
Toolchain for Timing leakage Analysis of NIST
Lightweight Cryptography Submissions
Adam B. Hansen, Morten Eskildsen, Eske Hoy Nielsen

Nist LWC Workshop, 2020

Toolchain for Timing Leakage Analysis

● The NIST Lightweight Crypto Standardisation call
● Timing Side channel Attacks
● Tools and Pipeline
● Results on Reference Implementations

LWC Call overview

● “There are several emerging areas […] in which highly-constrained devices
are interconnected, […] Because the majority of current cryptographic
algorithms were designed for desktop/server environments, many of these
algorithms do not fit into constrained devices.“ - NIST

● Standardised Authenticated Encryption algorithms for:
○ Small/power limited boards
○ IoT devices
○ Embedded devices

● Current solutions aren’t good enough

LWC Call overview

● “The implementations of the AEAD algorithms and the optional hash function
algorithms should lend themselves to countermeasures against various
side-channel attacks, including timing attacks, simple and differential power
analysis (SPA/DPA), and simple and differential electromagnetic analysis
(SEMA/DEMA).” -Nist

Motivation: Timing Attacks

● Variable time instructions
● Code branching on secret data
● Cache timing attacks

○ S-box Table Lookups

Branching on Secret Data

● Different length branches can trivially leak data
● Branches with same number of CPU cycles

○ Variable time instructions
○ Cache hits/misses

● Branch Prediction
○ Can be exploited to leak key [AKS06]

● Don’t branch on secret data

Cache Timing Attacks

● Leaking information through cache hits/misses
● Cold Boot attacks, Evict + Reload, Prime + Probe...
● S-boxes

○ Can be implemented as in memory lookup tables
○ Attacks on AES[Ber05]
○ Index Keys can leak data[Tez19]
○ Vulnerable even if full S-box fits in cache
○ Potentially Vulnerable even if full S-box fits on one cache line

● Common Problem among reference implementations

Overview of Tools

● Dudect
○ Dynamic analysis/fuzzing
○ Statistical analysis of execution time

● CTGrind
○ Dynamic analysis
○ Monitors branching on secret data
○ Based on Valgrind

● FlowTracker
○ Static analysis
○ LLVM

Our Pipeline

Results

● Reference Implementations
○ As of June ‘20

● DudeCT flags 8 candidates
● CTGrind flags 14 candidates

○ DryGascon
○ Comet
○ S-box table lookups

● FlowTracker flags 11
candidates

○ Only 6 overlap with CTGrind
○ Of the 5 unique, at least 3

appear to be false positives

DryGascon

● Variable time key loading
● 256bit immediately flagged by dudect
● Ctgrind flags key expansion function
● Requires certain conditions on least significant bits of state

Comet

● Implementations using CHAM, Speck and AES
○ Ctgrind flagged AES S-boxes

● All had conditional jump on one bit of the State

S-box Table Lookups

● AES
○ SAEAES, ESTATE, Mixfeed

● GIFT
○ Lotus, Hyena, ESTATE

● SKINNY
○ Skinny, Forkae, Romulus

● Attacks are practical
● Example: Mixfeed

○ Indexes into 8 bit S-box with XOR of roundkey and plaintext

S-box Table Lookups

S-box lookup issues - mitigations

● Hardware support
○ AES-NI op-codes on modern x86 processors
○ Misses the point of this contest

● Bitslicing
○ Rewriting code/table lookups as binary operations
○ Can increase speed and guarantees constant time execution

● Implementing Bitslicing
○ AES
○ SKINNY
○ Gift

Results: tools + pipeline

● DudeCT
○ Fuzzing + Statistical test
○ “No” false positives
○ Black box

● CTGrind
○ Dynamic memory analysis
○ Very precise reporting

● FlowTracker
○ Full code coverage -> Potentially not as relevant in symmetric crypto?
○ Many false positives?
○ Negatively impacted by shared libraries and pointer arithmetic

FlowTracker

● Static analysis vs Dynamic Analysis
● False positives

Our Pipeline

● Aimed at supporting development/local testing
● Compiled all tools in a docker image targeting competition API

○ Wrapper script takes input folder and output folder, optional settings file

● Provide prebuilt image
○ blatchley/ct-analysis:latest

● Source code to build locally, Readme
○ https://github.com/blatchley/Timing-Analysis-Pipeline

In Context of Competition

● “These are just reference implementations”
○ Some candidates still not submitting constant time versions
○ Reference implementations are being benchmarked and compared
○ Good demonstration of types of leakages our tooling can detect

● AES vs Skinny/Gift/others
○ Table lookup AES is fast
○ Was selected when table lookups were not seen as variable time
○ Some see the point of this contest to be replacing AES for lightweight devices

● We expect new focus on side channel security for round 3
○ Provide our Pipeline to help with development

● SuperCop/TimeCop

Side Channel Analysis of NIST
Lightweight Cryptography Submissions
Adam B. Hansen, Morten Eskildsen, Eske Hoy Nielsen

Thanks to Associate Professor Diego
F. Aranha

DryGascon

Comet Patch

