
Toolchain for Timing Leakage Analysis of NIST
Lightweight Crypto Candidates

Adam Blatchley Hansen? Eske Hoy Nielsen Morten Eskildsen

September 14, 2020

Abstract. With recent advances in IoT technology and lightweight de-
vices, an ever increasing number of highly constrained systems now
communicate over networks. Modern cryptographic algorithms are often
poorly suited to the limitations of such devices, which has led to NIST
publishing a call for algorithms to be considered for new lightweight
standards.

As such devices are often deployed into adversarial environments, and
may not have the luxury of large caches, or hardware support for crypto-
graphic primitives, proper side channel resistance is an important prop-
erty for any new standard. We have collected a set of side channel analysis
tools, and used them to evaluate all 32 candidates in the second round
of the standardization process.

We provide the results of running our toolchain on all reference imple-
mentations, and show some of the timing leakages and design patterns
we discovered, and discuss the strengths and weaknesses of the various
tools.

We have compiled our toolchain into an easy to use Docker image target-
ing the competition API, which we have made available for candidates
to use for development purposes for the rest of the competition. Our
pipeline is available at GitHub1 .

?blatchley@cs.au.dk
1 https://github.com/blatchley/Timing-Analysis-Pipeline

1

https://github.com/blatchley/Timing-Analysis-Pipeline
mailto:blatchley@cs.au.dk

1 Introduction

This work documents our toolchain for conducting timing-leakage based analysis
on software implementations of cryptographic algorithms. Specifically, we focus
on candidates in the NIST Lightweight Cryptography Standardization Process
(LWC) [CSR20b], as candidates for this process are required to submit a C
implementation of a cryptographic primitive with a common header. In addi-
tion to cryptographic-security requirements, the submission guidelines state the
following for side-channel security [CSR18, Section 3.5]:

The implementations of the AEAD algorithms and the optional hash
function algorithms should lend themselves to countermeasures against
various side-channel attacks, including timing attacks, simple and dif-
ferential power analysis (SPA/DPA), and simple and differential elec-
tromagnetic analysis (SEMA/DEMA).

We analyse all the submissions for constant time variations, Utilizing vari-
ous static and dynamic analysis tools such as dudect [Rep17], FlowTracker and
ctgrind [Lan10], we show that several of the implementations contain variable
time code. We note that these are reference implementations, and are not yet
required to be constant time, but may be in the future.

In this report we provide our complete toolchain in an easy to use Docker-
image, we show examples of timing leakages and design patterns detected by
our pipeline in various implementations, and we reflect on the strengths and
weaknesses of the tools we have used. As the standardization process moves for-
ward the focus shifts to more side-channel resistant implementations, we hope
our efforts in selecting and implementing these tools with easy to use wrapper
scripts will allow authors to more easily integrate timing leakage testing into
their development process.

1.1 Side Channel Security

Timing leakage which is dependent on secret data can be devastating to the
security of a protocol. The variation does not have to be very big, as the attacker
might be able to remove noise by rerunning the process and averaging over the
results. If done a sufficient amount of times, it might be able to clearly identify
the differences. [Por19]

Our combination of static, dynamic and fuzzing based tools helps detect
many different sources of potential timing leakage.

Variable Time Instructions. Depending on the underlying hardware and archi-
tecture some instructions may take shorter time depending on the input. This
is true for the notorious DIV assembly instruction on all AMD and Intel archi-
tectures, where smaller divisors yields faster execution. Similarly for many other
instructions like MUL, UMULL, FCOS etc. [Sch16]. Even shifts can be variable time
on some architectures [Por19].

Branches and Conditional Jumps Conditional jumps/branching on secrets is in-
herently bad. Even if the exact same amount of work happens in both branches,
branch prediction might be utilized to leak the secret causing the branching [AKS06].
As such, branching on secret values should be avoided altogether.

Lookup-based S-boxes Another example of potentially variable time behavior
found in some implementations of modern encryption schemes like AES is the use
of substitution-boxes (S-boxes) implemented using lookup tables. They inject a
non-linear operation into the cipher, and are carefully designed to thwart modern
techniques such as such as linear and differential cryptanalysis.

A full lookup table does not necessarily fit into the fastest CPU cache (L1/L2
cache) registers, so depending on the index, it might need to load the data which
is much slower. If the index is based upon a secret value / key, then this delay
can be used to deduce information about the secret value [Tez19].

Furthermore, several studies have shown that real world timing attacks on
S-boxes are indeed possible. This has typically been done by analyzing AES
implementations in OpenSSL [Ber05,CRMM19]. These results include demon-
strations of cache-level timing attacks carried out over a network, as well as
examples where even when the full S-box is in the cache, it can be evicted or
otherwise retrieved in variable time. Ashokkumar et al. targeted an S-box mea-
suring 256 bytes, which corresponded to 4 cache lines of each 64 bytes. They
examine version 1.0.2p of OpenSSL and the attacker scenario requires them to
be using the same CPU core as the victim process. They use a cache access-
driven attack, where they just need to know which cache line was accessed. As
there are four cache lines, an access reveals two bits of the key used for indexing.
The remaining bits refer to the column of the cache line. They utilize a spy
program with 200 threads and constantly flushing/evicting the cache, thus re-
sulting in cache misses. This cause the encryption/decryption to be interrupted
around 160 times, hence giving the spy program the possibility to inspect the
cache access. By knowing around 50 blocks of plaintext for encryption or the
ciphertext for decryption and then observing cache access in round 2, they are
able to deduce the key with a success rate of 90%.

A key takeaway we see here is that cache-timing attacks on lookup based
S-boxes are a very real security concern, as there exist realistic security models
where the adversary can have very fine grained knowledge as to the contents of
the cache during execution.

1.2 Related Work

At the time of the standardization process for AES, side-channel analysis was
not as well understood as it is today. There were demands stating that imple-
mentations should be side-channel resistant, but NIST themselves commented
that a table lookup implementation of AES was not vulnerable. However, as
discussed above, it was later proved by e.g. Bernstein in [Ber05] that it is indeed
vulnerable. Bernstein used cache-based attacks to conduct his attack which has
since inspired many similar attacks and techniques.

There have been some larger surveys of recent developments in lightweight
cryptographic algorithms [EKP+07], however these have focused more on bench-
marks and design discussion, rather than the side-channel security of actual
implementations.

An approach of reproducing timing behaviour execution can be found in [Che14].
Here the authors construct a time-deterministic replay mechanism for replaying
the execution of a real program. They end up being 1.85% within the timing
of a real execution. This includes studying cache state, preemptions, processor
scheduling etc. The paper look into detecting covert side-channels, but the tech-
nique is interesting as it might be possible to detect variable time behaviour
execution of a program.

In [CSY16] the authors aim at detecting timing attacks. Here they rely on
performance counters provided by the underlying micro architecture and kernel-
support for the detection. They show that it is indeed feasible to execute the
cache-based attacks, and that it requires solid understanding for detecting ex-
ploitation from other processes. Hence, it is better to prevent the attacks in the
first place.

2 Toolchain

In order to be able to detect the various kinds of variable behaviour described in
section 1.1 we need different approaches. Thus, our toolchain consists of several
tools. Namely FlowTracker, dudect and ctgrind. Although they all perform vari-
able time analysis, they use different techniques for detecting it. In some areas
they overlap while they complement in others.

2.1 dudect

In the paper “dudect: Dude is my code constant time? ” [RBV17] the authors
construct a very simple tool to measure the execution time of a whole program.
It does so by measuring the amount of CPU cycles executed during program
execution. This yields a very fine-grained timer. However, like all other applica-
tions it is affected by the OS, exact workload at the moment of execution and
other sources of noise. To combat these external sources dudect runs several mil-
lion times and performs a statistical test on the data after removing outliers. As
dudect is running a statistical analysis and not a static analysis it does not have
any assumptions about the underlying hardware or timing of microcode instruc-
tions. However, it cannot tell us exactly where any non-constant time execution
happens, as it treats the program as a black box.

A strong argument for using this tool is the simplicity. To observe different
behaviour one would supply different input. dudect takes care of generating and
inputting random values to be used with a black box approach. If knowledge
about special cases are known, then it can be easily incorporated. dudect uses
the concept of input classes. These correspond to different types of input and
special cases, such as a range of all-zeros or some similar edge-case values. The

source code for dudect has to be included when compiling, but it is merely 300
lines of C code.

Based upon all the different executions, dudect will continuously for every one
million execution output whether or not it believes the application is constant
time or not. It can obviously never conclude that the application is constant
time, but it can conclude that it is not.

2.2 FlowTracker

FlowTracker uses static analysis on the source code to detect timing vulnerabil-
ities [RQaPA16]. It does so by integrating into the LLVM compiler. During code
generation FlowTracker injects an additional compilation pass whichs works on
the program’s intermediate representation (IR). By analysing the Static Single
Assignment (SSA) form it can produce a sparse graph of the information flow
in the target program. Generally two types of time-based information leaks are
detected.

1. Secret data affecting program execution. E.g. when code blocks are
executed only if some condition involving secret data is fulfilled. This is
similar to section 1.1 about branches and conditional jumps.

2. Memory indexed by secret data. Again, similar to section 1.1 where
table lookups, S-boxes and alike can leak.

FlowTracker aims at running as late as possible in the compilation process.
The argument for this is that even though code might yield a constant time im-
plementation in the current compiler version, later compiler versions might result
in variable time behaviour. By running after the main compilation phases, new
compiler optimizations will be detected by FlowTracker. However, FlowTracker
does not inspect the final architecture-dependent instructions, which could end
up causing variable time execution even if the IR had no indication of it.

A limitation of FlowTracker’s design is that any dynamically shared libraries
are not considered in the analysis. Simple yet wrong utilizations of C-functions
like memcmp() can cause variable time behaviour. However, as this function re-
sides in a dynamically linked library, FlowTracker does not directly detect im-
proper usage of it.

Further limitations of Flowtracker is that it does not analyse C code directly
but instead analyses LLVM, in many cases this is an advantage as we analyse
code that is closer to the final form. In our case this is a slight disadvantage since
NIST specified that GCC 5.4.0 is the target compiler for this competition. GCC
does not use LLVM and therefore we had to stick with clang. The disadvantage
here is that different compilers might reverse countermeasures and introduce
branches instead, which could circumvent efforts to make code constant time.

2.3 Ctgrind

ctgrind uses dynamic analysis to evaluate timing vulnerabilities in compiled
code [Lan10]. It is very similar to TIMECOP, which also uses valgrind to de-
tect timing dependence on secret data, which has recently been added to the

SUPERCOP platform. ctgrind assumes that code is being run on processors
with constant time instructions and thereby only focus on timing vulnerabili-
ties where branches taken or memory accessed depends on secret inputs. It does
so by keeping track of which bits in memory and which CPU registers contain
secret data while executing the program.

Memcheck in valgrind already does a very similar thing to this, it keeps track
of memory addresses and registers that contain uninitialized data and where it is
used in branching or memory access. Therefore ctgrind uses a patched version of
valgrind where the memcheck tool has been modified to not track uninitialized
data but secret data, valgrind knows what secret data is by intercepting calls to
ct poison and ct unpoison functions defined in a ctgrind shared library.

The main disadvantage of using ctgrind is that it is a dynamic analysis and
therefore it will only find vulnerabilities on lines of code that are executed with
the given input. Since the tool is not coverage-guided there might be inputs
that cover more code than others, and we cannot reasonably check all valid
inputs. Therefore ctgrind cannot promise to find all branch and memory access
vulnerabilities in a program, however as long as valgrind doesn’t have bugs,
ctgrind will find all branch and memory access vulnerabilities in the code covered
by the given input.

Advantages of ctgrind incluide its detailed output and that it does not rely on
timing. ctgrind will report all problems of code covered along with line numbers
making it easy to identify where the problems are in the code. Since execution
time is not considered by ctgrind it will report any problem no matter how big
or small a timing difference that code introduces. Other advantages of ctgrind
is the speed, due to cryptographic functions often having large code coverage
no matter the input, therefore only few executions of the function are typically
necessary for experimental evaluations.

3 Evaluation of Implementations

3.1 Method

We ran our pipeline on all the 32 candidates[CSR20b] and their different imple-
mentations. Among the implementations are a reference implementation, which
is the overall implementation and not tailored for any specific architecture, as
well as multiple implementations targeting different security levels such as 128-
and 256-bit keys. Some of the candidates had implementations for ARM which
we have skipped due to our own hardware constrains. In total we had 89 ref-
erence implementations, and 115 compilable implementations if non-reference
implementations are included.

3.2 Findings

Table 1 shows the candidates for which our tools flagged one or more of the
reference implementations as having potential side-channel leakage. Note that

just because a candidate was flagged in this table does not necessarily mean that
there exists a viable side-channel attack on the implementation. In the following
section we will look at some common patterns which caused implementations
to be flagged, before taking a deeper dive on some specific implementations in
section 4.

In all, dudect found timing leakages in some or all of the implementations for 8
candidates. ctgrind flagged 14 candidates, including all of the implementations
flagged by dudect, and FlowTracker flagged 11 candidates, including 5 which
were not flagged by dudect or ctgrind.

We also note that three of the candidates, Gimli, Grain-128 and Subterranean
2.0, submitted implementations which did not exactly follow the API specified
by NIST. As such, these required us to perform minor tweaks for our tooling
to work. These minor tweaks included renaming files and including the header
file specifying the AEAD API. Because the header file only contains function
definitions and no code, this cannot influence the results of the tools.

3.3 Detections

Just because an implementation was flagged by one of our tools does not nec-
essarily mean it contains side-channel vulnerabilities. In order to evaluate the
potential sources of leakage, we reviewed the source code for each of the flagged
candidates to try and identify why each candidate was flagged, and whether the
detected behaviour constitutes a security risk.

Among the flagged implementations, we found several groups of candidates
which were being flagged for very similar pieces of code relating to indexing into
S-boxes, as well as several candidates which used similar reference block cipher
implementations.

Finally, two of the candidates which were detected by our initial dudect scans,
DryGascon and Comet, had their own interesting timing leakages. These are
discussed in Section 4.

3.4 Constant-Time S-box lookups

S-boxes are a key component of modern substitution-permutation ciphers, and
are often represented in code as table lookups. As discussed in Section 1.1, This
can be an issue e.g. when you access a table using an index which is based on
secret data. If an adversary could measure which data is loaded into the cache
at the point when the S-box is used, it could leak information about the secret
data. An example of code naively updating state using an S-box can be seen in
Figure 1.

Performing a full cryptanalysis for each set of S-boxes is outside the scope of
this project, however we note some important differences in the types of S-boxes
used by the underlying block ciphers in Section 4.3.

MixFeed and SAEAES candidates, as well as some of the implementations of
ESTATE all use variations of the AES blockcipher as an underlying primitive.
These were all flagged by both dudect and ctgrind.

Candidate dudect ctgrind FlowTracker Notes
ACE # #
ASCON # # #
COMET #
DryGASCON H#
Elephant H# H# # ctgrind finds more than dudect
ESTATE H#
ForkAE H#
GIFT-COFB # # #
Gimli # # NIST format not followed
Grain-128AEAD # # # NIST format not followed
HYENA # #
ISAP # # #
KNOT # #
LOTUS #
mixFeed
ORANGE
Oribatida # # #
PHOTON-Beetle # # Also provided bitsliced asm files
Pyjamask # # #
Romulus # #
SAEAES #
Saturnin # # #
SKINNY # #
SPARKLE # # #
SPIX # #
SpoC # #
Spook # # #
Subterranean 2.0 # # # NIST format not followed
SUNDAE-GIFT # # #
TinyJambu # # #
WAGE # #
Xoodyak # # #

Table 1. Reference implementations and the tools that flagged them as being variable
time. Marker refers to issues in all implementations, H# translates to only a subset
of the implementations being flagged. Finally, # refers to no implementations being
flagged.

const unsigned char sbox [1 6] = { 12 , 6 , 9 , 0 , 1 , 1 0 , 2 , 1 1 , 3 , 8 , 5 , 1 3 , 4 , 1 4 , 7 , 1 5 } ;
// . . . / /

void SubCell (unsigned char s t a t e [4] [4]) {
int i , j ;
for (i = 0 ; i < 4 ; i++)

for (j = 0 ; j < 4 ; j++)
s t a t e [i] [j] = sbox [s t a t e [i] [j]] ;

}

Fig. 1. Substitution step in the ForkAE implementation, using a 4 bit S-box

ForkAE, Romulus, LOTUS and HYENA candidates, as well as the non-AES
ESTATE implementations were also all flagged by ctgrind due to S-box index-
ing, with one of the ForkAE implementations also triggering dudect These imple-
mentations used reference implementations of the GIFT and SKINNY (ForkAE,
Romulus) tweakable block ciphers.

The remaining candidates detected by ctgrind, were all again flagged for var-
ious indexing into lookup-based S-boxes. We also note that beside the reference
implementation, PHOTON-Beetle also provided a bitsliced ASM implementa-
tion which fixed the leakages.

3.5 FlowTracker

The FlowTracker results did confirm most of the dudect and ctgrind results,
however it also flagged 5 candidates that neither dudect or ctgrind flagged. SPIX,
SpoC, ACE, KNOT and Gimli were all flagged only by FlowTracker. Both ACE,
SPIX and SpoC have been flagged with very similar lines of code that seem to
be false positives. An example of the flagged code can be seen in Figure 2. This
is a false positive since there is no branching and memory access is not indexed
by secret data. Instead we have a for loop that always runs a constant number
of iterations with memory look up on constant indexes. Therefore there is no
variation in running time in the flagged code.

We were unable to see if KNOT and Gimli were also false-positives as it was
less obvious what those code snippets did, and in general it can be hard to verify
whether a result is a false positive or not.

const unsigned char r a t e byte s256 [8] = { 8 , 9 , 10 , 11 , 24 , 25 , 26 , 27 } ;
(. . .)
for (i = 0 ; i < 8 ; i++)

s t a t e [r a t e byte s256 [i]]ˆ=k [i] ;

Fig. 2. One of the SPIX lines flagged by FlowTracker

4 Discussion

In this section look at two candidates which displayed timing leakages other than
lookup based S-boxes, namely the DryGascon and COMET implementations, as
well as taking a closer look at the problem of indexing into S-Boxes using secret
data.

We decided to look deeper into DryGascon as this was the candidate that
showed the highest timing dependency on secret data in the dudect report. We
also found DryGascon interesting as dudect only observed timing dependency in
the 256-bit implementation and not in the 128-bit implementation despite having
almost identical codebase. COMET was also interesting as it showed high timing
variation and all implementations were flagged.

4.1 DryGASCON

DryGASCON [Rio19] showed some quite clear timing problems. On the 256
bit implementations dudect returned almost immediately concluding that it was
definitely not constant time. Testing involved 1.46 million runs.

We identified a timing leakage based on the input key, where small keys would
be repeated then scrambled using the CoreRound function, with this process
repeated a number of times dependent on the contents of the key. We reached
out to the author who confirmed this was a source of timing leakage, but believed
that it would not be exploitable in practice due to how little information it leaks.
For more details on the flagged code, see Appendix A.

4.2 COMET

COMET was one of the non AES candidates that was most heavily flagged.
Both dudect and ctgrind reported all 4 implementations as variable time, while
FlowTracker did not report problems in any of the implementations.

dudect marked all four implementations as “definitely not constant time”
within 5-20 million executions. Based on this we investigated further with ctgrind
which showed the same single line of offending code in all four implementation,
with an additional 15 lines being flagged in the AES implementations due to
S-boxes.

i f (Z [p−1] & 0x80){ /∗ 10000000 ∗/
Z [0] ˆ= 0x1B ; /∗ 00011011 ∗/

}

Fig. 3. Variable time code in COMET found by ctgrind.

Figure 3 shows the offending line of code found using ctgrind. The problem
is that there is a conditional statement branching on the state variable of their
block cipher, which is initialised using the secret key and the nonce.

For more details about the COMET timing leakage, as well as a bitsliced
patch we developed which fixed the timing leakage, see Appendix B

We reached out to the authors about what level of side channel security they
claimed. They responded, highlighting the fact that the code they provided on
the NIST website was only reference code, and was only intended to help readers
understand the specification and generate KAT’s (Known Answer Tests,) and
was not designed to be constant time or to optimise it’s runtime. They also noted
that if COMET moves into the next round, they will address these concerns.

4.3 Underlying Block-Ciphers

The implementations leverage a number of reference block ciphers, from AES to
SKINNY and GIFT.

AES is an interesting choice, because while it is a widely accepted and
well analysed block cipher, it is also notoriously difficult to efficiently imple-
ment in constant time or in low-memory environments without a large falloff
in performance.[Por18][Ber05] This issue has been partially solved by the intro-
duction of native AES-NI opcodes present in recent x86 CPU, allowing for fast,
small, constant time AES implementations. However, specifically in this com-
petition the entire purpose is to find cryptographic schemes for lightweight and
IoT devices, which includes low memory or power limited environments, and
environments which likely won’t support these new x86 opcodes. We also note
that the potential of timing issues in AES is not merely academic, as multiple
timing attacks have been demonstrated on real world implementations of AES.

Conversely, SKINNY and GIFT represent newer block ciphers, developed
specifically for lightweight environments.They use a range of techniques to im-
prove over AES, including the option for 64 bit block sizes, (with 4 bit S-boxes,)
a very lightweight key scheduler, sparser diffusion layers, with the S-boxes and
permutation layers being designed such that they can be implemented using
only a very low number of bitwise AND/NOR/XOR gates. As such, we expect
candidates using these ciphers to be more easily converted into efficient constant
time implementations.

5 Pipeline Implementation

The goal of this project was initially to analyse NIST Lightweight Crypto Stan-
dardization Process candidates and provide an easy to use codebase for hooking
into various constant time analysis tools. dudect, ctgrind and FlowTracker are
all tools that come from research projects and thus have not been maintained
since their original release. While implementing the pipeline it quickly became
apparent that a compilation of tools for installing locally would not be very use-
ful to the crypto community on its own as some of these tools are old, badly
documented, relied on outdated dependencies, had missing download links and
were hard to install. We therefore decided to provide the pipeline along with a
Docker image with all tools installed and ready to use.

The entire Docker image is open-sourced and we also provide a ready built
image that can be downloaded and used within minutes.
https://github.com/blatchley/Timing-Analysis-Pipeline

5.1 Technical Details

We decided to base the Docker image on Ubuntu 16.04 and use GCC 5.4.0 as
our main compiler. We choose this in accordance with the NIST Lightweight
Crypto Specification [CSR18], as this is the platform candidates will be eval-
uted on. The NIST AEAS API specifies both a crypto aead encrypt and a
crypto aead decrypt function. Our pipeline supports analysing both functions
for variable time dependence on the key. The pipeline provides a settings file
where the different tools and analysis can be configured on some parameters
such as function to analyse, max analyse time, message size and sample size.

dudect
dudect is provided as in the original release as it does not rely on any other

tools. It is compiled with GCC 5.4.0. For interfacing with the tool we provide C
code that sets up nonce, authenticated data, plaintext, ciphertext and messages
for the candidate encrypt/decrypt function. These variables are constructed at
random at startup in accordance with the api.h file. This file is part of the
NIST API format and specifies length of different input variables. After variable
setup, the code specifies input classes for dudect to generate keys from. Since the
pipeline needs to work for many crypto candidates we cannot assume anything
about the candidate and must treat it as a black box. Therefore the two input
classes are selected as uniformly random input and fixed value input. This means
that half the selected keys will be a fixed value while the other half will be uni-
formly randomly chosen. The number of executions in each dudect iteration can
be configured by the user along with a max allowed time for analysis. Standard
is 1,000,000 executions per iteration.

dudect will run until it is certain enough that the code is variable time, there-
fore it might run forever if a timeout is not set. The tool provides very limited
output and will only output the number of iterations run, statistical values for
each iteration, and a decision of either ”maybe constant time”, ”probably not
constant time” or ”definitely not constant time”.

ctgrind
ctgrind was released 10 years ago and relies on valgrind 3.5.0, as of writing

the newest version is 3.16.1. In the pipeline ctgrind is provided in a patched
version that provides support for valgrind 3.16.1. Using 3.16.1 over 3.5.0 gives
better accuracy as valgrind has had many improvements and bugfixes over the
past 10 years, and is still being maintained.

For ctgrind we also provide C code for integrating the candidates code with
ctgrind, here we again generate input variables in accordance with the api.h
file provided and generate a uniformly random key. The position of the key in
memory is then marked as secret using the ctgrind poison and unpoison functions
provided by the ctgrind shared library. After poisoning the key memory addresses
we execute the encrypt/decrypt function and unpoison the key after that. Since

https://github.com/blatchley/Timing-Analysis-Pipeline

ctgrind is a dynamic analysis we repeat this process with uniformly random data
a number of times to increase the chance of getting full code coverage by the
dynamic analysis. The number of random executions can be configured by the
user.

ctgrind provides a more detailed output and will log each time that secret
data was used to determine a branch or used to index into memory. In the
output ctgrind will give you the total number of times this happened during the
execution and a stacktrace of each unique context this happened in. Thus it is
easy to find the exact line numbers in code where variable time code happens.

FlowTracker
FlowTracker relies on a patched version of LLVM/clang 3.7.0 and is provided

with LLVM/clang 3.7.1 in the Docker image. We were unable to provide Flow-
Tracker with the up to date LLVM/clang 10.0.1 due to large build system and
codebase changes incompatible with FlowTracker.

Since FlowTracker is a static analysis and not a dynamic tool we do not need
much custom code to integrate the candidate code with the tool. To make the
tool analyse their code we need to be able to compile their code to LLVM - we
use clang for this. Additionally we need to provide XML files for both encrypt
and decrypt files specifying names of the functions to analyse, secret data and
input variables.

FlowTracker provides detailed output consisting of a full graph of the pro-
gram analysed along with subgraphs of the code parts that give rise to variable
time problems, this makes it easy to identify the lines of code where there might
be problems.

Scripts In addition to the tools we provide our pipeline script that will
load settings, compile the candidate code with all three tools and execute them.
The Docker image provided is setup so that when the image is used the script
will be executed automatically. The pipeline script reads the source code from
a source directory on host mounted to the Docker container and will similarly
write output to an additional mounted output directory. This allows running
multiple candidates or just a single implementation if wanted. In addition to the
run script we also provide a script for downloading and unpacking all candidates
from the NIST website.

5.2 Pipeline Discussion

This pipeline mostly serves as a wrapper for easily running code on many tools,
thus the overall quality of the report we give is dependent on the quality of the
tools. As discussed in Section 6 the results should not be definitive answers or
guaranties. None of the tools are perfect and they should therefore be viewed as
tools to aid in finding figuring out much timing dependency there is on secret
data and where in the code it comes from.

The pipeline does have its limitations, currently the input code has to follow
NISTs AEAD scheme specification, thus we do not support analysing arbitrary
functions. Additionally we only support analysing timing dependency on the

key. Some AEAD schemes use secret nonces, however NIST have specified that
in the Standardization Process only public nonces are allowed.

Due to the NIST specification we only support implementations written in C,
though in future it should be possible to allow custom compile option and thus
be able to analyse anything that compiles to assembly with dudect and ctgrind.

The upsides of using Docker is that we can provide an easy to use build
process that we are sure works for everyone no matter what system they run
on, or how far into the future they are. We can also provide a ready built image
enabling users to start analysing code in few minutes. The downside of using
Docker is speed, running inside a container can be slightly slower, and decou-
ples from the actual machine it is running on. This is not always great as the
instruction set and machine can have an effect on code being variable time.
However both ctgrind and FlowTracker are not impacted by this as they do not
care about cache and instruction set. For dudect we cannot completely exclude
the possibility that running inside Docker could affect the results, however since
dudect compares relative running time on different input and performs statisti-
cal tests there should be no significant difference between running on host and
inside Docker.

For authors not familiar with docker our GitHub repository contains instruc-
tions on how to execute in the context of Docker, as it is isolated from the host
operation system.

6 Evaluation of Tools

Referring to table 1 we saw that all the tools managed to identify some variable
time implementations. However, the quality of the findings varied.

dudect is very simple to setup and run in the black box approach. Actual
runtime of an instruction is part of the measurement instead of assuming in-
structions are constant time. The blackbox nature of the tool also removes any
dependencies on the implementation language, and can handle hand crafted as-
sembly just as well as C or C++ code. However, dudect did not identify as many
things as the other tools, and it was clear from several of the candidates that it
was only able to detect the variable time behaviour in some of the implemen-
tations even though the other implementations also contained the same timing
leakage. An example of this was the DryGASCON 128-bit vs 256-bit implemen-
tations. In general, just because dudect has not found anything yet does not
mean it will not in the future, as is is bounded by the amount of time we allow
it to run.

After identifying that an implementation is definitely not constant time, the
nature of dudect prevents it from saying exactly where the constant behaviour
originates from. Thus, dudect is fine for identification of a problem, but not
good at pinpointing it. The greatest strength might be the identification of the
severity. If dudect is able to detect variable time behaviour, then it is not a
false-positive and something worth looking more into.

ctgrind uses the dynamic approach mentioned earlier, but while dudect needed
many invocations to detect the variable time behaviour, ctgrind only needed a
few. This method succeeds at correctly identifying and pinpointing the exact
lines in code which caused the problems, making it much easier to find the
source of the leakage. We did not see any direct false-positive identifications.

When including noise and false-positives ctgrind seemed to yield the best re-
sults of the three tools utilized. As ctgrind have not had any official development
in 10 years, its setup can be a little complex (see section 5.1). This was one of
the motivations for us to create the docker container. Finally, as it is based on
Valgrind, it is also bound to any coding errors in Valgrind.

We also note that with the recent introduction of TIMECOP to the SUPER-
COP platform, the inclusion of ctgrind in the pipeline gives an easy way for
developers to easily and quickly predict how TIMECOP will respond to their
code, without having to enter it into the SUPERCOP framework.

FlowTracker uses pure static analysis. It did confirm most of the findings from
both dudect and ctgrind. Additionally it also flagged at least 3 false-positives,
see Figure 2. It seems like the engine behind the analysis contains some patterns
not corresponding to real variable time problems, such as the example shown in
section 3.5.

Contrary to ctgrind, FlowTracker does not have to find inputs which trigger
every possible branch of the code to get full coverage. In the Lightweight Cryp-
tography Project this does not seem to be a problem, as there are generally few
branches, as all inputs and keys are valid. Especially when compared to, for ex-
ample, the Post-Quantum Standardization Process, where many candidates have
much more complex requirements for the input format and validation, which in-
evitably yields more branching [CSR20a]. Thus, for the purposes of the LWC
Standardization process, we assume both FlowTracker and ctgrind achieve near
full code coverage.

All together we benefited the most from ctgrind during our analysis. The
results were more precise with less false-positives and pinpointed the location in
the code. dudect was good at detecting the severe variable time parts with no
false-positives, but did not identify near as much as the other two tools.

7 Conclusion

We have created a powerful automated pipeline that makes it significantly eas-
ier to start analysing for non-constant time behaviour. Instead of taking hours
to setup and compile these tools by ones self, or having to push code to on-
line platforms like SUPERCOP, they are now packed in a ready-to-use Docker
container.

We evaluated the quality of the included tools FlowTracker, dudect and ct-
grind in the context of the NIST Lightweight Crypto Standardization Process by
running them on round 2 reference implementations. Here they found multiple
variable time sections in several of the candidates.

Comparing the different tools revealed ctgrind to be the most precise in
our context, though we expect FlowTracker to perform relatively better when
the context involves code and implementations with more branching. It is not
sufficient to analyse source code for variable time behaviour using just one of
the tools. Each of them has their pros and cons, but most importantly they use
different approaches for the identification. This resulting in different findings and
understanding of severity.

7.1 Acknowledgements

This report is based off the results of a 5-week project for the Language Based
Security Graduate course at Aarhus University.

We would like to thank Associate Professor Diego F. Aranha of Aarhus Uni-
versity for his guidance on modern side-channel security, and technical assistance
with initial compilation of some of the more fragile tooling.

References

AKS06. Onur Acıiçmez, Ç etin Kaya Koç, and Jean-Pierre Seifert. Predicting secret
keys via branch prediction. In Masayuki Abe, editor, Topics in Cryptology
– CT-RSA 2007, pages 225–242, Berlin, Heidelberg, 2006. Springer Berlin
Heidelberg.

Aum19. Jean-Philippe Aumasson. Cryptocoding, 2019.
Ber05. Daniel J. Bernstein. Cache-timing attacks on aes. Technical report, 2005.
Che14. Chen. Detecting covert timing channels with time-deterministic replay. In

Proceedings of the 11th USENIX Conference on Operating Systems Design
and Implementation, OSDI’14, page 541–554, USA, 2014. USENIX Asso-
ciation.

CRMM19. Ashokkumar C., Bholanath Roy, Bhargav Sri Venkatesh Mandarapu, and
Bernard Menezes. “s-box” implementation of aes is not side channel resis-
tant. Journal of Hardware and Systems Security, 12 2019.

CSR18. NIST CSRC. Submission Requirements and Evaluation Criteria for the
Lightweight Cryptography Standardization Process, 2018.

CSR20a. NIST CSRC. Post-Quantum Cryptography, 2020. Accessed on May 28,
2020.

CSR20b. NIST CSRC. Lightweight Cryptography, May 6, 2020. Accessed on May
21, 2020.

CSY16. Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. Real time detection
of cache-based side-channel attacks using hardware performance counters.
Applied Soft Computing, 49, 09 2016.

EKP+07. T. Eisenbarth, S. Kumar, C. Paar, A. Poschmann, and L. Uhsadel. A
survey of lightweight-cryptography implementations. IEEE Design Test of
Computers, 24(6):522–533, 2007.

GJN19. Shay Gueron, Ashwin Jha, and Mridul Nandi. Comet: Counter mode en-
cryption with authentication tag. 2019.

Lan10. Adam Langley. Checking that functions are constant time with Valgrind,
2010.

Por18. Thomas Pornin. Bearss:, constant time crypto. Technical report, 2018.
Accessed on May 27, 2020.

Por19. Thomas Pornin. Why Constant-Time Crypto?, 2019. Accessed on May 25,
2020.

RBV17. O. Reparaz, J. Balasch, and I. Verbauwhede. Dude, is my code con-
stant time? In Design, Automation Test in Europe Conference Exhibition
(DATE), 2017, pages 1697–1702, 2017.

Rep17. Oscar Reparaz. dudect: dude, is my code constant time?, 2017.
Rio19. Sébastien Riou. DryGASCON, 2019.
RQaPA16. Bruno Rodrigues, Fernando Magno Quintão Pereira, and Diego F. Aranha.

Sparse representation of implicit flows with applications to side-channel de-
tection. In Proceedings of the 25th International Conference on Compiler
Construction, CC 2016, page 110–120, New York, NY, USA, 2016. Associ-
ation for Computing Machinery.

Sch16. Peter Schwabe. Timing Attacks and Countermeasures, June 10, 2016.
Tez19. Cihangir Tezcan. Distinguishers for reduced round ascon, drygascon, and

shamash permutations. 2019.

A DryGascon

We decided to look at DryGASCON [Rio19] as it involved some quite clear timing
problems. On the 256-bit implementations dudect returned almost immediately
concluding that it was definitely not constant time. Testing involved 1.46 million
runs.

We identified a timing leakage based on the input key, where small keys would
be repeated then scrambled using the CoreRound function, with this process
repeated a number of times dependent on the contents of the key.

On the 128-bit reference implementation we let dudect run for 1 hour with
more than 375 million executions only with the inconclusive result “maybe con-
stant time”, while both ctgrind and FlowTracker correctly flagged all implemen-
tations as being variable time with respect to the key. We suspect this was due
to the timing difference was not big enough with the smaller key size.

DryGascon uses the ASCON construction, however we noted that it was
not the S-boxes being flagged, as those were already implemented in constant
time using bitslicing. In both the 128- and 256-bit versions DryGASCON allows
different key sizes, this is processed in the DRYSPONGE set key function. De-
pending on the size, different actions are taking to expand the key. For the small
key size, the key it is repeated and scrambled.

The DrySponge constructions needs as input a state (c, x) where c is 72 bytes
and x is 16 bytes in the 256-bit version. To ensure an unique encryption each
pair of 4 bytes in x must be unique. If x contains a repeated sequence of 4
bytes, then the encryption algorithm might fail according to the author. Hence,
to ensure it works, the input is repeatedly scrambled for as long as there is a
repeated sequence in x. See how this is done in Figure 4.

From Figure 4 it can be seen, that if we have a key which after a single
call to CoreRound have a repeated sequence, then it will start looping and the
timing will increase. Upon comparing it 1 million times with a all random key

it on average took 900 CPU cycles for the initiation + set key execution - not
the remaining encryption. With an all zero key, it took 1400 CPU cycles. This
is definitely possibly to measure and distinguish.

for (unsigned int i =0; i <DRYSPONGE CAPACITYSIZE; i++){
ctx−>c [i] = key [i%DRYSPONGE KEYSIZE] ;

}

// . . . SNIPPET . . .

DRYSPONGE CoreRound(ctx , 0) ;

unsigned int modi f i ed =1;
while (modi f i ed){

modi f i ed =0;
for (unsigned int i =0; i <DRYSPONGE XSIZE32−1; i++){

for (unsigned int j=i +1; j <DRYSPONGE XSIZE32 ; j ++){
u in t 32 t c i , c j ;
DRYSPONGE load32(&ci , ctx−>c+i ∗ s izeof (u in t 32 t)) ;
DRYSPONGE load32(&cj , ctx−>c+j ∗ s izeof (u in t 32 t)) ;
i f (c i==c j){

DRYSPONGE CoreRound(ctx , 0) ;
modi f i ed =1;
break ;

}
}
i f (modi f i ed) break ;

}
}
memcpy(ctx−>x , ctx−>c ,DRYSPONGE XSIZE) ;
memcpy(ctx−>c , key ,DRYSPONGE XSIZE) ;

Fig. 4. Small keys are modified according to size. At first key is repeated, then scram-
bled in the CoreRound function and finally we reiterate and scramble as long as any
words are identical

Upon contacting the author of DryGASCON, Sebastien Riou, he confirms
the timing leakage due to the comparison for equality of the words for x but
does not think it is exploitable in practice because it leaks too little information.

One way to exploit this timing behaviour would be if an adversary controlled
a word of the key. This way, he could probe different encryptions and measure the
time taking to detect if words in the key were similar. Then it would require him
to find all the collisions for the words. However, similarity still has to be taken
after the first CoreRound, which makes the inferring a bit harder. Furthermore,
this represents a very powerful attacker model is quite powerful and not very
likely.

B COMET

COMET which stands for “Counter Mode Encryption with authentication Tag”
is an authenticated encryption with associated data, it is based on a special mode
of operation for block ciphers [GJN19]. They provide 4 different implementations.
Two of the implementations are based on the CHAM block cipher family, one is
based on the Speck block chipher family while the last is based on AES.

dudect marked all four implementations as “definitely not constant time”
within 5-20 million executions. Based on this we investigated further with ctgrind
which showed the same single line of offending code in all four implementation,
with an additional 15 lines of AES related problems in the AES based implemen-
tation. The AES related problems found will not be discussed further here but
are the same as those discussed in Sections 3.4 and 4.3. FlowTracker showed no
problems in COMET, however this is probably due to COMET implementations
using a lot of C’s memcpy function which FlowTracker is not great at modeling.

i f (Z [p−1] & 0x80){ /∗ 10000000 ∗/
Z [0] ˆ= 0x1B ; /∗ 00011011 ∗/

}

Fig. 5. Variable time code in COMET found by ctgrind

u8 a = Z [0] ˆ 0 x1B ;
u8 b = Z [0] ;
u8 b i t = Z [p−1] & 0x80 ;

u8 mask = (b i t | −b i t) >> (s izeof (u8) ∗ CHAR BIT − 1) ;
u8 r e t = mask & (bˆa) ;

Z [0] = re t ˆ b ;

Fig. 6. Constant time version of Figure 3.

Figure 5 shows the offending line of code found using ctgrind. The problem
is that they have a if statement branching on the state variable of their block
cipher, thus the program execution time will vary depending on the content of
the state variable. This means that if we can somehow learn whether this line was
executed we learn 1 bit of the state. ctgrind reported this line from 4 different
context meaning that there is a potential leak of 4 bits, if those 4 bits can be
related to the key in some way an attack could potentially reduce the search

1 space to of the original search space. 16
Digging deeper into the code we found that the offending line of code is exe-

cuted in the setup phase before the real encryption starts, and that the state is

initialized as (Z = 0|k|||key ⊕ nonce) and since the nonce is publicly available an
attacker might be able to leak up to 4 bits of the key. Other stuff does happen
between initialization and the offending line of code, so an attacker would have
to be able to reverse that to leak part of the key.

We implemented a constant time version of COMET by substituting the
conditional statement with the code seen in figure 6, using bitslicing[Aum19].
The idea of the code is to replace the conditional statement with something that
wont get translated into jump instructions on the CPU. We do this by always
always computing Z[0] ⊕ 0x1B and then use constant time bitwise operations
to assign Z[0] if Z [p-1] & 0x80 is nonzero. We tested the new implementation
with dudect , ctgrind and FlowTracker and they all reported that the code was
constant time. To be sure that this fix would not increase the running time too
much we validated correctness and execution time of the if statement and the
new code. We found that both pieces of code produced the exact same output
and that the old code on average used 59,7 clock cycles, while the new code used
50,1 clock cycles.

The specification of COMET did not clearly specify their security claim for
side-channel security so we contacted the author to verify if they claim side-
channel security and notify them about the patch we created. They responded,
highlighting the fact that the code they provided on the NIST website was only
reference code, and was only intended to help readers understand the spec and
generate KAT’s, and was not designed to be constant time or to optimise it’s
runtime. They also noted that if COMET moves into the next round, they will
address these concerns.

