calls.

3. Concatenate the sequence of compression function blocks used in step
1 to derive the final key from the key corresponding to the target
for which a second-preimage was found by step 2.

4. Concatenate the results of step 3 and step 2.

The result of step 4 is a preimage for one of the targets and an attacker can ensure it's almost certainly not the original 
one by randomizing step 2. 

This attack means the use of unique prefixes/IVs with SHA-256 provides very little protection against multi-target 
second-preimage attacks when t < 2^64, but it's less effective on truncated SHA-256. 

If "internal claws" could be found with cost c, this attack would cost (t-1)c + 2^256/t, so if they could be found more 
efficiently it could also threaten SHAKE256 and truncated SHA-256. Also claw-freeness seems almost as strong an 
assumption as collision-resistance so I don't think it's a desirable assumption for a collision-resilient signature scheme. 

Sydney 
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From: Andreas Hülsing <ietf@huelsing.net>
Sent: Thursday, April 21, 2022 3:51 AM
To: Sydney Antonov; pqc-comments
Cc: pqc-forum
Subject: Re: [pqc-forum] ROUND 3 OFFICIAL COMMENT: SPHINCS+

Dear Sydney, 

Thanks for looking at SPHINCS+. This is an interesting attack that does demonstrate that our real hash functions do not 
perfectly behave like random oracles (and that the chaining value of SHA2 may be a bit too short for some use cases). 
Luckily its impact against SPHINCS+ is limited (that is of course if I did not miss anything). The reason is that SPHINCS+ 
only needs DM-SPR for SHA2 with fixed length messages. The longest message length used is 67*n (+n for the key) bytes 
which occurs in the compression of the WOTS public keys for w=16 and uses 34 compression function calls. This means 
you can at most gain a 2^33 speed-up / 33 bits of security for the n=32 variant, classically. 

As you mentioned, the impact is less for the truncated variants. To be precise, for n = 16 there will be no advantage as 
the internal state is twice the length of the hash values, so finding collisions on that state takes as much time as finding 
preimages. For n=24 the maximum message length processed by SHA2 in the relevant setting is bounded by 51, meaning 
26 compression function calls, and hence at most a 2^26 speed-up. 

For quantum attacks, the difference between collision search and preimage search shrinks down even if we do not take 
access times for quantum accessible memory into account. E.g., for n = 24 the attack cost would be  (t-1)2**64 + 2^96/t 
in the ideal case where memory access is free. In this case one can at most gain 16 bits anyway and using reasonable 
estimates for memory access, even less. 

Best wishes, 

Andreas 

On 21-04-2022 01:20, 'Sydney Antonov' via pqc-forum wrote: 

> Dear all,
>
> SPHINCS+ relies on the distinct-function, multi-target second-preimage 
> resistance (DM-SPR) of the underlying keyed hash function. This
> property can be broken for SHA-256(key||message) (which is used by
> SPHINCS+-SHA-256) using around (t-1)2**128 + 2^256/t compression
> SPHINCS+function
> calls when attacking t targets using the following attack:
>
> In this attack keys are initial hash values instead of message 
> prefixes, without loss of generality.
>
> Let C: {0,1}^256 x {0,1}^512 -> {0,1}^256 be SHA-256's compression 
> function.
>
> 1. If there are multiple keys:



1

From: msg <msg260@gmail.com>
Sent: Thursday, April 21, 2022 4:24 AM
To: pqc-forum
Cc: Andreas Hülsing; pqc-forum; Sydney Antonov; pqc-comments
Subject: Re: [pqc-forum] ROUND 3 OFFICIAL COMMENT: SPHINCS+

Thanks for the discussion. 

What do you think using KMAC or HMAC instead of Hash(Key||Message). I think these structures resist Sydney's attack. 

Best. 

21 Nisan 2022 Perşembe tarihinde saat 10:51:44 UTC+3 itibarıyla Andreas Hülsing şunları yazdı: 
Dear Sydney, 

Thanks for looking at SPHINCS+. This is an interesting attack that does 
demonstrate that our real hash functions do not perfectly behave like 
random oracles (and that the chaining value of SHA2 may be a bit too  
short for some use cases). Luckily its impact against SPHINCS+ is  
limited (that is of course if I did not miss anything). The reason is  
that SPHINCS+ only needs DM-SPR for SHA2 with fixed length messages. The 
longest message length used is 67*n (+n for the key) bytes which occurs  
in the compression of the WOTS public keys for w=16 and uses 34  
compression function calls. This means you can at most gain a 2^33  
speed-up / 33 bits of security for the n=32 variant, classically.  

As you mentioned, the impact is less for the truncated variants. To be  
precise, for n = 16 there will be no advantage as the internal state is  
twice the length of the hash values, so finding collisions on that state  
takes as much time as finding preimages. For n=24 the maximum message  
length processed by SHA2 in the relevant setting is bounded by 51,  
meaning 26 compression function calls, and hence at most a 2^26 speed-up. 

For quantum attacks, the difference between collision search and  
preimage search shrinks down even if we do not take access times for  
quantum accessible memory into account. E.g., for n = 24 the attack cost 
would be  (t-1)2**64 + 2^96/t in the ideal case where memory access is  
free. In this case one can at most gain 16 bits anyway and using  
reasonable estimates for memory access, even less.  

Best wishes, 

Andreas 

On 21-04-2022 01:20, 'Sydney Antonov' via pqc-forum wrote: 
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From: Sydney Antonov <ska84@protonmail.com>
Sent: Thursday, April 21, 2022 6:11 AM
To: msg
Cc: pqc-forum; Andreas Hülsing; pqc-comments
Subject: Re: [pqc-forum] ROUND 3 OFFICIAL COMMENT: SPHINCS+

> For quantum attacks, the difference between collision search and
> preimage search shrinks down even if we do not take access times for
> quantum accessible memory into account. E.g., for n = 24 the attack
> cost would be  (t-1)2**64 + 2^96/t in the ideal case where memory
> access is free. In this case one can at most gain 16 bits anyway and
> using reasonable estimates for memory access, even less.

I think the cost of 192-bit Grover search is at least 2^128 because attackers don't have time for 2^96 iterations of 
Grover's algorithm so instead would have to do something like build 2^64 quantum computers which each do 2^64 
iterations in parallel. 

> What do you think using KMAC or HMAC instead of Hash(Key||Message).
> I think these structures resist Sydney's attack.

KMAC is a totally different construction to HMAC. It adsorbs the key once at the start so it's as vulnerable as to my 
attack SHAKE. That is, it could become vulnerable if a breakthrough is made in Keccak cryptanalysis. Internal collisions in 
SHAKE256 require around 2^256 classical queries to the Keccak permutation if it's modeled as a random oracle. The best 
known attacks are no better than generic attacks. 

Sydney 
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From: Sydney Antonov <ska84@protonmail.com>
Sent: Thursday, April 21, 2022 3:19 PM
To: Andreas Hülsing
Cc: pqc-comments; pqc-forum
Subject: Re: [pqc-forum] ROUND 3 OFFICIAL COMMENT: SPHINCS+

Dear Andreas, 

> Thanks for looking at SPHINCS+. This is an interesting attack that
> does demonstrate that our real hash functions do not perfectly behave
> like random oracles (and that the chaining value of SHA2 may be a bit
> too short for some use cases). Luckily its impact against SPHINCS+ is
> limited (that is of course if I did not miss anything). The reason is
> that SPHINCS+ only needs DM-SPR for SHA2 with fixed length messages.
> The longest message length used is 67*n (+n for the key) bytes which
> occurs in the compression of the WOTS public keys for w=16 and uses 34
> compression function calls. This means you can at most gain a 2^33
> speed-up / 33 bits of security for the n=32 variant, classically.

This can be improved upon using a ternary tree of 3-claws with that message block limitation. 

The number of 3-claws required is just under half the number of targets 
(1/3 + 1/9 + ... = 1/2) and finding a 3-claw uses around 3*2**((2/3)256) compression function calls so the total cost is 
around 1.5t2^((2/3)256) + (2^256)/t compression function calls. 

The optimal number of targets for that formula is sqrt((2^(256/3))/1.5) = 2^42.374... = 3^26.735..., resulting in a 
2^214.63 attack. 

P.S. Maybe this attack can be optimized further by mixing 2-claws and 3-claws. 

Sydney 
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From: Sydney Antonov <ska84@protonmail.com>
Sent: Friday, April 22, 2022 5:49 AM
To: Sydney Antonov
Cc: Andreas Hülsing; pqc-comments; pqc-forum
Subject: Re: [pqc-forum] ROUND 3 OFFICIAL COMMENT: SPHINCS+

> P.S. Maybe this attack can be optimized further by mixing 2-claws and 3-claws.

It can. The following is a 2^209.91 attack against 2^10*3^23 = 2^46.454... targets: 

In this attack keys are initial hash values instead of message prefixes, without loss of generality. 

Let C: {0,1}^256 x {0,1}^512 -> {0,1}^256 be SHA-256's compression function. 

1. Repeat 10 times:
1.1. For each pair of keys (k, l):
1.1.1. Find an (x_k, x_l) such that y = C(k, x_k) = C(l, x_l).

 This can be done using around 2*2^(256/2) compression function calls. 
1.1.2. Replace the pair with the single key y. 
2. Repeat 23 times:
2.1. For each trio of keys (k, l, m):
2.1.1. Find an (x_k, x_l, x_m) such that y = C(k, x_k) = C(l, x_l) = C(m, x_m).

 This can be done using around (3/2)2^((2/3)256) compression function calls. 
2.1.2. Replace the trio with the single key y. 
3. Find a SHA-256 preimage of one of the targets using the final key as an IV. This can be done using around
2^256/2^10/3^23 compression function calls.
4. Concatenate the sequence of compression function blocks used in steps
1 and 2 to derive the final key from the key corresponding to the target for which a preimage was found by step 3.
5. Concatenate the results of step 4 and step 3.

The result of step 5 is a preimage for one of the targets and an attacker can ensure it's almost certainly not the original 
one by randomizing step 3. 

In total this attack makes around 2^10*3^23*2*2^(256/2) + 
3^23*(3/2)*2^((2/3)256) + 2^256/2^10/3^23 or 2^209.91 compression function calls. 

Sydney 
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From: Andreas Hülsing <andreas@huelsing.net>
Sent: Friday, June 10, 2022 3:49 AM
To: pqc-comments
Cc: pqc-forum
Subject: ROUND 3 OFFICIAL COMMENT: SPHINCS+
Attachments: sphincs+-r3.1-specification.pdf; r3.1_modifications.pdf

Dear all, 

In response to the recently posted issue with the SHA2 instantiation of  
SPHINCS+, we decided to change the function we use in the concerned 
implementations from SHA2-256 to SHA2-512. The problem was caused by the small internal state of SHA2. With this 
change, this problem is solved. 

We updated our specification, also including other changes that we announced on this list since the 3rd round 
submission. In the attachment you also find a list of all the modifications we made. The code in our public github 
repository (https://github.com/sphincs/sphincsplus) is also updated. 

Best wishes, 

Andreas 
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From: pqc-forum@list.nist.gov on behalf of Doge Protocol <dogeprotocol1@gmail.com>
Sent: Friday, June 10, 2022 1:09 PM
To: pqc-forum
Cc: Andreas Hülsing; pqc-forum; pqc-comments
Subject: [pqc-forum] Re: ROUND 3 OFFICIAL COMMENT: SPHINCS+

From table in the paper, SHA2-256 corresponds to security level 1 (n = 16) and SHA2-512 corresponds to security levels 
3,5 (n=24 , n= 32). Does this mean only security levels 3,5 should be considered for SPHINCS+ and level 1 is not 
applicable since it has below problem?  Is understanding correct?  

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/FVItvyRea28/m/-oKR3ZKpDAAJ 

On Friday, June 10, 2022 at 12:54:41 AM UTC-7 Andreas Hülsing wrote: 
Dear all, 

In response to the recently posted issue with the SHA2 instantiation of  
SPHINCS+, we decided to change the function we use in the concerned  
implementations from SHA2-256 to SHA2-512. The problem was caused by the 
small internal state of SHA2. With this change, this problem is solved.  

We updated our specification, also including other changes that we  
announced on this list since the 3rd round submission. In the attachment 
you also find a list of all the modifications we made. The code in our  
public github repository (https://github.com/sphincs/sphincsplus) is  
also updated.  

Best wishes, 

Andreas 

--  
You received this message because you are subscribed to the Google Groups "pqc-forum" group. 
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-forum+unsubscribe@list.nist.gov. 
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/4aaa2656-b118-
4377-b920-9326084e2dd2n%40list.nist.gov. 
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From: Bas Westerbaan <bas@cloudflare.com>
Sent: Friday, June 10, 2022 1:15 PM
To: Doge Protocol
Cc: Andreas Hülsing; pqc-forum; pqc-comments
Subject: Re: [pqc-forum] Re: ROUND 3 OFFICIAL COMMENT: SPHINCS+

On Fri, Jun 10, 2022 at 7:08 PM Doge Protocol <dogeprotocol1@gmail.com> wrote: 
Does this mean only security levels 3,5 should be considered for SPHINCS+ and level 1 is not applicable since it has 
below problem?  Is understanding correct?  

No. Antonov's attack only applied to levels 3 and 5. Read the end of step 1.1.1. 

Best, 

 Bas 
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From: Andreas Hülsing <ietf@huelsing.net>
Sent: Friday, June 10, 2022 5:11 PM
To: Doge Protocol; pqc-forum
Cc: pqc-comments
Subject: Re: ROUND 3 OFFICIAL COMMENT: SPHINCS+

The document only contains parameters that we consider to achieve the claimed security level. So, all the proposed 
parameter sets can be used. The security of SHA2-256 is sufficient for the instantiations of all functions at security level 1 
(and therefore the level 1 parameters using SHA2 can be used safely). Only at security levels 3 and 5, SHA2-256 is not 
sufficient for the instantiation of tweakable hash functions that take input messages of a length that is more than one 
message block length. Therefore, we switched the instantiation of the H and T functions to SHA2-512 at security levels 3 
and 5.  

Best wishes, 

Andreas 

On 10-06-2022 19:08, Doge Protocol wrote: 

From table in the paper, SHA2-256 corresponds to security level 1 (n = 16) and SHA2-512 corresponds to 
security levels 3,5 (n=24 , n= 32). Does this mean only security levels 3,5 should be considered for 
SPHINCS+ and level 1 is not applicable since it has below problem?  Is understanding correct?   

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/FVItvyRea28/m/-oKR3ZKpDAAJ 

On Friday, June 10, 2022 at 12:54:41 AM UTC-7 Andreas Hülsing wrote: 
Dear all, 

In response to the recently posted issue with the SHA2 instantiation of  
SPHINCS+, we decided to change the function we use in the concerned  
implementations from SHA2-256 to SHA2-512. The problem was caused by the 
small internal state of SHA2. With this change, this problem is solved.  

We updated our specification, also including other changes that we  
announced on this list since the 3rd round submission. In the attachment 
you also find a list of all the modifications we made. The code in our  
public github repository (https://github.com/sphincs/sphincsplus) is  
also updated.  

Best wishes, 

Andreas 
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From: Sydney Antonov <ska84@protonmail.com>
Sent: Monday, June 13, 2022 9:35 AM
To: Andreas Hülsing
Cc: pqc-comments; pqc-forum
Subject: Re: [pqc-forum] ROUND 3 OFFICIAL COMMENT: SPHINCS+

> In response to the recently posted issue with the SHA2 instantiation
> of
> SPHINCS+, we decided to change the function we use in the concerned
> implementations from SHA2-256 to SHA2-512. The problem was caused by
> the small internal state of SHA2. With this change, this problem is solved.

While this prevents my attack when collisions must be found using generic attacks, it would still be able to gain some 
advantage if better chosen-prefix collisions attacks on SHA-2 were found like with MD5 and SHA-1. I find this concerning 
because SPHINCS+ is designed to be collision-resilient and this means it isn't tightly chosen-prefix-collision-resilient. 

Sydney 



1

From: Doge Protocol <dogeprotocol1@gmail.com>
Sent: Monday, June 13, 2022 12:42 PM
To: pqc-forum
Cc: Andreas Hülsing; pqc-comments; Doge Protocol
Subject: Re: ROUND 3 OFFICIAL COMMENT: SPHINCS+

Is there any impact/trade-off, such as in performance, on account of this change to SHA2-512? 

On Friday, June 10, 2022 at 2:11:06 PM UTC-7 Andreas Hülsing wrote: 

The document only contains parameters that we consider to achieve the claimed security level. So, all the proposed 
parameter sets can be used. The security of SHA2-256 is sufficient for the instantiations of all functions at security level 
1 (and therefore the level 1 parameters using SHA2 can be used safely). Only at security levels 3 and 5, SHA2-256 is not 
sufficient for the instantiation of tweakable hash functions that take input messages of a length that is more than one 
message block length. Therefore, we switched the instantiation of the H and T functions to SHA2-512 at security levels 
3 and 5.  

Best wishes, 

Andreas 

On 10-06-2022 19:08, Doge Protocol wrote: 

From table in the paper, SHA2-256 corresponds to security level 1 (n = 16) and SHA2-512 corresponds 
to security levels 3,5 (n=24 , n= 32). Does this mean only security levels 3,5 should be considered for 
SPHINCS+ and level 1 is not applicable since it has below problem?  Is understanding correct?   

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/FVItvyRea28/m/-oKR3ZKpDAAJ 

On Friday, June 10, 2022 at 12:54:41 AM UTC-7 Andreas Hülsing wrote: 
Dear all, 

In response to the recently posted issue with the SHA2 instantiation of  
SPHINCS+, we decided to change the function we use in the concerned  
implementations from SHA2-256 to SHA2-512. The problem was caused by the 
small internal state of SHA2. With this change, this problem is solved.  

We updated our specification, also including other changes that we  
announced on this list since the 3rd round submission. In the attachment 
you also find a list of all the modifications we made. The code in our  
public github repository (https://github.com/sphincs/sphincsplus) is  
also updated.  

Best wishes, 

Andreas 
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From: Bas Westerbaan <bas@cloudflare.com>
Sent: Monday, June 13, 2022 12:46 PM
To: Doge Protocol
Cc: pqc-forum; Andreas Hülsing; pqc-comments
Subject: Re: [pqc-forum] Re: ROUND 3 OFFICIAL COMMENT: SPHINCS+

It depends on the platform and parameter set; on some it's faster and on some it's slower. 

Here you can see the differences for a Ryzen 5 1600: https://github.com/sphincs/sphincsplus/pull/31#issuecomment-
1146220423:~:text=commented-,10%20days%20ago,-sphincs%2Dsha256%2D256s 

On Mon, Jun 13, 2022 at 6:41 PM Doge Protocol <dogeprotocol1@gmail.com> wrote: 
Is there any impact/trade-off, such as in performance, on account of this change to SHA2-512? 

On Friday, June 10, 2022 at 2:11:06 PM UTC-7 Andreas Hülsing wrote: 

The document only contains parameters that we consider to achieve the claimed security level. So, all the proposed 
parameter sets can be used. The security of SHA2-256 is sufficient for the instantiations of all functions at security 
level 1 (and therefore the level 1 parameters using SHA2 can be used safely). Only at security levels 3 and 5, SHA2-256 
is not sufficient for the instantiation of tweakable hash functions that take input messages of a length that is more 
than one message block length. Therefore, we switched the instantiation of the H and T functions to SHA2-512 at 
security levels 3 and 5.  

Best wishes, 

Andreas 

On 10-06-2022 19:08, Doge Protocol wrote: 

From table in the paper, SHA2-256 corresponds to security level 1 (n = 16) and SHA2-512 corresponds 
to security levels 3,5 (n=24 , n= 32). Does this mean only security levels 3,5 should be considered for 
SPHINCS+ and level 1 is not applicable since it has below problem?  Is understanding correct?   

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/FVItvyRea28/m/-oKR3ZKpDAAJ 

On Friday, June 10, 2022 at 12:54:41 AM UTC-7 Andreas Hülsing wrote: 
Dear all, 

In response to the recently posted issue with the SHA2 instantiation of  
SPHINCS+, we decided to change the function we use in the concerned  
implementations from SHA2-256 to SHA2-512. The problem was caused by the 
small internal state of SHA2. With this change, this problem is solved.  

We updated our specification, also including other changes that we  
announced on this list since the 3rd round submission. In the attachment 
you also find a list of all the modifications we made. The code in our  
public github repository (https://github.com/sphincs/sphincsplus) is  
also updated.  
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