
Preprint: 31st International Symposium on Software Reliability Engineering (ISSRE 2020)

Systematic Software Testing of Critical Embedded Digital Devices in Nuclear Power
Applications

Athira Varma Jayakumar1, Smitha Gautham1, Richard Kuhn2, Brandon Simons1,

Aidan Collins1, Thomas Dirsch3, Raghu Kacker2, and Carl Elks1

1 Virginia Commonwealth

University, Richmond VA, USA
2National Institute of

Standards and Technology
Gaithersburg, MD, USA

3Razorcat, Inc.
Berlin, Germany

Abstract – While design assurance and testing methods for safety-critical systems have been widely researched and studied for years
across a number of industry domains, there are few efforts reported in the literature on the actual application of software testing
methods to nuclear power digital I&C systems or devices. We see this as a gap in the knowledge basis. The motivation for this
research was to investigate the efficacy and challenges that arise when planning, automating and conducting systematic software
testing on actual real-time embedded digital devices. In this paper, we present results on the application of a systematic testing
methodology called Pseudo-Exhaustive testing. The systematic testing methods were applied at the unit, module integration levels of
the software. The findings suggest that Pseudo Exhaustive testing supported by automated testing technology is an effective approach
to testing real-time embedded digital devices in critical nuclear applications.

Keywords - t-way combinatoric testing, Pseudo Exhaustive testing, software testing, safety critical systems, embedded digital devices

I. INTRODUCTION AND BACKGROUND
 Nuclear power generation facilities worldwide are steadily trending toward “aging infrastructure” with the average age of a
Light Water Reactor in the United States at about 37 years. To address this concern, global energy organizations and national
energy agencies like the International Atomic Energy Agency and the US Department of Energy have introduced research and
development programs to assist utilities in what is known as “plant modernization and upgrades”. These modernization efforts
will rely heavily on computer-based or digital Instrumentation and Control (I&C) systems for the replacement of obsolete
analog or rudimentary digital systems. Even though advanced digital I&C devices have been used extensively in many other
industries, their use in the nuclear industry for safety-related functions are still limited.

The U.S. Nuclear Regulatory Commission (NRC) identifies two design methods that are acceptable for eliminating Software
Common Cause Failure (SCCF) concerns: (1) diversity or (2) testability (specifically, 100% testability) [1]. There is near
universal consensus among computer scientists and software test engineers that enumerated exhaustive testing for modestly
complex devices or software is infeasible [2]. For this reason, diversity and defense-in-depth architectural methods have
become the norm in the nuclear industry for addressing vulnerabilities associated with SCCFs [1]. However, the disadvantages
of large scale diversity methods for plant modernization are significant implementation costs, and increased plant integration
complexity. Consequently, there has been much interest within the nuclear industry in the past 10 years toward finding cost
effective testing methods for design assurance that go beyond defense-in-depth and diversity.

The pragmatic motivation for this study was to investigate the efficacy and challenges that arise when planning, automating,
and conducting systematic software testing on actual real-time embedded digital device, as little has been published with respect
to systematic software testing with respect to nuclear digital devices. In this paper we present results on the application of a
systematic testing methodology called “Pseudo-Exhaustive” testing built around t-way combinatorial testing, partitioning,
boundary value analysis, and path analysis [3]. Our selection of Pseudo Exhaustive testing methods was influenced by several
important factors. First, the nuclear regulatory guidelines of [1] emphasize the testability of software, with a goal of testing all
possible inputs and paths, which is intractable for current digital systems. Second, the principle elements of Pseudo Exhaustive
testing have an established technical basis with a history of use in embedded safety critical systems [4]. In our work, the testing
methods were applied at the unit, module integration levels of the software of an embedded smart sensor. We provide findings
on the application of this systematic testing that helps inform the nuclear power community and other safety critical
communities on broader impacts.

II. TESTING METHODOLOGY AND STUDY DESIGN
Our approach builds on a test method called “Pseudo Exhaustive” [5] [6]. The definition of Pseudo Exhaustive is given below.

Preprint: 31st International Symposium on Software Reliability Engineering (ISSRE 2020)

Definition: Pseudo Exhaustive - Software testing is considered bounded or Pseudo exhaustive when well-formed relations
between input space and state space allow the testable state space to be reduced – enabling a feasible testable set. The key
assumption is that the state space reduction process must preserve the properties of and among the elements from the original
state space.

Our realization of Pseudo Exhaustive testing combines a number of testing techniques to satisfy the above definition.
Specifically, our test methodology is organized around the following well-accepted methods: Equivalence partitioning,
Boundary Value analysis, t-way combinatorial tests and Path analysis (MC/DC criteria).

 In order to construct a well-formed input space model we employ equivalence partitioning and Boundary Value Analysis
(BVA) sampling methods to pre-analyze the software prior to generating t-way tests. Next, t-way “covering” test suites are
generated from the reduced input model. Research conducted by National Institute of Standards and Technology (NIST) [5] on
software failures for diverse application domains (e.g. aerospace, medical, finance, IT, etc.) strongly indicate that a majority of
software failures are induced by interaction faults arising from the interaction of just a few parameters, mostly by two and three
levels of interaction. In our study, experimentation is performed by varying the interaction strength t of the combinatorial
testing and by varying the set of representative values v for an input partition space. The number of t-way combinatorial tests
that is necessary has been shown to be proportional to [7].

𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑒𝑠𝑡𝑠	 ≜ 𝑣! log 𝑛							(1)

where v is the value span of the input variables or parameter (n), and n is the number of inputs parameters, and t is the number
of interactions between parameters. The outcome evaluation from these tests are conducted using an oracle or by utilizing
assertions implanted in the code. The outcomes from these experiments include the Pass/Fail results of the tests, various
coverage metrics, and the identification of flaws.

A. Combinatorial Testing via Coverage Analysis
One of the underlying assumptions for effective t-way combinatorial testing is developing an input model that is

comprehensive in reaching all regions of the decision logic on the software. One way to achieve this is by coverage path
analysis. Coverage path analysis involves measuring the structural aspects of the program using several metrics like branch
coverage, statement coverage, Modified Condition/Decision Coverage (MC/DC) coverage. Our study process aims at achieving
>95% MC/DC coverage. Previous works have studied the relationship between combinatorial coverage and structural coverage
with respect to the completeness of test suites [8].

Branch coverage condition: A test set provides 100% branch coverage for t-way conditionals if Mt + Bt > 1, where Mt =
minimum combinatorial coverage at level t, and Bt =minimum proportion of t-way combinations that is guaranteed to trigger
a branch within the code, where all variables in decision predicates have values from the variable set with minimum coverage
characteristic Mt. [8]

On the basis of this theorem, it can be asserted that test suites based on covering arrays which have a minimum combinatorial
coverage of 100%, would always result in branch coverage of 100% if the input model is sufficient and complete. Input model
deficiencies are thereby caught through branch coverage analysis. Since we employ MC/DC coverage analysis which subsumes
branch coverage, therefore our approach is sound. Finally, the systematic testing of the software architecture follows the well-
known unit test, integration test, and system test paradigm [9]. Safety standards such as IEC 61508, ISO 62626, and DO-178B
and so on highly recommend this type of systematic testing for high levels of design assurance.

III. REPRESENTATIVE EMBEDDED DEVICE – THE VCU SMART SENSOR
The Embedded Digital Device we use for this study is a Smart Sensor, which is representative of the type used in nuclear power
applications [3 appendix B]. The hardware platform uses the ARM Cortex-M4 processor featuring 2MB of Flash Memory. The

Preprint: 31st International Symposium on Software Reliability Engineering (ISSRE 2020)

application software is hosted by the ChibiOS real-time operating system to ensure the proper scheduling and execution of all
periodic tasks within the system, which are handled by a priority-based scheduler.

 Figure 1: Smart Sensor Program Data Flow

Error! Reference source not found.1 shows the program data flow of the software components of the VCU Smart Sensor in
its testing environment context, including the threads and communication protocols used to transmit data between modules.
One of the critical threads is ms5611_thread, which is responsible for reading sensor head data and processing it. During the
first phase of our research, we focused our testing strategy on the MS5611 thread.

Figure 2: Basic flow of the ms5611_thread functions.

 The basic flow of the ms5611 application thread is shown in Figure 22. The get_current_pressure function takes the raw
temperature and pressure values from the sensor in the form of 32-bit unsigned integer values as inputs. The function processes
the raw values and translates into pressure value, in Pascals. The kalman_filter function performs the Kalman Filter calculations
in order to reduce noise. A floating-point value for the measured pressure values, prior to kalman filter calculations is used as
the input, while the output is a floating-point value for the pressure values, following the kalman filter calculations. For both
the functions get_current_pressure and ms5611_kalman_filter, test oracles were created to verify that they function as expected.

IV. TESTBED ARCHITECTURE
Our goal was to apply our test methodology on real hardware operating at real-time speeds. Our test bed architecture in Fig. 3
shows the basic workflow, the tools, hardware components and test artifacts necessary to conduct the real-time systematic
testing experiments on the smart sensor. The three major tools used in our testbed are (1) Razorcat’s TESSY, (2) National
Institute of Standards and Technology (NIST) ACTS tool, and (3) Keil Interactive Debugger. TESSY, developed by Razorcat
is an automated testing tool for safety critical embedded systems software [10]. TESSY provides test automation management
for unit testing, integration testing directly on real-time embedded hardware. The ACTS tools from US NIST provide
capabilities to automatically generate effective t-way combinatorial test cases. Additionally, ACTS has features to support for
BVA, event sequence testing, covering array generation.

The Keil interactive debugger software is the interface between TESSY software and the target hardware. TESSY exploits the
ARM Serial Wire Debugger (SWD) port which enables test vectors to be directly executed on target HW, and offers an
unobtrusive extraction and monitoring of program data that includes I/O data, local and global variables, state variables,
conditionals and guards. Referring to Fig. 3, the necessary C/C++ source files are loaded into the TESSY tool. TESSY analyzes
the source files and populates all the local functions, external functions, external variables, global variables and macros.
TESSY’s classification tree editor facilitates BVA and equivalence partitioning, to confine the input domain into a tractable

Preprint: 31st International Symposium on Software Reliability Engineering (ISSRE 2020)

set of values. The Software requirements, software design documents and the datatypes of the variables identified by Tessy
during source code analysis guide the testers in creating various classes to represent equivalence partitions of the input domain
and sub classes to feed in the boundary values for each partition. These representative test input data values fed into the
classification tree are then exported from TESSY into excel and xml files.

Figure 3: Baseline testbed architecture [3]

 A custom script parses the Tessy exported xml file, which contains all the test data values, and converts it into input language
that the ACTS tool can recognize. After importing the input model information that contains the input parameters (n) and their
values (v), and further feeding in the required interaction level (t = 2 to 6) and parameter constraints if any into ACTS, the tool
is run to produce t-way tests that contain all t-way combinations of input values that are specified in the classification tree in
TESSY. The t-way test cases exported from ACTs are translated back into TESSY import format by a translation script. To
address the oracle issue, algorithm/equations can be inserted into TESSY Epilogue and Prologue function which allows for
automatic ‘expected output’ calculation during runtime. These functions act like a “shell” for automating the comparison of
oracle to actual results. To support diversity in our oracle module we synthesized a kalman filter from MATLAB and Simulink
and auto-generated the code from those models. TESSY runs test cases directly on the actual Smart sensor target by interfacing
with the Keil debugger. The real time values of program data from the software are collected with the help of TESSY's inbuilt
timestamp mechanism and compared with the fed in oracle data. The final step in the workflow after the initial test execution
is the coverage analysis. MC/DC coverage data is generated in TESSY. This coverage data information is used to enhance tests
to improve the code coverage as shown in Fig. 4. Low coverage due to uncovered branches involving more than t variables,
can be improved by generating a higher t-way interaction test vectors in ACTs. In some cases, an incomplete input model could
be the reason for low coverage - for example, due to essential parameters or necessary values for testing being not considered
during input model creation.

Figure 4: Coverage Analysis and Optimization process

Preprint: 31st International Symposium on Software Reliability Engineering (ISSRE 2020)

V. RESULTS OF PRELIMINARY TESTING
Our testing on thread functions starts with the baseline test of 2-way combinatorial testing which then proceeds to 3, 4, 5 and
6-way tests. The main objective of the test experiments was to identify the level of t at which 100% of the interaction faults in
the embedded software are detected cumulatively. Our experiments revealed that all the defects identified in the smart sensor
software were found at the 2-way combinatorial testing level. This is not a general result, rather specific to the nature of the
logic interactions in the smart sensor software. However, it is confirmatory evidence to other findings that suggest most faults
are detected at lower interaction levels. The second aim was to analyze the impact of combinatorial testing on path coverage
and thereby fault detection capability. On the thread functions that we conducted our experiments, a high 100% branch coverage
was obtained at the baseline 2-way testing level itself [3].

Error! Reference source not found. presents the summary of results for unit testing on two functions; (1)
get_current_pressure, and (2) Kalman_filter within the ms5611_thread in the smart sensor software. The number of test vectors
rose exponentially with increase in t, as anticipated based on the relationship formula (1). The number of values sampled for
each variable varies between variables and depends on their respective input domain and their usage in the code. The average
value of variable values was around 7 values/variable. From the data collected, it can be seen that on average it took 400ms to
execute and evaluate a single test directly on the target hardware. The achievable test productivity with this methodology was
about 210,000 test vectors/day which is noteworthy when considering actual testing on a physical HW platform. The
combinatorial unit tests were successful enough to uncover three native bugs (as shown in

 Another interesting bug caught by the combinatorial tests,
which was not expected, is a potential buffer overflow
vulnerability that existed in the get_current_pressure code.
Such an error could be triggered by a hardware fault or
exploited by a cyber-attack. We found test cases with raw
pressure value greater than the maximum 24 bits (3 bytes)
value ‘16777215’ was expected to fail. But they ended up
with ‘Passed’ results because the input buffer was allowed to
overflow.
TABLE 2), in the smart sensor software that had been in use for
years.

Few test cases resulted in ‘Infinite’ value test outcomes when
the kalman filter computations ended up in ‘division by zero’.

The ‘infinity’ output value is an undesirable outcome and
revealed that the code was missing a check to ensure that the
divisor is not zero before performing division. Another issue
identified was the missing overflow checks during float
computations which resulted in ‘Not a Number’ outcomes for
few testcases. ‘NaN’ (Not a Number) is an undefined result
obtained when the processor attempts a 0/0 or Inf/Inf
computation. A check for an overflow during computations
and saturating the result to the maximum value of the float
datatype 3.40282E+38 could prevent the computation result
from ending up in infinity thereby avoiding infinity and
undefined final outputs. These severe bugs seem to have
appeared due to the deficiency of robust coding practices.

TABLE 1: SUMMARY OF RESULTS[3]

Function T Testing Type Testing Method Coverage # Tests Time Pass/Fail #
Defects

get_current
_pressure

T=2 Unit BVA, T-way, MC/DC Statement=100% MC/DC=100% 21 < 1 min 21/0 1
T=3 Unit BVA, T-way, MC/DC Statement=100% MC/DC=100% 76 1 min 76/0 1
T=4 Unit BVA, T-way, MC/DC Statement=100% MC/DC=100% 285 2.3 min 285/0 1
T=5 Unit BVA, T-way, MC/DC Statement=100% MC/DC=100% 870 8 min 870/0 1
T=6 Unit BVA, T-way, MC/DC Statement=100% MC/DC=100% 2411 15 min 2411/0 1

kalman_filt
er

T=2 Unit BVA, T-way, MC/DC Statement=100% MC/DC=100% 48 < 1 min 42/6 2
T=3 Unit BVA, T-way, MC/DC Statement=100% MC/DC=100% 316 3 min 276/40 2
T=4 Unit BVA, T-way, MC/DC Statement=100% MC/DC=100% 1608 12.4 min 1389/219 2
T=5 Unit BVA, T-way, MC/DC Statement=100% MC/DC=100% 7776 59.1 mins 5855/1921 2

 9748

Function T Testing Type Testing Method Coverage # Tests Time Pass/Fail #
Defects

get_current
_pressure

T=2 Unit BVA, T-way, MC/DC Statement=100% MC/DC=100% 21 < 1 min 21/0 1
T=3 Unit BVA, T-way, MC/DC Statement=100% MC/DC=100% 76 1 min 76/0 1
T=4 Unit BVA, T-way, MC/DC Statement=100% MC/DC=100% 285 2.3 min 285/0 1
T=5 Unit BVA, T-way, MC/DC Statement=100% MC/DC=100% 870 8 min 870/0 1
T=6 Unit BVA, T-way, MC/DC Statement=100% MC/DC=100% 2411 15 min 2411/0 1

 T=2 Unit BVA, T-way, MC/DC Statement=100% MC/DC=100% 48 < 1 min 42/6 2

Preprint: 31st International Symposium on Software Reliability Engineering (ISSRE 2020)

 Another interesting bug caught by the combinatorial tests,
which was not expected, is a potential buffer overflow
vulnerability that existed in the get_current_pressure code.
Such an error could be triggered by a hardware fault or
exploited by a cyber-attack. We found test cases with raw
pressure value greater than the maximum 24 bits (3 bytes)
value ‘16777215’ was expected to fail. But they ended up
with ‘Passed’ results because the input buffer was allowed to
overflow.

TABLE 2 SOFTWARE ISSUES IDENTIFIED BY TESTING [3]

Issues Software
Function

Caught by

Missing Divide by Zero
check

ms5611_kalma
n_filter

2-way combinatorial unit
testing

Missing Overflow check
in float computations

ms5611_kalma
n_filter

2-way combinatorial unit
testing

Function processes input
values outside valid range

ms5611_get_cu
rrent_pressure

2-way combinatorial unit
testing

In addition to verifying the handling of program data in
threads/functions using combinatorial testing, the sequence
of function calls (at the right time and right order) within a
thread must be validated with robust test sets to determine if
race conditions or disordering of events can occur. To verify
event-based sequences and validate the correctness of the
thread functions that have a number of external and local
function calls driven by control flow logic, sequence-based
tests were formulated in TESSY’s Sequence editor.
Sequence-based tests help to validate the temporal behavior
of the indefinitely running threads scheduled by the real-time
operating system (RTOS). Due to page limitations, we do not
go into details of this testing we refer the reader to [3].
Testing of call graph execution sequence was more intricate
and challenging as we had to interact with RTOS scheduler
while it invoked tasks in the correct order and accurately
emulate the function call order as per the call graphs. We
found no faults in the sequencing of the function calls.

VI. CHALLENGES
The major challenges we faced are discussed below. One
significant challenge we encountered was developing the
testbed architecture to conduct the study. As the multi-
pronged testing approach involved multiple tools and
software (ACTS, Tessy, Keil uvision), we had to build an
intricate workflow to interconnect them in order to ensure an
efficient testing process. The challenge in testing real-time
systems is that they need to be tested in the temporal domain

as well as the value domain. Testing in the temporal domain
implies the need to issue inputs at a precise time instance i.e.
beginning of the scan cycle, controlling the state of the SW
object at the start of the test execution and observing the
timing of the result at the end of execution. These tests were
complicated to develop as it required detailed knowledge of
the control flow sequencing.
One other challenge we faced during our study is the
identification of a reliable oracle to validate the correctness
of the test results. Several approaches were explored.
TESSYs option to feed in the oracle algorithm as user-
specific C code, provides an automated dynamic oracle
information generator. But this method could lose its
efficiency when it comes to larger and more complex
software. Another interesting approach was to use a diverse
version of the software algorithm from which the reference
values to verify the DUT can be derived. Simulink was used
to create a kalman filter model and then embed the generated
code as the oracle algorithm into TESSY.

Input model preparation consumed the most time in the entire
test process as it is not an automated process. BVA and
equivalence partitioning of inputs require a detailed
knowledge about the usage of the input parameters within the
code. We found pointer to structures, pointer to pointers and
structure with pointer members being abundantly used in the
code and being passed across functions. Such constructs can
cause misinterpretations of the code and result in incomplete
or incorrect input models to be prepared by the testers. This
can further reduce the software coverage achieved with the
tests.

VII. FINDINGS AND RECOMMENDATIONS
The overall goal of this research was to investigate pseudo-
exhaustive testing as a suitable method for testing safety-
critical embedded software in the context of nuclear power
applications. As a broad indicator of the method, we
discovered three native defects in the code that were latent
for some time, and in one case the defect was there for years.
In conducting this study, we compiled a number of findings,
limitations, and recommendations which we feel are
informative to the community. We summarize a few of these
below.

Finding 1: Confirmatory evidence to previous studies. The
results we obtained on interaction faults provide farther
evidence that most faults are found at lower levels of
interaction (level 2 or 3). These findings provide guideposts

kalman_filt
er

T=3 Unit BVA, T-way, MC/DC Statement=100% MC/DC=100% 316 3 min 276/40 2
T=4 Unit BVA, T-way, MC/DC Statement=100% MC/DC=100% 1608 12.4 min 1389/219 2
T=5 Unit BVA, T-way, MC/DC Statement=100% MC/DC=100% 7776 59.1 mins 5855/1921 2

 9748

Preprint: 31st International Symposium on Software Reliability Engineering (ISSRE 2020)

on the strength of t-way interactions that should be
considered when conducting testing.
Finding 2: t-way and path coverage analysis are highly
synergistic. The combination of t-way and path analysis
(MC/DC) is a compelling approach for reasoning about
“completeness” - when to stop testing. Path coverage analysis
provides direct feedback to the strength of the testing. With a
given coverage goal, deficiencies in the input model and the
t-way interaction strength can be found via path analysis.
Finding 3: Conducting tests on actual HW platforms requires
highly coordinated testbed and tool support. Pseudo-
exhaustive testing of the type we conducted has a lot of
moving parts. As such, test automation tools for test
generation and management of tests directly on real-time
embedded hardware are necessary.
Finding 4: Efficacy of the approach appears to be suitable
for safety critical nuclear applications. Although research is
continuing, and results are preliminary, the evidence suggests
that Pseudo exhaustive testing provides the type of rigor
required for certification of safety critical SW within nuclear
applications.
Limitations: White Box testing and control-oriented
software. The testing methodology we present is a white box
testing approach and it requires access to requirements,
specifications, and source code documents by a testing entity
or authority. In addition, it seems to work best for control-
oriented software, i.e. SW that has computations organized
around modes, configurations, and decision logic.

Recommendations (farther needs)
An interesting aspect of combinatorial test methods is that
they allow tight integration with approaches to test oracle
generation, including conventional model-based test
generation, and some novel approaches as well. Instantiating
a model with values from a covering array, then generating
counterexamples from property claims makes it possible to
produce matching inputs and expected outputs Error!
Reference source not found.. Methods developed for input
model validation can be used with covering arrays to partially
automate oracle generation as well [11]. Similarly, methods
and tools to facilitate automated assistance with respect to
constructing the input testing model would be significant gain
in overall testing productivity for complex embedded
applications. This aspect of the work consumed about 50% of
the effort.

VIII. RELATED WORK
 Recent work by Kuhn et al. [7] [5] [12] studied the
effectiveness of Combinatorial Testing (CT) in a variety of
application domains, from critical systems (aircraft collision
avoidance TCAS to web browsers). Their research has
consistently shown that about 20%–70% of software faults
were triggered by single parameters, about 50%–95% of
faults were triggered by two or fewer parameters, and about

15% were triggered by three or more parameters. Recent
work by this group has considered how sequences can be
tested via CT [13], comparing t-way CT testing with random
testing, and methods for generating test cases and oracles
[14].
 Woods et al [15] propose and demonstrate using
hierarchical mutation testing methods on smart sensor
platform for nuclear power applications. This work focused
on the efficacy and power of model-based testing to develop
test vectors for detecting a variety of postulated design faults.
Diao [16] describes the benefits and necessary features for
automated software testing to be productive. Guerra et al [17]
describe process safety justification approaches and specific
techniques that can be used in the justification of a smart
instruments’ software.

Disclaimer: Certain products may be identified in this document, but
such identification does not imply recommendation by NIST, nor
that the products identified are necessarily the best available for the
purpose.

REFERENCES
[1] U. N. R. Commission, “Guidance for Evaluation of Diversity and

Defense-in-Depth in Digital Computer-Based Instrumentation and
Control Systems,” Branch Technical Position, pp. 7–19, 2007.

[2] R. W. Butler and G. B. Finelli, “The infeasibility of quantifying the
reliability of life-critical real-time software,” IEEE Transactions on
Software Engineering, vol. 19, no. 1, pp. 3–12, Jan. 1993.

[3] C. Elks, A. Jayakumar, A. Collins, R. Hite, T. Karles, C. Deloglos, B.
Simmons, A. Tantawy, S. Gautham., “Preliminary Results of a
Bounded Exhaustive Testing Study for Software in Embedded Digital
Devices in Nuclear Power Applications,” Idaho National Laboratory
U.S. Department of Energy Office of Nuclear Energy report INL/EXT-
19-55606, Sep. 2019.

[4] J. D. Hagar, T. L. Wissink, D. R. Kuhn, and R. N. Kacker, “Introducing
Combinatorial Testing in a Large Organization,” Computer, vol. 48,
no. 4, pp. 64–72, Apr. 2015.

[5] D. Kuhn and V. Okum, “Pseudo-Exhaustive Testing for Software,” in
2006 30th Annual IEEE/NASA Software Engineering Workshop,
Columbia, MD, USA, Apr. 2006, pp. 153–158.

[6] K. Sullivan, J. Yang, D. Coppit, S. Khurshid, and D. Jackson,
“Software Assurance by Bounded Exhaustive Testing,” p. 10.

[7] D. Richard Kuhn, Renee Bryce, Feng Duan, Laleh Sh. Ghandehari, Yu
Lei, and Raghu N. Kacker, “Combinatorial Testing: Theory and
Practice | Semantic Scholar,” Advances in computers, Elsevier, vol. 99,
pp. 1–66, 2015.

[8] R. Kuhn, R. N. Kacker, Y. Lei, and D. Simos, “Input Space Coverage
Matters,” Computer, vol. 53, no. 1, pp. 37–44, Jan. 2020.

[9] K. H. Pries and J. M. Quigley, Testing Complex and Embedded
Systems. CRC Press, 2018.

[10] “TESSY - Test System - Razorcat Development GmbH.”
https://www.razorcat.com/en/product-tessy.html (accessed Feb. 29,
2020).

[11] D. R. Kuhn, R. N. Kacker, Y. Lei, and J. Torres-Jimenez, “Equivalence
class verification and oracle-free testing using two-layer covering
arrays,” in 2015 IEEE Eighth International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), Apr. 2015,
pp. 1–4.

[12] D. R. Kuhn, I. D. Mendoza, R. N. Kacker, and Y. Lei, “Combinatorial
Coverage Measurement Concepts and Applications,” in 2013 IEEE
Sixth International Conference on Software Testing, Verification and
Validation Workshops, Luxembourg, Luxembourg, Mar. 2013, pp.
352–361.

Preprint: 31st International Symposium on Software Reliability Engineering (ISSRE 2020)

[13] D. Ri. Kuhn, J. M. Higdon, J. F. Lawrence, R. N. Kacker, and Y. Lei,
“Combinatorial Methods for Event Sequence Testing,” in Verification
and Validation 2012 IEEE Fifth International Conference on Software
Testing, Apr. 2012, pp. 601–609.

[14] D. Richard Kuhn, Raghu N. Kacker, and Yu Lei, “Combinatorial
Testing and Random Test Generation,” in Introduction to
Combinatorial Testing, Chapman and Hall/CRC, 2016, pp. 202–215.

[15] Richard Wood, Carol Smidts, Carl Elks, and Brent Shumaker, “An
Approach to Model-based Testing of Instrumentation with an
Embedded Digital Device,” presented at the American Nuclear Society
11th International Topical Meeting on Nuclear Plant Instrumentation,
Control and Human–Machine Interface Technologies (NPIC &
HMIT), Orlando, FL, 2019.

[16] Xiaoxu Diao, Manuel Rodriguez, Boyuan Li, and Carol Smidts,
“Automated Software Testing.,” in Analytic Methods in Systems and
Software Testing, John Wiley & Sons, 2018, p. 373.

[17] Sofia Guerra, Peter Bishop, Robin Bloomfield, and Daniel Sheridan,
“Assessment and Qualification of Smart Sensors,” Las Vegas, Nevada,
2010, pp. 7–11.

