

LWC use cases

External memory encryption

September 13, 2020

- Typical secure element/smart card: internal flash memory (everything on single chip)
- Our goals:
 - Use external (flash) memory
 - Achieve same security level

IC is more expensive

- Embedded NVM requires additional process steps and test time
- Additional yield loss

No flexibility on memory size

- Supporting several memory size means designing several ICs
- It takes about 1 year to support a new memory size
- Not available on latest technology nodes

* Embedded NVM: here we mean "Multiple Time Programmable NVMs" such as EEPROM, flash and MRAM. Strictly speaking ROM and OTP are "NVMs". In this document we use "NVM" as a short hand for "Multiple Time Programmable NVMs".

What could go wrong ?

- On the fly traffic analysis
- Replay attacks

Clear need for:

- Confidentiality
- Integrity
- Data freshness
- \rightarrow We need an Authenticated Encryption scheme.

Same chip is doing encryption and decryption

- Key is unique for each chip
- Key can be generated on-chip, nobody needs to know it
- Key can be stored in internal OTP (or may be output of a PUF)

Memory divided in "chunks"

- Typical chunk size between 64 and 256 bytes
- Each chunk is a message to protect using AEAD
- So each chunk needs a NONCE and has a TAG
- NONCE generated on-chip, stored in external memory
- Ciphertext and TAG also stored in external memory
- Associated data:
 - Typically none or just few bytes
 - Typically computed on-chip, so available for pre computation before getting external memory content

- AEAD "approved" by ANSSI, BSI, NIST
- 256 bits security for confidentiality (GSMA requirement for SIM applications)
- Secure against "logical attacks"
 - On the fly traffic analysis
 - Replay attacks
- Secure against "physical attacks"
 - Side channel attacks (power analysis, EM analysis)
 - Fault attacks (laser fault injection)
- Read as fast as the external memory:
 - Around 100Mbytes/s for QSPI flash
 - Much higher for RAMs
- ightarrow Need fast decryption protected against physical attacks

Encryption (write to external memory):

- Attacker controls plaintext (in practice only some part)
- Attacker observes NONCE, ciphertext, TAG
- NONCE is never reused

Decryption (read from external memory):

- Attacker controls NONCE, ciphertext, TAG
- Attacker observes the outcome of decryption and plaintext (when TAG ok)
- Unlimited trials
 - Decryption has to be fast due to market requirements
 - The chip cannot count anything as NVM is external

\rightarrow Both strongly exposed to side channel and fault attacks

No matter xxx, AES is difficult to protect against physical attacks and then it is power hungry, huge and slow.

GCM:

- GCM hardware enlarge the attack surface
- GCM does not protect the integrity of the plaintext !
 - TAG is computed from the ciphertext
 - Fault injected during AES computation is not detected by TAG check
- Two-pass needed in the end

CCM:

- Two-pass algorithm
- OCB:
 - Remains patented as far as semiconductor are concerned
 - Not "NIST approved", show stopper for our customers

- Tiempo point of view as a semiconductor manufacturer / IP vendor
- DryGASCON (using "fast" profile):
 - Minimize the product "Power x Area x Latency"
 - Cheap to develop and maintain: avoid to protect a crypto primitive against side channels and fault attacks
- SAEAES
 - Allows full reuse of EAL5+ certified AES implementation
- Candidates based on AES round or AES sbox AND supporting 256 bit security
- Candidates based on Keccak variants AND supporting 256 bit security
 - Allow to focus design efforts on that permutation (as it is in SHA3, people have to work on it anyway)
- *ISAP would be at second place if it supported 256 bit security
- *COMET would be at same level as SAEAES if it supported 256 bit security

Tiempo point of view as a semiconductor manufacturer / IP vendor

	DryGASCON	ISAP	SAEAES	Others
Dev effort (man.month)	1	1	1 ¹	9
Test chip needed	No	No	No ¹	Yes
Security eval. effort	Low	Low	High	High
P.A.L. product*	Lowest	Low	High	Medium
Replace AES-CCM	Yes	Yes ²	Yes	after test chip evaluation ³

*Power x Area x Latency of fully protected implementation.

Note 1: only because Tiempo already has an EAL5+ certified AES IP.

Note 2: only on projects in which:

- 128 bit security is acceptable
- AND with sufficient volumes to justify a dedicated development

Note 3: test chip dev. and eval. cost and time maybe a show stopper