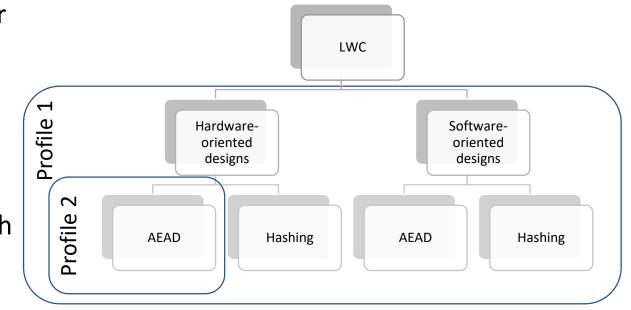
Towards the Selection of the Finalists

NIST Lightweight Cryptography Standardization Process

Kerry McKay
 NIST Lightweight Cryptography Team

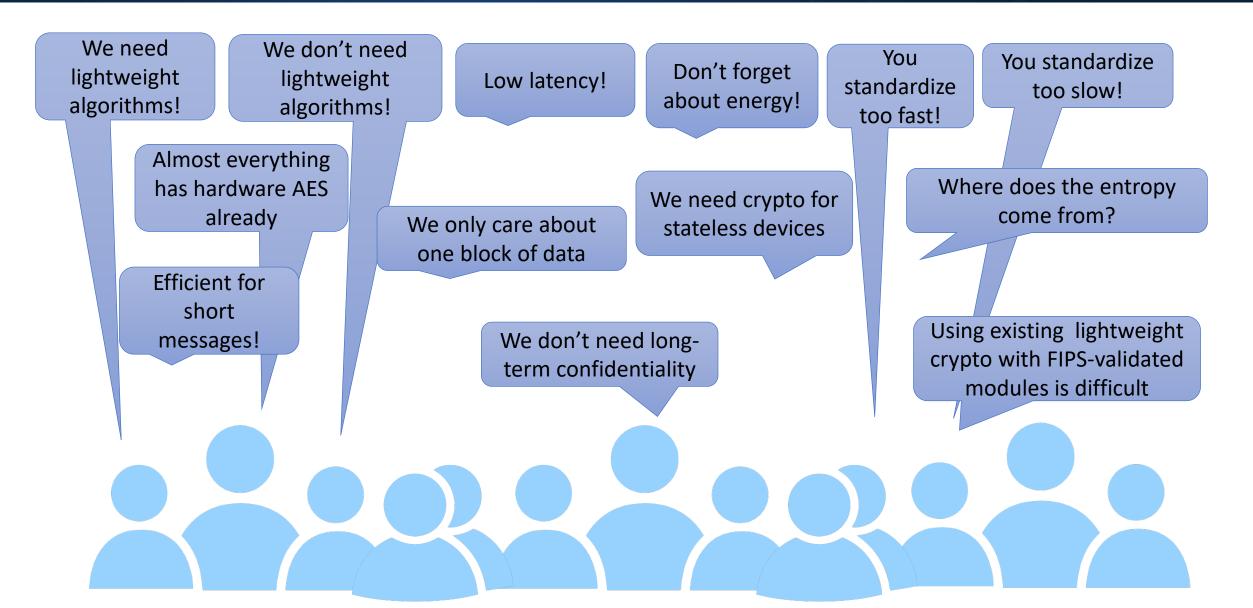
NIST Lightweight Cryptography Workshop, October 19, 2020

- NIST lightweight cryptography standardization process
- Comparisons of the round 2 candidates
- Evaluation criteria and next steps

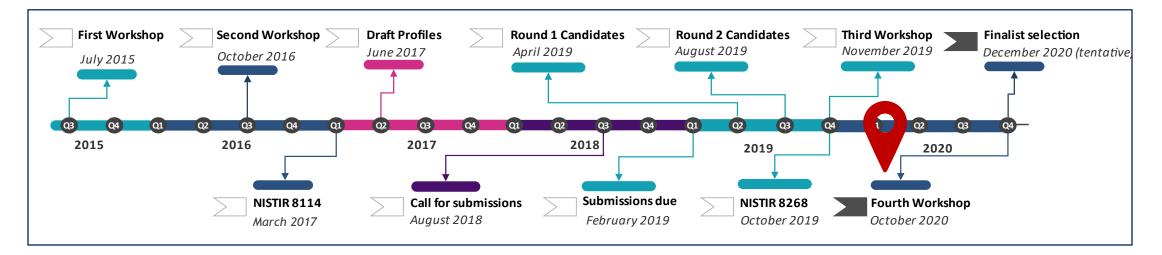

Welcome – 4th NIST LWC Workshop NIST

- Three-day virtual workshop
- Six sessions to discuss
 - Status updates
 - Security analysis and performance of second round candidates
 - Selection of the finalists
- 2 NIST talks, 23 accepted talks, open discussion

Where We Began



- Need for cryptographic standards for applications in constrained environment that are not well-served by existing NIST standards
 - Needs vary by application
 - Tailoring to target devices and applications could lead to many standards
- The big question was "where do we start?"
 - Decided to begin with symmetric cryptography in constrained environments
- Two profiles in withdrawn draft whitepaper
 - Profile 1 for AEAD + hashing in SW and HW
 - Profile 2 for AEAD in hardware
- Feedback shaped the submission requirements
- Instead of two profiles, asked for AEAD with optional hashing functionality

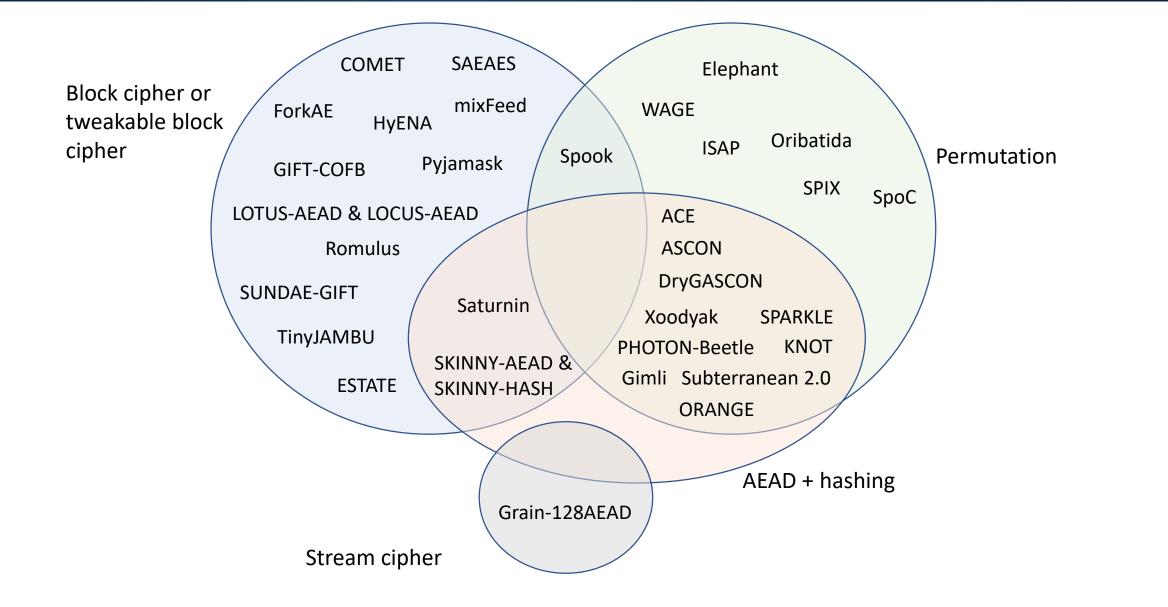

Feedback (paraphrased)

NIST LWC Standardization Process NIST

- Competition-like process
- Scope: AEAD with optional hashing functionality
- In April 2019, announced 56 Round 1 candidates (out of 57 submissions)
- In August 2019, announced 32 Round 2 candidates
 - Selection based on cryptographic maturity of the designs
- Extended the finalist selection by 3 months, expected in December 2020

Considerations

- Security
 - Claims by the submitters
 - Maturity of analysis by the submitters and third parties
- Implementation flexibility to achieve cost/performance tradeoff best for application
- Performance
 - Benchmarking results in constrained software and hardware environments
 - Comparison to current NIST standards
- Additional Features
 - Nonce misuse security, RUP security, post-quantum security, side channel resistance, etc.
- Design diversity
- Standardization
 - Public confidence
 - Ease of standardization and adoption


Second Round Candidates

ESTATE Xoodyak Romulus DryGASCON Lephant COMET ACE mixFeed PHOTON-Beetle SAEAES Gimli COTUS-AEAD and COCUS-AEAD ASCON SKINNY-AEAD and SKINNY-HASH Spock TinyJAMBU Sublemanean 2.0 Oribatida Spoc Saturnin Grain-128AEAD Pyjamask HyENA ORANGE SUNDAE-GIFT Forkae KNOT ISAP GIFT-COFB SPARKCE WAGE

Design (Primitive Level) & Functionality

NIST

Design (Mode Level)*

Sequential

Classical sponge with public permutation ACE, ASCON, DryGASCON, Gimli, KNOT, SPIX, Spook, Subterranean 2.0, WAGE, Xoodyak

Modified sponge with public permutation ORANGE, Oribatida, PHOTON-Beetle, SPARKLE, SpoC

(T)BC-based feedback with rate 1 COMET, GIFT-COFB, HyENA, mixFeed, Romulus

Classical sponge with secret permutation SAEAES, TinyJAMBU Enc-then-Mac ISAP, Saturnin

Mac-then-Enc ESTATE, SUNDAE-GIFT

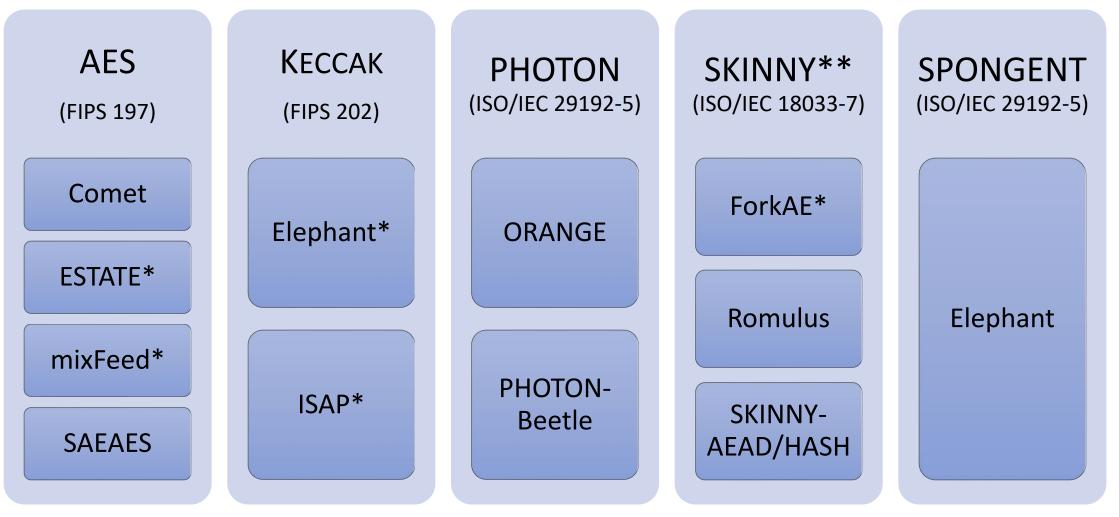
Stream cipher based Grain-128AEAD

Parallel

ForkAE

LOTUS-AEAD & LOCUS-AEAD

ΘCB3-basedSKINNY-AEAD


OCB3-based

Pyjamask

Enc-then-Mac Elephant

* Primary variant only

* with modification

** in progress

Additional Features

Many candidates claim additional features, such as

- Various levels of nonce misuse resistance
- RUP-security
- Related-key security
- Lending themselves to side-channel resistant implementations
 - Leakage-resilience, threshold implementations, etc.
- Post-quantum security
- Additional variants supporting various key/tag sizes, or optimization for short messages

Software Benchmarking

Microcontroller benchmarking	Microcontroller benchmarking	Microcontroller benchmarking
by Renner, Pozzobon, and Mottok	by Weatherley	by NIST LWC Team
 ATmega328P ARM Cortex-M3 ARM Cortex-M7 with FPU Kendryte K210 Xtensa LX6 	 ARM Cortex-M3 Xtensa LX6 ATmega2560 	 ATmega328P ARM Cortex-M0+ ARM Cortex-M4 with FPU

eBACS (ECRYPT Benchmarking of Cryptographic Systems)

 Many systems covering ARM, AMD, Intel, PPC, RISC-V, and MIPS architectures

RISC-V benchmarking by Campos et al.

- SiFive E31
- VexRiscv simulator
- riscvOVPsim simulator

Hardware Benchmarking

FPGA benchmarking	ASIC benchmarking
by Mohajerani et al.	by Khairallah, Peyrin, and Chattopadhyay
 Artix-7 Cyclone 10 LP ECP5 	 Synopsys VCS simulator Xilinx ISim simulator

Status Updates

In August 2020, NIST requested optional status updates from the submission teams on

- New proofs/arguments supporting the security claims
- New software and hardware implementations
- New third-party analysis and its implications
- Platforms and metrics in which the candidate performs better than current NIST standards
- Target applications and use cases for which the candidate is optimized
- Planned tweak proposals, if submission accepted as a finalist
- Any other relevant information

NIST received 27 status updates

Available on the project website at <u>https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates</u>

- Finalists will have the opportunity to update submission packages and propose tweaks to submissions.
- 15 teams are considering tweaking their submissions, according to status updates
 - Increasing/decreasing number of rounds
 - Adding new functionality (e.g., XOF, hash, new modes) and new variants
 - Swapping ordering of nonce/ad/message processing
 - Updating primary variants, input sizes (nonce size)
 - Dropping family members
 - Modifying the internal details of the underlying primitive
- Tweaks are expected to be small changes to the design
 - 'big' changes to the **primary variant** may signal that the submission is not mature enough for standardization
- Tweak submission guidelines will be provided

Finalist Selection

- After the 15-month evaluation of the second-round candidates, NIST plans to select the finalists in December
- Target around 8
- Selection criteria
 - Security analysis (third-party and submitter)
 - Software and hardware benchmarking
 - Diversity of the finalists
 - Additional features

Timeline and Next Steps

- Selection of the finalists
- Publication of the report on 2nd round
- Provide guidelines for the tweaks
- Deadline for updated submission packages
- Publication of the updated submissions in the project webpage
- Final round around one year

Thanks!

https://csrc.nist.gov/Projects/lightweight-cryptography

Email list: lwc-forum@list.nist.gov NIST team: lightweight-crypto@nist.gov