
Protected Hardware Implementation of WAGE 

Yunsi Fei1 and Guang Gong2 and Cheng Gongye1 and 
Kalikinkar Mandal3 and Raghvendra Rohit4 and Tianhong Xu1 and 

Yunjie Yi2 and Nusa Zidaric2 

1Department of Electrical and Computer Engineering, Northeastern University, USA 
2Department of Electrical and Computer Engineering, University of Waterloo, Canada 

3Faculty of Computer Science, University of New Brunswick, Canada 
4University of Rennes, CNRS, IRISA, France 

NIST LWC Workshop, 
October 21, 2020 



Protected Hardware Implementation of WAGE 

Outline 

Introduction to WAGE 

The masking scheme for WAGE 

Hardware implementation 

Conclusion and future work 

1 / 14 



Protected Hardware Implementation of WAGE 

Introduction to WAGE 

WAGE is a hardware oriented authenticated encryption scheme (128-bit security) 

(unprotected) hardware implementations of WAGE have a small footprint1 

minimal interface: 2900 GE (STMicro 65 nm), 3290 GE (TSMC 65 nm) 
LWC hw API2 : 332 slices (Xilinx Artix-7) 

among 10 smallest Xilinx Artix-7 candidates 
the datapath (CryptoCore) takes less than 30% area 

WAGE is built on top of the initialization phase of the Welch-Gong stream cipher 

theoretical foundations from the 90’s 
WG-29 proceeded to Phase 2 of the eSTREAM competition 

WAGE can be configured as a psuedorandom bit generator WG-PRBG 

1 comparison with other candidates is difficult due to differences in ASIC libraries and 
optimization levels for synthesis tools 

2 source: latest report by CERG, GMU, https://eprint.iacr.org/2020/1207 
2 / 14 

https://eprint.iacr.org/2020/1207


Protected Hardware Implementation of WAGE 

Introduction to WAGE 

WAGE permutation has 111 iterations of a round function 

round function: an LFSR, decimated WGPs and small Sboxes SB, round constants 

defined over F27 , with internal state 259 bits (37 stage LFSR) 

Si
36 Si

35 Si
34 Si

33 Si
32 Si

31 Si
30 Si

29 Si
28 Si

27 Si
26 Si

25 Si
24 Si

23 Si
22 Si

21 Si
20 Si

19

WGP SB SB

Si
17Si

18 Si
16 Si

15 Si
14 Si

13 Si
12 Si

11 Si
10 Si

9 Si
8 Si

7 Si
6 Si

5 Si
4 Si

3 Si
2 Si

1 Si
0

WGP SB SB

⊕
ω

rci1

rci0

3 / 14 



� � �

� � �

Protected Hardware Implementation of WAGE 

Introduction to WAGE 

F27 
7 3 2f (x) = x + x + x + x + 1, f (ω) = 0 polynomial basis: PB = {1, ω, . . . , ω6} 

x ∈ F27 
P6 x = , xi ∈ F2 vector representation: = (x0, x1, x2, x3, x4, x5, x6)i=0 xiω

i [x]PB 

LFSR fb = S31 ⊕ S30 ⊕ S26 ⊕ S24 ⊕ S19 ⊕ S13 ⊕ S12 ⊕ S8 ⊕ S6 ⊕ (ω ⊗ S0) 

ω ⊗ (x0, x1, x2, x3, x4, x5, x6) ← (x6, x0 ⊕ x6, x1 ⊕ x6, x2 ⊕ x6, x3, x4, x5) 

WGP WGP7(xd) = xd + (xd + 1)33 + (xd + 1)39 + (xd + 1)41 + (xd + 1)104 , d = 13 

SB Q 

SB P 

SB R 

Q(x0, x1, x2, x3, x4, x5, x6) = (x0 ⊕ (x2 x3), x1, x2, x3 ⊕ (x5 x6), x4, x5 ⊕ (x2 

P (x0, x1, x2, x3, x4, x5, x6) = (x6, x3, x0, x4, x2, x5, x1) 

R(x0, x1, x2, x3, x4, x5, x6) = (x6, x3 ⊕ (x5 x6), x0 ⊕ (x2 x3), x4, x2, x5 ⊕ (x2 

x4), x6) 

x4), x1) 

SB 

(x0, x1, x2, x3, x4, x5, x6) ← R5(x0, x1, x2, x3, x4, x5, x6) 

(x0, x1, x2, x3, x4, x5, x6) ← Q (x0, x1, x2, x3, x4, x5, x6) 

(x0, x1, x2, x3, x4, x5, x6) ← (x0, x1, x2, x3, x4, x5, x6) 

state S24 ← S24 ⊕ SB(S27) S5 ← S5 ⊕ SB(S8) Sj ← Sj+1 for 

update S30 ← S30 ⊕ SB(S34) S11 ← S11 ⊕ SB(S15) 0 ≤ j ≤ 35 

function fb ← f b ⊕ WGP(S36) ⊕ rc1 S19 ← S19 ⊕ WGP(S18) ⊕ rc0 S36 ← f b 
4 / 14 



�

Protected Hardware Implementation of WAGE 

The masking scheme for WAGE 

masking: 
0variable x is masked with a random value r: x = x ⊕ r 

notation: [[x]] = (r, x0) 

adversarial model: attacker can probe up to t intermediate variables in the circuit 

number of shares n = t + 1 (t-SNI or t-strong non interference security) 

n-order masking: 
nvariable x is shared among n variables: x = x1 ⊕ x2 ⊕ · · · ⊕ x 

1 2notation: [[x]] = (x , x , . . . , xn) 

1 2[[x]] ⊕ [[y]] = (x1 ⊕ y , x2 ⊕ y , . . . , xn ⊕ yn) 
1 2[[x̄]] = (x̄ , x , . . . , xn) 

[[x]] [[y]]: use t-SNI secure AND gadget 

5 / 14 



� � �
�

Protected Hardware Implementation of WAGE 

The masking scheme for WAGE 

n shares: 

state S = S1 ⊕ S2 ⊕ · · · ⊕ Sn where Sk = (Sk 
36, . . . , S

k), 1 ≤ k ≤ n0 

stage [[Sj ]] = (S1, S2 
j , . . . , S

n) or bit-wise ([[xj,0]], [[xj,1]], . . . , [[xj,6]]), 0 ≤ j ≤ 36j j 

LFSR fbk = FB(Sk ), 1 ≤ k ≤ n 

(linear) ω ⊗ [[S0]] ← ([[x6]], [[x0]] ⊕ [[x6]], [[x1]] ⊕ [[x6]], [[x2]] ⊕ [[x6]], [[x3]], [[x4]], [[x5]]) 

WGP need ANF expressions for each of the 7 output bits: WGP ⇒ SecWGP 

SB Q(x0, x1, x2, x3, x4, x5, x6) = (x0 ⊕ (x2 x3), x1, x2, x3 ⊕ (x5 x6), x4, x5 ⊕ (x2 x4), x6) 

⇓ ⇒ (. . . , [[x3]] ⊕ ([[x5]] [[x6]]), . . .) 

SecSB use t-SNI secure AND gadgets 

state [[S24]] ← [[S24]] ⊕ SecSB([[S27]]) [[S5]] ← [[S5]] ⊕ SecSB([[S8]]) 

update [[S30]] ← [[S30]] ⊕ SecSB([[S34]]) [[S11]] ← [[S11]] ⊕ SecSB([[S15]]) shift shared state: 

function [[tmp]] ← SecWGP([[S36]]) [[S19]] ← [[S19]] ⊕ SecWGP([[S18]]) [[Sj ]] ← [[Sj+1]] 

fb1 ← f b1 ⊕ tmp1 ⊕ rc1 S1 ← S1 ⊕ rc019 19 for 0 ≤ j ≤ 35 

fbk ← f bk ⊕ tmpk , 2 ≤ k ≤ n [[S36]] ← [[fb]] 

6 / 14 



Protected Hardware Implementation of WAGE 

The masking scheme for WAGE 

n shares: 

state [[S24]] ← [[S24]] ⊕ SecSB([[S27]]) [[S5]] ← [[S5]] ⊕ SecSB([[S8]]) 

update [[S30]] ← [[S30]] ⊕ SecSB([[S34]]) [[S11]] ← [[S11]] ⊕ SecSB([[S15]]) shift shared state: 

function [[tmp]] ← SecWGP([[S36]]) [[S19]] ← [[S19]] ⊕ SecWGP([[S18]]) [[Sj ]] ← [[Sj+1]] 

fb1 ← f b1 ⊕ tmp1 ⊕ rc1 S1 ← S1 ⊕ rc019 19 for 0 ≤ j ≤ 35 

fbk ← f bk ⊕ tmpk , 2 ≤ k ≤ n [[S36]] ← [[fb]] 

Schematic of the masked WAGE permutation for 1-order protection (n = 2): 

7 / 14 



Protected Hardware Implementation of WAGE 

Hardware implementation 

protected hardware implementation is built on top of original WAGE hardware 

the datapath was modified with additional: 

state registers and LFSR feedback XOR gates (e.g. S1 , . . . , Sn) 
XOR gates and MUXes for non-linear components (e.g. SBmux) 
MUXes to support the mode (e.g. Amux0, RLmux0) 

4

SB

S
5

S
6

S
7

S

D0 O0

8

RLmux0

Amux0

S
B

m
u
x

7

7

7

7

7

7

7

7

7

7

7

7

7

S
9

S

7

7

7

7

rand
Sec

Share S1

Share S

8 / 14 



� � �
�

�

Protected Hardware Implementation of WAGE 

Hardware implementation 

recall: 

SB 

⇓ 

SecSB 

Q(x0, x1, x2, x3, x4, x5, x6) = (x0 ⊕ (x2 x3), x1, x2, x3 ⊕ (x5 x6), x4, x5 ⊕ (x2 x4), x6) 

⇒ (. . . , [[x3]] ⊕ ([[x5]] [[x6]]), . . .) 

use t-SNI secure AND gadgets 

SecSB 

([[x0]], [[x1]], [[x2]], [[x3]], [[x4]], [[x5]], [[x6]]) ← R5([[x0]], [[x1]], [[x2]], [[x3]], [[x4]], [[x5]], [[x6]]) 

([[x0]], [[x1]], [[x2]], [[x3]], [[x4]], [[x5]], [[x6]]) ← Q ([[x0]], [[x1]], [[x2]], [[x3]], [[x4]], [[x5]], [[x6]]) 

([[x0]], [[x1]], [[x2]], [[x3]], [[x4]], [[x5]], [[x6]]) ← ([[x0]], [[x1]], [[x2]], [[x3]], [[x4]], [[x5]], [[x6]]) 

SecMult: t-SNI secure AND gadget 1 

n(n−1)number of random bits needed: 
2 

assume random bits always available 

unrolled: [[z]] computed in a single clock cycle 

replace each in SB with SecMult gadget 

SB also unrolled 
1Barthe et al. , “Strong Non-Interference and Type-Directed Higher-Order Masking”, CCS’16 

9 / 14 



Protected Hardware Implementation of WAGE 

Hardware implementation 

recall: 

WGP WGP7(xd) = xd + (xd + 1)33 + (xd + 1)39 + (xd + 1)41 + (xd + 1)104 , d = 13 

need ANF expressions for each of the 7 output bits: WGP ⇒ SecWGP 

design flow: 

1. ANF: obtain algebraic normal form for every component of the WGP output 

2. AOXI1: synthesis tools restricted to use only AND, OR, XOR, and NOT gates 

3. AXI: replace OR gates by AND and NOT gates, optimize 

4. SecWGP (protected AXI): replace AND gates by SecMult gadgets 

Implementation Area Number of gates 
Approach [GE] AND OR XOR INV 

Constant array 258 – 
ANF 958 1132 – 439 – 
AOIX 825 146 30 310 39 
AXI 759 172 – 313 66 

INV is used instead of NOT to avoid confusion with number of shares n 
10 / 14 

1



Protected Hardware Implementation of WAGE 

Hardware implementation 

Hardware implementation area breakdown by components using SecMult 

11 / 14 



� �

Protected Hardware Implementation of WAGE 

Hardware implementation 

Implementation area for ST Micro 65nm (post-PAR) [GE] 
Common share SecMult for SB: (x2 x3) and (x2 x4) 
common share SecMult implementation of WAGE omitted for brevity 

SB 
Algorithm SecMult SecMult+ 

comm. sh. 
Unprotected 63 

n = 2 285 285 
n = 3 626 715 
n = 4 1140 1275 

WGP 
Algorithm SecMult 

Const. array 258 
Unprotected 759 

n = 2 2830 
n = 3 6030 
n = 4 10200 

WAGE 
SecMult 
2900 
3830 
11177 
21566 
33985 

12 / 14 



Protected Hardware Implementation of WAGE 

Conclusion and future work 

we presented the first high-order masking scheme of WAGE 

implementation results for ST Micro 65 nm and TSMC 65nm 

comparison with other candidates is difficult 

different countermeasures, ASIC libraries, optimization levels for synthesis tools 

future work: 

iterative implementation of SecSB and SecWGP 
to reduce number of random bits needed per single clock cycle 
explore tradeoffs among the throughput, hardware area, and 
the amount of randomness available per single clock cycle 
exploring other countermeasures 
threshold, unified masked multiplication, domain oriented masking 

more details available at https://eprint.iacr.org/2020/1202 

this work will also be presented in SAC2020 tomorrow 

Acknowledgements: Hardware implementations in this work are based on the original WAGE 
hardware. Authors would like to thank Dr. Mark Aagaard for the help with synthesis tools. 

13 / 14 

https://eprint.iacr.org/2020/1202


Protected Hardware Implementation of WAGE 

Thank You! 

14 / 14 


