Protected Hardware Implementation of WAGE

Yunsi Fei¹ and Guang Gong² and Cheng Gongye¹ and Kalikinkar Mandal³ and Raghvendra Rohit⁴ and Tianhong Xu¹ and Yunjie Yi² and Nusa Zidaric²

¹Department of Electrical and Computer Engineering, Northeastern University, USA ²Department of Electrical and Computer Engineering, University of Waterloo, Canada ³Faculty of Computer Science, University of New Brunswick, Canada ⁴University of Rennes, CNRS, IRISA, France

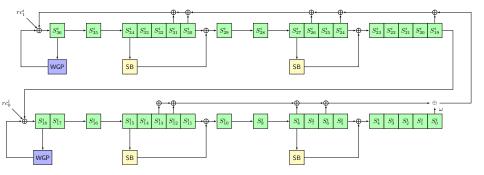
> NIST LWC Workshop, October 21, 2020

Protected Hardware Implementation of WAGE

Outline

- Introduction to WAGE
- The masking scheme for WAGE
- Hardware implementation
- Conclusion and future work

Introduction to WAGE


- WAGE is a hardware oriented authenticated encryption scheme (128-bit security)
- (unprotected) hardware implementations of WAGE have a small footprint¹
 - minimal interface: 2900 GE (STMicro 65 nm), 3290 GE (TSMC 65 nm)
 - LWC hw API² : **332 slices** (Xilinx Artix-7)
 - among 10 smallest Xilinx Artix-7 candidates
 - the datapath (CryptoCore) takes less than 30% area
- WAGE is built on top of the initialization phase of the Welch-Gong stream cipher
 - theoretical foundations from the 90's
 - WG-29 proceeded to Phase 2 of the eSTREAM competition
- WAGE can be configured as a psuedorandom bit generator WG-PRBG

¹ comparison with other candidates is difficult due to differences in ASIC libraries and optimization levels for synthesis tools

² source: latest report by CERG, GMU, https://eprint.iacr.org/2020/1207

Introduction to WAGE

- WAGE permutation has 111 iterations of a round function
- round function: an LFSR, decimated WGPs and small Sboxes SB, round constants
- defined over \mathbb{F}_{2^7} , with internal state 259 bits (37 stage LFSR)

Introduction to WAGE

\mathbb{F}_{2^7}	$f(x) = x^7 + x^3 + x^2 + x + 1$, $f(\omega) = 0$ polynomial basis: $PB = \{1, \omega, \dots, \omega^6\}$			
$x\in \mathbb{F}_{2^7}$	$x = \sum_{i=0}^{6} x_i \omega^i, x_i \in \mathbb{F}_2$ vector representation: $[x]_{PB} = (x_0, x_1, x_2, x_3, x_4, x_5, x_6)$			
LFSR	$fb = S_{31} \oplus S_{30} \oplus S_{26} \oplus S_{24} \oplus S_{19} \oplus S_{13} \oplus S_{12} \oplus S_8 \oplus S_6 \oplus (\omega \otimes S_0)$			
	$\omega \otimes (x_0, x_1, x_2, x_3, x_4, x_5, x_6) \leftarrow (x_6, x_0 \oplus x_6, x_1 \oplus x_6, x_2 \oplus x_6, x_3, x_4, x_5)$			
WGP	$WGP7(x^d) = x^d + (x^d + 1)^{33} + (x^d + 1)^{39} + (x^d + 1)^{41} + (x^d + 1)^{104}, d = 13$			
SB Q	$ \left \begin{array}{cc} Q(x_0, x_1, x_2, x_3, x_4, x_5, x_6) = (x_0 \oplus (x_2 x_3), x_1, x_2, \overline{x}_3 \oplus (x_5 x_6), x_4, \overline{x}_5 \oplus (x_2 x_4), x_6) \end{array} \right $			
SB P	$P(x_0, x_1, x_2, x_3, x_4, x_5, x_6) = (x_6, x_3, x_0, x_4, x_2, x_5, x_1)$			
SB R	$R(x_0, x_1, x_2, x_3, x_4, x_5, x_6) = (x_6, \overline{x}_3 \oplus (x_5 x_6), x_0 \oplus (x_2 x_3), x_4, x_2, \overline{x}_5 \oplus (x_2 x_4), x_1)$			
	$(x_0, x_1, x_2, x_3, x_4, x_5, x_6) \leftarrow R^5(x_0, x_1, x_2, x_3, x_4, x_5, x_6)$			
SB	$(x_0, x_1, x_2, x_3, x_4, x_5, x_6) \leftarrow Q \ (x_0, x_1, x_2, x_3, x_4, x_5, x_6)$			
	$(x_0, x_1, x_2, x_3, x_4, x_5, x_6) \leftarrow (\overline{x}_0, x_1, \overline{x}_2, x_3, x_4, x_5, x_6)$			
[]				
state	$S_{24} \leftarrow S_{24} \oplus SB(S_{27}) \qquad \qquad S_5 \leftarrow S_5 \oplus SB(S_8) \qquad \qquad S_j \leftarrow S_{j+1} \text{ for}$			
update	$S_{30} \leftarrow S_{30} \oplus SB(S_{34}) \qquad \qquad S_{11} \leftarrow S_{11} \oplus SB(S_{15}) \qquad \qquad 0 \le j \le 35$			
function	$fb \leftarrow fb \oplus WGP(S_{36}) \oplus rc_1 \qquad S_{19} \leftarrow S_{19} \oplus WGP(S_{18}) \oplus rc_0 \qquad \qquad S_{36} \leftarrow fb$			

The masking scheme for WAGE

- masking:
 - variable x is masked with a random value r: $x' = x \oplus r$
 - notation: $\left[\left[x \right] \right] = \left(r, x' \right)$
- ${f \bullet}$ adversarial model: attacker can probe up to t intermediate variables in the circuit
- number of shares n = t + 1 (t-SNI or t-strong non interference security)
- *n*-order masking:
 - variable x is shared among n variables: $x = x^1 \oplus x^2 \oplus \cdots \oplus x^n$
 - notation: $[[x]] = (x^1, x^2, ..., x^n)$

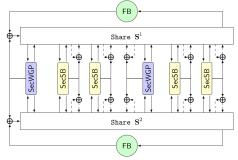
•
$$[[x]] \oplus [[y]] = (x^1 \oplus y^1, x^2 \oplus y^2, \dots, x^n \oplus y^n)$$

• $[[\bar{x}]] = (\bar{x}^1, x^2, \dots, x^n)$
• $[[x]] [[y]]$: use *t*-SNI secure AND gadget

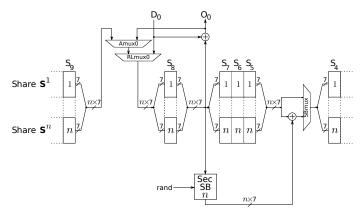
Protected Hardware Implementation of WAGE

The masking scheme for WAGE

n shares:


state	$\mathbf{S} = \mathbf{S}^1 \oplus \mathbf{S}^2 \oplus \cdots \oplus \mathbf{S}^n \text{ where } \qquad \mathbf{S}^k = (S_{36}^k, \dots, S_0^k), \ 1 \leq k \leq n$		
stage	$[[S_j]] = (S_j^1, S_j^2, \dots, S_j^n)$ or bit-wise $([[x_{j,0}]], [[x_{j,1}]], \dots, [[x_{j,6}]]), 0 \le j \le 36$		
LFSR	$fb^k = FB(\mathbf{S}^k), \ 1 \le k \le n$		
(linear)	$\omega \otimes [[S_0]] \leftarrow ([[x_6]], [[x_0]] \oplus [[x_6]], [[x_1]] \oplus [[x_6]], [[x_2]] \oplus [[x_6]], [[x_3]], [[x_4]], [[x_5]])$		
WGP	need ANF expressions for each of the 7 output bits: $WGP \Rightarrow SecWGP$		
SB	$Q(x_0, x_1, x_2, x_3, x_4, x_5, x_6) = (x_0 \oplus (x_2 - x_3), x_1, x_2, \overline{x}_3 \oplus (x_5 - x_6), x_4, \overline{x}_5 \oplus (x_2 - x_4), x_6)$		
₩	$\Rightarrow \qquad (\dots, [[\overline{x_3}]] \oplus ([[x_5]] [[x_6]]), \dots)$		
SecSB	use t-SNI secure AND gadgets		
[
state	$[[S_{24}]] \leftarrow [[S_{24}]] \oplus SecSB([[S_{27}]]) [[S_5]] \ \leftarrow [[S_5]] \ \oplus SecSB([[S_8]])$		
update	$[[S_{30}]] \leftarrow [[S_{30}]] \oplus SecSB([[S_{34}]]) \qquad [[S_{11}]] \leftarrow [[S_{11}]] \oplus SecSB([[S_{15}]]) \qquad shift shared state:$		
function	$[[tmp]] \leftarrow SecWGP([[S_{36}]]) \qquad \qquad [[S_{19}]] \leftarrow [[S_{19}]] \oplus SecWGP([[S_{18}]]) \qquad [[S_j]] \ \leftarrow [[S_{j+1}]]$		
	$fb^1 \leftarrow fb^1 \oplus tmp^1 \oplus rc_1 \qquad \qquad S^1_{19} \leftarrow S^1_{19} \oplus rc_0 \qquad \qquad \text{for } 0 \leq j \leq 35$		
	$fb^k \leftarrow fb^k \oplus tmp^k, 2 \le k \le n \qquad \qquad [[S_{36}]] \leftarrow [[fb]]$		

The masking scheme for WAGE


n shares:

state	$[[S_{24}]] \leftarrow [[S_{24}]] \oplus SecSB([[S_{27}]])$	$[[S_5]] \leftarrow [[S_5]] \oplus SecSB([[S_8]])$	
update	$[[S_{30}]] \leftarrow [[S_{30}]] \oplus SecSB([[S_{34}]])$	$[[S_{11}]] \leftarrow [[S_{11}]] \oplus SecSB([[S_{15}]])$	shift shared state:
function	$[[tmp]] \leftarrow SecWGP([[S_{36}]])$	$[[S_{19}]] \leftarrow [[S_{19}]] \oplus SecWGP([[S_{18}]])$	$[[S_j]] \leftarrow [[S_{j+1}]]$
	$fb^1 \leftarrow fb^1 \oplus tmp^1 \oplus rc_1$	$S_{19}^1 \leftarrow S_{19}^1 \oplus rc_0$	for $0 \le j \le 35$
	$fb^k \leftarrow fb^k \oplus tmp^k, 2 \le k \le n$		$[[S_{36}]] \leftarrow [[fb]]$

Schematic of the masked WAGE permutation for 1-order protection (n = 2):

- protected hardware implementation is built on top of original WAGE hardware
- the datapath was modified with additional:
 - state registers and LFSR feedback XOR gates (e.g. $\mathbf{S}^1, \dots, \mathbf{S}^n$)
 - XOR gates and MUXes for non-linear components (e.g. SBmux)
 - MUXes to support the mode (e.g. Amux₀, RLmux₀)

recall:

SB	$Q(x_0, x_1, x_2, x_3, x_4, x_5, x_6) = (x_0 \oplus (x_2 - x_3), x_1, x_2, \overline{x}_3 \oplus (x_5 - x_6), x_4, \overline{x}_5 \oplus (x_2 - x_4), x_6)$			
\Downarrow	$\Rightarrow \qquad (\dots, [[\overline{x_3}]] \oplus ([[x_5]] [[x_6]]), \dots)$			
SecSB	use t-SNI secure AND gadgets			
SecSB	$([[x_0]], [[x_1]], [[x_2]], [[x_3]], [[x_4]], [[x_5]], [[x_6]]) \leftarrow R^5([[x_0]], [[x_1]], [[x_2]], [[x_3]], [[x_4]], [[x_5]], [[x_6]]) \\ ([[x_0]], [[x_1]], [[x_2]], [[x_3]], [[x_4]], [[x_5]], [[x_6]]) \leftarrow Q (([x_0]], [[x_1]], [[x_2]], [[x_3]], [[x_4]], [[x_5]], [[x_6]]) \\ ([x_0]], [[x_1]], [[x_2]], [[x_3]], [[x_4]], [[x_5]], [[x_6]]) \leftarrow Q (([x_0]], [[x_1]], [[x_2]], [[x_3]], [[x_4]], [[x_5]], [[x_6]]) \\ ([x_0]], [[x_1]], [[x_2]], [[x_3]], [[x_4]], [[x_5]], [[x_6]]) \leftarrow Q (([x_0]], [[x_1]], [[x_2]], [[x_3]], [[x_4]], [[x_5]], [[x_6]]) \\ ([x_0]], [[x_1]], [[x_2]], [[x_3]], [[x_4]], [[x_5]], [[x_6]]) \leftarrow Q (([x_0]], [[x_1]], [[x_2]], [[x_3]], [[x_4]], [[x_5]], [[x_6]]) \\ ([x_0]], [[x_1]], [[x_2]], [[x_1]], [[x_1]], [[x_1]], [[x_1]], [[x_1]], [[x_1]], [[x_1]], [[x_1]], [[x_2]], [[x_1]], [[x_2]], [[x_1]], [[x_2]], [[x_1]], [[x_1]], [[x_2]], [[x_1]], [[x_1]],$			
	([[w]]), [[w1]]), [[w2]]), [[w3]]), [[w4]]), [[w3]]), [[w3]]), ([w3])), ([w3])), ([w1])), ([w2])), ([w3])), ([w3]), ([w3])), ([w3]))), ([w3]))), ([w3]))), ([w3]))), ([w3]))), ([w3]))), ([w3]))))))))))))))))))))))))))))))))))))			

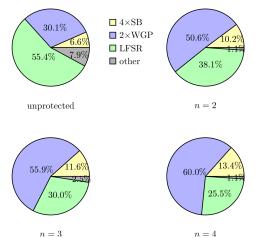
- SecMult: t-SNI secure AND gadget ¹
- number of random bits needed: $\frac{n(n-1)}{2}$
- assume random bits always available
- $\bullet \ \mbox{unrolled: } [[z]] \ \mbox{computed in a single clock cycle}$
- replace each in SB with SecMult gadget
- SB also unrolled

¹Barthe et al., "Strong Non-Interference and Type-Directed Higher-Order Masking", CCS'16

1: for i = 1 to n do 2: $z^i \leftarrow x^i y^i$ 3: end for 4: for i = 1 to n do 5: for j = i + 1 to n do 6: $r \leftarrow^{\$} \mathbb{F}_2, z^i \leftarrow z^i \oplus r$ 7: $t \leftarrow x^i y^j, r \leftarrow r \oplus t$ 8: $t \leftarrow x^j y^i, r \leftarrow r \oplus t$ 9: $z^j \leftarrow z^j \oplus r$ 10: end for 11: end for

recall:

WGP	$WGP7(x^d) = x^d + (x^d+1)^{33} + (x^d+1)^{39} + (x^d+1)^{41} + (x^d+1)^{104}, d=13$
	need ANF expressions for each of the 7 output bits: $WGP\RightarrowSecWGP$


design flow:

- 1. ANF: obtain algebraic normal form for every component of the WGP output
- 2. AOXI¹: synthesis tools restricted to use only AND, OR, XOR, and NOT gates
- 3. AXI: replace OR gates by AND and NOT gates, optimize
- 4. SecWGP (protected AXI): replace AND gates by SecMult gadgets

Implementation	Area	Number of gates			5
Approach	[GE]	AND	OR	XOR	INV
Constant array	258			-	
ANF	958	1132	-	439	-
AOIX	825	146	30	310	39
AXI	759	172	-	313	66

¹INV is used instead of NOT to avoid confusion with number of shares n

• Hardware implementation area breakdown by components using SecMult

- Implementation area for ST Micro 65nm (post-PAR) [GE]
- Common share SecMult for SB: (x₂ x₃) and (x₂ x₄) common share SecMult implementation of WAGE omitted for brevity

SB					
Algorithm	SecMult	SecMult+			
		comm. sh.			
Unprotected	63				
n=2	285	285			
n = 3	626	715			
n = 4	1140	1275			

	WGP	WAGE
Algorithm	SecMult	SecMult
Const. array	258	2900
Unprotected	759	3830
n = 2	2830	11177
n = 3	6030	21566
n = 4	10200	33985

Conclusion and future work

- we presented the first high-order masking scheme of WAGE
- implementation results for ST Micro 65 nm and TSMC 65nm
- comparison with other candidates is difficult different countermeasures, ASIC libraries, optimization levels for synthesis tools
- future work:
 - iterative implementation of SecSB and SecWGP to reduce number of random bits needed per single clock cycle
 - explore tradeoffs among the throughput, hardware area, and the amount of randomness available per single clock cycle
 - exploring other countermeasures threshold, unified masked multiplication, domain oriented masking
- more details available at https://eprint.iacr.org/2020/1202 this work will also be presented in SAC2020 tomorrow
- Acknowledgements: Hardware implementations in this work are based on the original WAGE hardware. Authors would like to thank Dr. Mark Aagaard for the help with synthesis tools.

Thank You!