
1

From: Vamshidhar Muppidi <vamshi11us@outlook.com>
Sent: Tuesday, July 5, 2022 10:27 PM
To: pqc-comments

pqc-forum; Vamshidhar Reddy
Selected Algorithm 2022 OFFICIAL COMMENT: CRYSTALS-KYBER

Cc:
Subject:

Team,

I am writing this comment on behalf of “CRYSTALS-KYBER” to support this as most optimal one for next gen encryption model.

Tech environments are evolving every year, as more footprint of tech stack appears on cloud and on premises the data exchange
and secrecy remains more important to government and businesses which need trust from people in securing data.

Existing encryption protocols should be fast deprecated, and standard should start at 512

Thanks for standarding these for consumption & providing an opportunity to comment

Regards,
Vamshi

1

From: 'John Mattsson' via pqc-forum <pqc-forum@list.nist.gov>
Sent: Saturday, July 9, 2022 2:41 AM
To: pqc-forum
Subject: [pqc-forum] OFFICIAL COMMENT: CRYSTALS-Kyber

NIST should carefully consider which versions of Kyber to standardize as well as the algorithm choices in the
standardized versions of Kyber.

- The Kyber specification makes use of no less then 4 different SHA-3 functions (SHAKE128, SHAKE256, SHA2-256, SHA3-
512). While the four SHA-3 function can be implemented with a single Keccak API

SHAKE128(M,d) = Keccak[256](M||1111, d)
SHAKE256(M,d) = Keccak[512](M||1111, d)
SHA3-256(M) = Keccac[512](M||01, 256)
SHA3-512(M) = Keccac[1024](M||01, 256)

it looks a bit strange to use four different functions. The fixed-length SHA-3 hash functions (drop-in for SHA-2) have to
our knowledge seen little or no practical use. Instead the variable-length SHAKE functions have seen significant practical
use in implementations as well as in published and upcoming standards such as EdDSA (RFC 8032), XMSS (RFC 8391),
LMS (NIST SP 800-208), CMS (RFC 8702), RSASSA-PSS and ECDSA (FIPS 186-5 (Draft), RFC 8692), COSE (draft-ietf-cose-
hash-algs), EDHOC (draft-ietf-lake-edhoc), CPace (draft-irtf-cfrg-cpace), FROST (draft-irtf-cfrg-frost), OPRF (draft-irtf-cfrg-
voprf), CRYSTALS-Dilithium, Falcon, and SPHINCS+. Most hash function suggested after SHA-3 such as KangarooTwelve
and BLAKE3 are only specified as variable-length. We think NIST should specify CRYSTALS-Kyber using only SHAKE (we
assume that the extreme 512-bit preimage resistance of SHA3-512 is not needed for security and that SHA3-512 was
chosen just because it had the right output length).

- We think NIST should standardize Kyber512, Kyber768, Kyber1024. This aligns well with the current levels for P-256, P-
384, and P-521 where P-256 is for general usage, P-384 is for high security such as CNSA, and P-521 is good to have if
there would be any surprising attacks on ECC cryptography.

- We do not think NIST should specify the 90s versions of Kyber. Having 6 different versions are three versions too many
and would decrease interoperability. Standardizing the 90s version would likely lead to more implementations with side-
channel vulnerabilities, delay severely needed general availability of SHAKE hardware acceleration in CPUs, and reward
vendors that are stuck in the 90s.

Cheers,
John Preuß Mattsson
--
You received this message because you are subscribed to the Google Groups "pqc-forum" group.
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/HE1PR0701MB30508873F7E160055E1EB07189859%40HE1PR0701MB3050.eurprd07.prod.outlook.com.

1

From: pqc-forum@list.nist.gov on behalf of Peter Schwabe <peter@cryptojedi.org>
Sent: Saturday, July 9, 2022 5:07 AM
To: John Mattsson
Cc: pqc-forum
Subject: Re: [pqc-forum] OFFICIAL COMMENT: CRYSTALS-Kyber
Attachments: signature.asc

'John Mattsson' via pqc-forum <pqc-forum@list.nist.gov> wrote:

Dear John, dear all,

Just speaking for myself.

> NIST should carefully consider which versions of Kyber to standardize
> as well as the algorithm choices in the standardized versions of
> Kyber.
>
> - The Kyber specification makes use of no less then 4 different SHA-3
> functions (SHAKE128, SHAKE256, SHA2-256, SHA3-512). While the four
> SHA-3 function can be implemented with a single Keccak API
>
> SHAKE128(M,d) = Keccak[256](M||1111, d)
> SHAKE256(M,d) = Keccak[512](M||1111, d)
> SHA3-256(M) = Keccac[512](M||01, 256)
> SHA3-512(M) = Keccac[1024](M||01, 256)
>
> it looks a bit strange to use four different functions. The
> fixed-length SHA-3 hash functions (drop-in for SHA-2) have to our
> knowledge seen little or no practical use. Instead the variable-length
> SHAKE functions have seen significant practical use in implementations
> as well as in published and upcoming standards such as EdDSA (RFC
> 8032), XMSS (RFC 8391), LMS (NIST SP 800-208), CMS (RFC 8702),
> RSASSA-PSS and ECDSA (FIPS 186-5 (Draft), RFC 8692), COSE
> (draft-ietf-cose-hash-algs), EDHOC (draft-ietf-lake-edhoc), CPace
> (draft-irtf-cfrg-cpace), FROST (draft-irtf-cfrg-frost), OPRF
> (draft-irtf-cfrg-voprf), CRYSTALS-Dilithium, Falcon, and SPHINCS+.
> Most hash function suggested after SHA-3 such as KangarooTwelve and
> BLAKE3 are only specified as variable-length. We think NIST should
> specify CRYSTALS-Kyber using only SHAKE (we assume that the extreme
> 512-bit preimage resistance of SHA3-512 is not needed for security and
> that SHA3-512 was chosen just because it had the right output length).

I don't have a very strong opinion about this, but the reason we use different functions from the Keccak family is that we
can rely on their internal domain separation. Implementing everything with just SHAKE, would require some explicit
domain separation. That can of course be done and in a pure software implementation of Kyber only, this is not a
problem. However, when you want to implement Kyber using some existing hash API, you need two calls to the update
function (one to absorb the domain separation and one to absorb the actual input) or you have to copy domain
separation and input to a new buffer. If you have a non-incremental hash API, the former is not an option.

2

Also, when using explicit domain separation, there is a question if you want to simply concatenate the domain-
separation byte and the input, or first pad domain separation to a full block. Padding would increase the number of
Keccak permutations, which already now cost most of the CPU cycles of Kyber.

All the best,

Peter

--
You received this message because you are subscribed to the Google Groups "pqc-forum" group.
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/YslFJH689bBNszZr%40disp9258.

1

From: 'John Mattsson' via pqc-forum <pqc-forum@list.nist.gov>
Sent: Saturday, July 9, 2022 7:24 AM
To: Peter Schwabe
Cc: pqc-forum
Subject: Re: [pqc-forum] OFFICIAL COMMENT: CRYSTALS-Kyber

Hi Peter,

Thanks for the quick answer. I see now that the design choice of using four different SHA-3 function because of domain
separation is clearly explained in the Kyber specification. Sorry for missing that. I don't have a strong opinion. Maybe
using four different SHA-3 functions is the best tradeoff. But requiring four different functions like (SHAKE128,
SHAKE256, SHA2-256, SHA3-512) or (AES-256, SHA-256, SHA-512, SHAKE256) might not work for future hash functions
like the "winner" of the NSIT LWC project. That problem could however be solved with explicit domain separation at a
later time.

Cheers,
John

On 2022-07-09, 11:06, "Peter Schwabe" <peter@cryptojedi.org> wrote:

'John Mattsson' via pqc-forum <pqc-forum@list.nist.gov> wrote:

Dear John, dear all,

Just speaking for myself.

> NIST should carefully consider which versions of Kyber to standardize
> as well as the algorithm choices in the standardized versions of
> Kyber.
>
> - The Kyber specification makes use of no less then 4 different SHA-3
> functions (SHAKE128, SHAKE256, SHA2-256, SHA3-512). While the four
> SHA-3 function can be implemented with a single Keccak API
>
> SHAKE128(M,d) = Keccak[256](M||1111, d)
> SHAKE256(M,d) = Keccak[512](M||1111, d)
> SHA3-256(M) = Keccac[512](M||01, 256)
> SHA3-512(M) = Keccac[1024](M||01, 256)
>
> it looks a bit strange to use four different functions. The
> fixed-length SHA-3 hash functions (drop-in for SHA-2) have to our
> knowledge seen little or no practical use. Instead the variable-length
> SHAKE functions have seen significant practical use in implementations
> as well as in published and upcoming standards such as EdDSA (RFC
> 8032), XMSS (RFC 8391), LMS (NIST SP 800-208), CMS (RFC 8702),
> RSASSA-PSS and ECDSA (FIPS 186-5 (Draft), RFC 8692), COSE
> (draft-ietf-cose-hash-algs), EDHOC (draft-ietf-lake-edhoc), CPace
> (draft-irtf-cfrg-cpace), FROST (draft-irtf-cfrg-frost), OPRF

1

From: 'Kelsey, John M. (Fed)' via pqc-forum <pqc-forum@list.nist.gov>
Sent: Thursday, July 21, 2022 5:34 PM
To: John Mattsson; Peter Schwabe
Cc: pqc-forum
Subject: Re: [pqc-forum] OFFICIAL COMMENT: CRYSTALS-Kyber

Just as an aside, you could use cSHAKE for this, which has a domain separation string (“customization string”) as a built-
in component. That’s specified in SP 800-185.

--John

On 7/9/22, 07:24, "'John Mattsson' via pqc-forum" <pqc-forum@list.nist.gov> wrote:

Hi Peter,

Thanks for the quick answer. I see now that the design choice of using four different SHA-3 function because of
domain separation is clearly explained in the Kyber specification. Sorry for missing that. I don't have a strong
opinion. Maybe using four different SHA-3 functions is the best tradeoff. But requiring four different functions
like (SHAKE128, SHAKE256, SHA2-256, SHA3-512) or (AES-256, SHA-256, SHA-512, SHAKE256) might not work for
future hash functions like the "winner" of the NSIT LWC project. That problem could however be solved with
explicit domain separation at a later time.

Cheers,
John

On 2022-07-09, 11:06, "Peter Schwabe" <peter@cryptojedi.org> wrote:

'John Mattsson' via pqc-forum <pqc-forum@list.nist.gov> wrote:

Dear John, dear all,

Just speaking for myself.

> NIST should carefully consider which versions of Kyber to standardize
> as well as the algorithm choices in the standardized versions of
> Kyber.
>
> - The Kyber specification makes use of no less then 4 different SHA-3
> functions (SHAKE128, SHAKE256, SHA2-256, SHA3-512). While the four
> SHA-3 function can be implemented with a single Keccak API
>
> SHAKE128(M,d) = Keccak[256](M||1111, d)
> SHAKE256(M,d) = Keccak[512](M||1111, d)
> SHA3-256(M) = Keccac[512](M||01, 256)
> SHA3-512(M) = Keccac[1024](M||01, 256)
>
> it looks a bit strange to use four different functions. The
> fixed-length SHA-3 hash functions (drop-in for SHA-2) have to our

1

From: pqc-forum@list.nist.gov on behalf of Peter Schwabe <peter@cryptojedi.org>
Sent: Thursday, July 21, 2022 1:17 PM
To: Kelsey, John M. (Fed)
Cc: John Mattsson; Peter Schwabe; pqc-forum
Subject: Re: [pqc-forum] OFFICIAL COMMENT: CRYSTALS-Kyber
Attachments: signature.asc

"'Kelsey, John M. (Fed)' via pqc-forum" <pqc-forum@list.nist.gov> wrote:

Dear John,

> Just as an aside, you could use cSHAKE for this, which has a domain
> separation string (“customization string”) as a built-in component.
> That’s specified in SP 800-185.

Yes, indeed. That would be the standardized solution, but it would be quite a bit more costly, because domain
separation takes an additional Keccak permutation.

All the best,

Peter

--
You received this message because you are subscribed to the Google Groups "pqc-forum" group.
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/YtmKJS%2Bws5xjFWaP%40disp9258.

1

From: 'Kelsey, John M. (Fed)' via pqc-forum <pqc-forum@list.nist.gov>
Sent: Wednesday, July 27, 2022 12:42 PM
To: Peter Schwabe
Cc: John Mattsson; Peter Schwabe; pqc-forum
Subject: Re: [pqc-forum] OFFICIAL COMMENT: CRYSTALS-Kyber

That can be precomputed for a given name/customization string. I’m not sure it that would work in your Kyber
implementation, but in general, if you know the customization string, you can precompute the resulting starting value
for the rest of the SHAKE computation. So if you are in a position where you are using a fixed set of customization
strings for each of the five hashes you’re calling, you can just precompute the starting states for their customization
strings once, and then use them as many times as you need to.

--John

On 7/22/22, 11:35, "Peter Schwabe" <peter@cryptojedi.org> wrote:

"'Kelsey, John M. (Fed)' via pqc-forum" <pqc-forum@list.nist.gov> wrote:

Dear John,

> Just as an aside, you could use cSHAKE for this, which has a domain
> separation string (“customization string”) as a built-in component.
> That’s specified in SP 800-185.

Yes, indeed. That would be the standardized solution, but it would be
quite a bit more costly, because domain separation takes an additional
Keccak permutation.

All the best,

Peter

--
You received this message because you are subscribed to the Google Groups "pqc-forum" group.
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/SA1PR09MB7629DF87E3D4E7931511E69D8A979%40SA1PR09MB7629.namprd09.prod.outlook.com.

1

From: pqc-forum@list.nist.gov on behalf of Markku-Juhani O. Saarinen
<mjos.crypto@gmail.com>

Sent: Wednesday, July 27, 2022 2:05 PM
To: Kelsey, John M. (Fed)
Cc: Peter Schwabe; John Mattsson; pqc-forum
Subject: Re: [pqc-forum] OFFICIAL COMMENT: CRYSTALS-Kyber

On Wed, Jul 27, 2022 at 5:42 PM 'Kelsey, John M. (Fed)' via pqc-forum <pqc-forum@list.nist.gov> wrote:

That can be precomputed for a given name/customization string. I’m not sure it that would work in your Kyber
implementation, but in general, if you know the customization string, you can precompute the resulting starting value
for the rest of the SHAKE computation. So if you are in a position where you are using a fixed set of customization
strings for each of the five hashes you’re calling, you can just precompute the starting states for their customization
strings once, and then use them as many times as you need to.

Hi John,

I recall that some earlier-round versions of PQC Lattice algorithms had a running variable (index) as the customization
string, which created the two-permutation requirement. This hit their performance hard (as those were not fixed strings,
as intended for cSHAKE) so it was changed.

For Kyber and Dilithium, the XOF input in the prominent ExpandA phase is a tuple of a "seed" and one or two running
indices "i"/"j". The indices allow parallelization of the ExpandA step. Thinking about it, this might look more naturally like
a NIST SP 800-185 TupleHashXOF than a cSHAKE use case. But in practice, one just wants to have an efficient,
unambiguous domain-separating padding for these inputs -- and only one permutation to generate a block of XOF
output.

Current high-end CPU architectures benefit from Keccak parallelization a lot. And as a future consideration, enabling
parallelization with appropriate modes shortens the overall "critical path" of the PQC algorithm and thereby also lowers
the absolute lower bound on its execution latency. It has been pointed out (thanks, Bas Westerbaan!) that the
requirement in Kyber encapsulation op to hash the (ephemeral) public key creates a surprisingly big parallelization
bottleneck, so perhaps one wants to enable parallelization there too.

From a hardware design perspective, I need to say that while a cSHAKE "customization string" may work reasonably well
in CPUs, it will significantly hit either size or performance of Keccak hardware. The 1600-bit state of Keccak is very large,
and having multiple copies of it quickly available is awkward (as kind of a register mux, 1600 bits is enormous). Loading
the permutation state over a bus to the internal state can take as long as running the 24-round permutation itself. If any
kind of rapid initialization is provided for the state, it is probably zeroization, as that allows short inputs to be rapidly
hashed (a very common use case). So an efficient (short!) padding scheme is preferred to resetting the entire 1600-bit
state to some random constant.

By the way, I think most cryptographers agree with the suggestion from the Keccak team (Gilles Van Assche, July 8,
"Reduced-round Keccak for PQ schemes") that a 12-round Keccak is sufficient for essentially any security level. This
saves perhaps 25+% of software power & latency for Kyber and Dilithium (and almost 50% for SP 800-208 and Sphincs+).

Cheers,
- markku

1

From: pqc-forum@list.nist.gov on behalf of Peter Schwabe <peter@cryptojedi.org>
Sent: Thursday, July 28, 2022 4:29 AM
To: Kelsey, John M. (Fed)
Cc: Peter Schwabe; John Mattsson; pqc-forum
Subject: Re: [pqc-forum] OFFICIAL COMMENT: CRYSTALS-Kyber
Attachments: signature.asc

"Kelsey, John M. (Fed)" <john.kelsey@nist.gov> wrote:

Dear John, dear all,

> That can be precomputed for a given name/customization string.

> I’m not sure it that would work in your Kyber implementation, but in
> general, if you know the customization string, you can precompute the
> resulting starting value for the rest of the SHAKE computation. So if
> you are in a position where you are using a fixed set of customization
> strings for each of the five hashes you’re calling, you can just
> precompute the starting states for their customization strings once,
> and then use them as many times as you need to.

In a software implementation of just Kyber, yes, totally. On microcontrollers the additional space needed for the
precomputed states is a bit annoying, but that's probably not too dramatic. If you have to use a pre-defined hashing API,
it may be more tricky, depending on the API.

All the best,

Peter

--
You received this message because you are subscribed to the Google Groups "pqc-forum" group.
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-
forum/YuJIxfKmuFzkCoK6%40disp9258.

