Toolchain for Timing leakage Analysis of NIST l
Lightweight Cryptography Submissions

Adam B. Hansen, Morten Eskildsen, Eske Hoy Nielsen

Nist LWC Workshop, 2020

N

Toolchain for Timing Leakage Analysis

The NIST Lightweight Crypto Standardisation call
Timing Side channel Attacks

Tools and Pipeline

Results on Reference Implementations

y
4 B

N

e “There are several emerging areas [...] in which highly-constrained devices
are interconnected, [...] Because the majority of current cryptographic
algorithms were designed for desktop/server environments, many of these
algorithms do not fit into constrained devices.” - NIST

e Standardised Authenticated Encryption algorithms for:
o Small/power limited boards
o loT devices
o Embedded devices

e Current solutions aren’t good enough ‘

LWC Call overview

N

“The implementations of the AEAD algorithms and the optional hash function
algorithms should lend themselves to countermeasures against various
side-channel attacks, including timing attacks, simple and differential power
analysis (SPA/DPA), and simple and differential electromagnetic analysis
(SEMA/DEMA).” -Nist

LWC Call overview

4

N

Motivation: Timing Attacks

e \Variable time instructions
e Code branching on secret data

e Cache timing attacks
o S-box Table Lookups

N

Branching on Secret Data

e Different length branches can trivially leak data

e Branches with same number of CPU cycles
o Variable time instructions
o Cache hits/misses

e Branch Prediction
o Can be exploited to leak key [AKS06]

e Don’t branch on secret data

Cache Timing Attacks

Leaking information through cache hits/misses
Cold Boot attacks, Evict + Reload, Prime + Probe...

S-boxes

Can be implemented as in memory lookup tables

Attacks on AES[Ber05]

Index Keys can leak data[Tez19]

Vulnerable even if full S-box fits in cache

Potentially Vulnerable even if full S-box fits on one cache line

o O O O O

Common Problem among reference implementations

Overview of Tools

e Dudect

o Dynamic analysis/fuzzing
o Statistical analysis of execution time

e CTGrind

o Dynamic analysis
o Monitors branching on secret data
o Based on Valgrind

e FlowTracker

o Static analysis
o LLVM

Our Plpellne

N

GCC5.4.0

-
T

GCC 5.4.0

dudect

-
G

——
)

A

ctgrind

-
C—

clang 3.7.1

FlowTracker

Y

Results

Reference Implementations
o Asof June 20

DudeCT flags 8 candidates
CTGrind flags 14 candidates

o DryGascon
o Comet
o S-box table lookups

FlowTracker flags 11
candidates
o Only 6 overlap with CTGrind

o Of the 5unique, at least 3
appear to be false positives

Candidate dudect | ctgrind | FlowTracker | Notes
ACE (@] O []
ASCON (@) O O
COMET @ [] @)
DryGASCON » [] ®
Elephant a» a» @) ctegrind finds more than dudect
ESTATE » [} 8
ForkAE » [] L]
GIFT-COFB () @) O
Gimli @] O [} NIST format not followed
Grain-128AEAD | O (@] (@) NIST format not followed
HYENA (@) [} O
ISAP 0) O
KNOT O O a
LOTUS O & L]
mixFeed [] L] L]
ORANCE [] [] ®
Oribatida (@] O O
PHOTON-Beetle | O ® O Also provided bitsliced asm files
Pyjamask O @] O
Romulus O [] O
SAEAES [] & O
Saturnin (@] (@] @)
- SKINNY @) ® o)
SPARKLE (@) @) O
SPIX O O L)
SpoC (@) @] L]
Spook @) @) ®)
Subterranean 2.0 | O O @) NIST format not followed
SUNDAE-GIFT | O @) O
TinyJambu (@] @) O
WACE O [] O
Xoodyak O O O

DryGascon

Variable time key loading

256bit immediately flagged by dudect

Ctgrind flags key expansion function

Requires certain conditions on least significant bits of state

Comet

e Implementations using CHAM, Speck and AES
o Ctgrind flagged AES S-boxes

e All had conditional jump on one bit of the State

Summary of running tools on the provied code

Result of running dudect:

Last 3 iterations gave

meas: 11.706 M, max t: +483.49, max tau: 1.41e-01, (5/tau)”~2: 1.25e+83. Probably not constant time.
meas: 12.12 M, max t: +497.16, max tau: 1.43e-01, (5/tau)”2: 1.23e+83. Probably not constant time.
meas: 12.39 M, max t: +518.16, max tau: 1.47e-01, (5/tau)”2: 1.15e+83. Definitely not constant time.
Full dudect report can be found in dudect.out in the output directory

Result of running ctgrind:
==81== ERROR SUMMARY: 6800 errors from 4 contexts (suppressed: @ from @)
Full ctgrind report can be found in ctgrind.out in the output directory

Result of running flowtracker:
Vulnerable Subgraphs: @
Vulnerable Subgraphs can be found in flowtracker directory in the output directory

S-box Table Lookups

const unsigned char sbox[16| = {12,6,9,0,1,10,2,11,3,8,5,13,4,14,7,15};
K sl

void SubCell (unsigned char state [4]|[4]){
int i,j;
for(i = 0; i < 4; i++)
for(j = 0; j < 4; j++)
state[i]|[j] = sbox|[state[i][]j]];

Figure 1: Substitution step in the ForkAE implementation, using a 4 bit S-box

S-box Table Lookups

e Attacks are practical

e Example: Mixfeed
o Indexes into 8 bit S-box with XOR of roundkey and plaintext

S-box lookup issues - mitigations

e Hardware support

o AES-NI op-codes on modern x86 processors

o Misses the point of this contest
e Bitslicing

o Rewriting code/table lookups as binary operations

o Canincrease speed and guarantees constant time execution
e Implementing Bitslicing

o AES

o SKINNY

o Gift

Results: tools + pipeline

e DudeCT

o Fuzzing + Statistical test
o “No’ false positives
o Black box

e CTGrind

o Dynamic memory analysis
o Very precise reporting

e FlowTracker
o Full code coverage -> Potentially not as relevant in symmetric crypto?
o Many false positives?
o Negatively impacted by shared libraries and pointer arithmetic

FlowTracker

e Static analysis vs Dynamic Analysis
e False positives

const unsigned char rate_bytes256 (8] = {8,9,10,11,24,25,26,27};
for (i =0; i < 8; i++)
state [rate_bytes256 [i]]"=k[i];

Figure 2: One of the SPIX lines flagged by FlowTracker

Our Pipeline

Aimed at supporting development/local testing
Compiled all tools in a docker image targeting competition API
o Wrapper script takes input folder and output folder, optional settings file

Provide prebuilt image
o blatchley/ct-analysis:latest

Source code to build locally, Readme
o https://github.com/blatchley/Timing-Analysis-Pipeline

In Context of Competition

e “These are just reference implementations”

o Some candidates still not submitting constant time versions
o Reference implementations are being benchmarked and compared
o Good demonstration of types of leakages our tooling can detect

e AES vs Skinny/Gift/others

o Table lookup AES is fast

o Was selected when table lookups were not seen as variable time

o Some see the point of this contest to be replacing AES for lightweight devices
e We expect new focus on side channel security for round 3

o Provide our Pipeline to help with development

SuperCop/TimeCop

Side Channel Analysis of NIST l

Lightweight Cryptography Submissions

Adam B. Hansen, Morten Eskildsen, Eske Hoy Nielsen

Thanks to Associate Professor Diego
F. Aranha

DryGascon

for (unsigned int i=0;i<DRYSPONGE.CAPACITYSIZE; i++){
ctx—>c|i] = key|i%DRYSPONGEKEYSIZE | ;
}

// ... SNIPPET ...
DRYSPONGE_CoreRound (ctx ,0);

unsigned int modified=1;
while (modified){
modified=0;
for (unsigned int i=0;i<DRYSPONGE_XSIZE32—1;i++){
for (unsigned int j=i-+1;j<DRYSPONGE_XSIZE32; j++){
uint32_t ci,cj;
DRYSPONGE_ load32(&ci , ctx—>c+ixsizeof(uint32_t));
DRYSPONGE_load32(&c¢j , ctx—>c+j*sizeof (uint32_t));
if (ci=—cj){
DRYSPONGE_CoreRound (ctx ,0);
modified =1;
break ;

}
if (modified) break;
}
}
memepy (ctx—>x, ctx—>c¢ ,DRYSPONGE XSIZE) ;
memcepy (ctx—>c¢ , key ,DRYSPONGE XSIZE) ;

Comet Patch

if(Z_[p—1] & 0x80){ /*10000000% /
Z[0] "= 0x1B; /*00011011%/
}

Figure 4: Variable time code in COMET found by ctgrind

u8 a = Z|[0] " 0x1B;

u8 b = Z[0];

u8 bit = Z_[p—1] & 0x80;
u8 mask = (bit | —bit) >> (sizeof(u8) * CHARBIT — 1);
u8 ret = mask & (b"a);

Z[0] = ret ~ b;

Figure 5: Constant time version of figure 4

