
PHOTON-Beetle Authenticated Encryption and 
Hash Family 

— Updated on Software Implementations 
Designers/Submitters: 

Zhenzhen Bao - Nanyang Technological University, Singapore 
Avik Chakraborti - NTT Secure Platform Laboratories, Japan 

Nilanjan Datta - Indian Statistical Institute, Kolkata, India 
Jian Guo - Nanyang Technological University, Singapore 

Mridul Nandi - Indian Statistical Institute, Kolkata, India 
Thomas Peyrin - Nanyang Technological University, Singapore 
Kan Yasuda - NTT Secure Platform Laboratories, Japan and 

zzbao@ntu.edu.sg, avikchkrbrti@gmail.com, nilanjan_isi_jrf@yahoo.com, 
guojian@ntu.edu.sg, mridul.nandi@gmail.com, thomas.peyrin@ntu.edu.sg, 

yasuda.kan@lab.ntt.co.jp 

Abstract. PHOTON-Beetle is an authenticated encryption and hash family, that uses 
a sponge-based mode Beetle with the P256 (used for the hash function PHOTON) 
being the underlying permutation. This report updates software implementations of 
PHOTON-Beetle on 8-bit microcontrollers and that on general-purpose computers. 
Keywords: PHOTON-Beetle · software · implementation 

1 Updated on Software Implementations on 8-bit AVR 
Members of PHOTON-Beetle have small code size (ROM) and low RAM requirement when 
being implemented in bit-sliced way on 8-bit AVR microcontrollers. To show the speed 
and the possible trade-o˙ between memory and speed, we present performance of two sets 
of our implementations in Table 1, one is targeted at optimizing ROM (avr8_lowrom), and 
the other is targeted at improving speed (avr8_speed). The cores of the implementations 
are all written in assembly; the main authenticated encryption, decryption, and hash 
functions have C APIs (we extended our previous pure assembly implementations to be 
compliant with the SUPERCOP API of AEAD and hash). The implementations were 
compiled using AVR8/GNU C Compiler 5.4.0 in Atmel Studio 7.0. The specifc targeted 
device is AVR ATmega328P. The code sizes, RAM usage, and cycles are also measured 
using components of Atmel Studio 7.0. 

From Table 1, when targeting at optimizing ROM (avr8_lowrom), PHOTON-Beetle-AEAD 
can be implemented with code size less than 2200 bytes, and PHOTON-Beetle-Hash can be 
implemented with code size less than 1100 bytes. Supporting hashing on top of AEAD costs 
very limited additional resources (less than 300 bytes of ROM); Supporting full functionality 
(authenticated encryption, authenticated decryption, and hashing), all PHOTON-Beetle-Pairs 
requires less than 2500 bytes of ROM, less than 100 bytes of RAM. For the primary pair, 
PHOTON-Beetle-AEAD[128] runs (executing both authenticated encryption and decryption) 
at an average speed faster than 8200 cycles per byte; PHOTON-Beetle-Hash[32] runs at an 
average speed faster than 6600 cycles per byte. 

mailto:yasuda.kan@lab.ntt.co.jp
mailto:mridul.nandi@gmail.com
mailto:nilanjan_isi_jrf@yahoo.com
mailto:avikchkrbrti@gmail.com


2 PHOTON-Beetle Authenticated Encryption and Hash Family 

Table 1: Performances of implementations on 8-bit AVR MCU 

PHOTON-Beetle Pairs Functionality 
avr8_lowrom avr8_speed 

RAM ROM Speed RAM ROM Speed 

PHOTON-Beetle-AEAD[128]+ 
PHOTON-Beetle-Hash[32] 

AEAD 86 2136 8128.03 86 4084 4835.35 

Hash 54 1034 6566.27 54 2982 3860.66 

AEAD+Hash 86 2416 - 86 4364 -

PHOTON-Beetle-AEAD[32] + 
PHOTON-Beetle-Hash[32] 

AEAD 74 2134 19789.79 74 4082 11596.39 

Hash 54 1034 6566.27 54 2982 3860.66 

AEAD+Hash 86 2414 - 86 4362 -

- RAM is in bytes, and is measured excluding those used for storing test vectors (including plaintexts, 
associated data, master key, ciphertexts, tags, nonce, etc.). ROM is in bytes, and is measured excluding the 
codes for generating test vectors and looping of calling the functions. 
- Speed in cycles per byte, and is measured by using the total cycles divided by the total bytes of data (length 
of associated data is from 0 to 32 bytes, length of plaintexts is from 0 to 32 bytes.) So, for AEAD, the 
total data length is 34848 bytes; For Hash, the total data length is 528. For AEAD, the total cycles includes 
that takes both by ‘crypto_aead_encrypt’ and ‘crypto_aead_decrypt’. Thus, for AEAD, the speed is cycles 
per ‘encrypting’ and ‘decrypting’ one byte. This measurement is in line with that of https://lwc.las3.de/. 
- We extended our previous pure assembly implementations to be compliant with the SUPERCOP API of 
AEAD and hash. Due to this change, the updated ROM and RAM requirements are larger than that reported 
in our previous submitted document. 

When targeting at improving speed (avr8_speed), PHOTON-Beetle-AEAD can be implemented 
with code size less than 4100 bytes, and PHOTON-Beetle-Hash can be implemented with code 
size less than 3000 bytes. Supporting hashing on top of AEAD costs very limited additional 
resources (less than 300 bytes of ROM); Supporting full functionality (authenticated 
encryption, authenticated decryption, and hashing), all PHOTON-Beetle-Pairs requires less 
than 4100 bytes of ROM, less than 100 bytes of RAM. Specifcally, for the primary pair, 
PHOTON-Beetle-AEAD[128] runs (executing both authenticated encryption and decryption) 
at an average speed faster than 4900 cycles per byte; PHOTON-Beetle-Hash[32] runs at an 
average speed faster than 3900 cycles per byte. 

To see how the speeds vary with length of short messages, we present detailed speed for 
the primary pair in Table 2. Compared with the performance of implementations of AES-
GCM in [SKP20], the speed is slower but acceptable, the ROM and RAM requirements 
are much less. 

The updated implementations on 8-bit AVR are available via https://github.com/ 
PHOTON-Beetle/Software. 

Performance on Benchmarking Project. The platform established by Sebastian Renner, 
Enrico Pozzobon, and Jürgen Mottok (introduced in https://lwc.las3.de/), provides 
benchmarks of software implementations of AEAD of the second-round candidates. This 
platform also provided benchmarks of our submitted two sets of AVR implementations of 
PHOTON-Beetle. From the result about time and ROM on Arduino Uno R3 (MCU board 
based on the 8 bit ATmega328P MCU) presented in https://lwc.las3.de/table.php, 
the primary member PHOTON-Beetle-AEAD[128] have remarkable low ROM requirement1. 
Within a reasonable increase on the ROM (but is still relatively small), it can achieve 
moderate speed. 

1In the presented result in https://lwc.las3.de/table.php, the ROM requirement includes that used 
to generate and check the test vectors. Thus, there is an obvious deviation between the ROM requirement 
presented in Table 1 and that presented in https://lwc.las3.de/table.php. 

https://lwc.las3.de/
https://github.com/PHOTON-Beetle/Software
https://github.com/PHOTON-Beetle/Software
https://lwc.las3.de/
https://lwc.las3.de/table.php
https://lwc.las3.de/table.php
https://lwc.las3.de/table.php


3 

86 

54 

PHOTON-Beetle Team 

Table 2: Detailed speed of the primary pair of PHOTON-Beetle on AVR 8-bit MCU (length 
of AD = 16 bytes) 

Algorithms Func. ROM RAMPackage Length mlen [B] 
8 16 32 64 128 

Enc 2476.38 1858.72 1652.56 1487.50 1377.38 

Dec 2483.00 1863.41 1655.48 1489.14 1378.24 

Enc+Dec 4959.38 3722.13 3308.04 2976.64 2755.63 

PHOTON-Beetle-AEAD[128] 4084 

2982PHOTON-Beetle-Hash[32] Hash 4880.13 2433.06 3568.50 4135.70 4419.27 

Denote the length of the message package by mlen, and the length of associated data by adlen that equals 16, 
the speeds of AEAD are measured by using cycles divided by (mlen+adlen). 

2 Software Implementations on General-Purpose Computers 
For general-purpose computers, table-based and bitslice-based implementations are two 
possible choices. We implemented PHOTON-Beetle in these two ways, and the implementations 
are provided via https://github.com/PHOTON-Beetle/Software. 

The bitslice-based implementations achieve better performances on a personal computer, 
which are summarized in Table 3. 

References 
[SKP20] Yaroslav Sovyn, Volodymyr Khoma, and Michal Podpora. Comparison of three 

cpu-core families for iot applications in terms of security and performance of 
AES-GCM. IEEE Internet Things J., 7(1):339–348, 2020. 

https://github.com/PHOTON-Beetle/Software


4 PHOTON-Beetle Authenticated Encryption and Hash Family 

Table 3: Speed of bitslice-based implementations of PHOTON-Beetle on PC 
PHOTON-Beetle-AEAD[128] authenticated encryption (cycles/byte) 

mlen/adlen 0 16 32 64 128 256 512 1024 

0 - 261.20 196.90 161.30 146.20 138.30 145.70 152.00 
16 293.30 217.70 197.80 184.50 171.50 160.10 149.30 149.00 
32 228.70 200.80 186.10 184.70 167.10 157.90 149.90 139.60 
64 185.40 177.80 171.90 159.40 151.70 147.80 146.50 140.50 
128 167.50 169.80 173.30 168.80 160.40 184.20 144.40 141.80 
256 155.90 156.40 153.90 154.60 152.90 147.80 148.20 145.30 
512 170.80 170.10 155.50 153.30 150.00 148.20 145.10 142.30 
1024 150.70 151.10 151.60 163.40 162.90 159.50 156.00 149.20 

PHOTON-Beetle-AEAD[32] authenticated encryption (cycles/byte) 

mlen/adlen 0 16 32 64 128 256 512 1024 

0 - 733.60 735.70 839.90 577.60 573.40 564.90 541.60 
16 685.70 613.90 588.70 567.40 553.40 550.70 561.20 545.80 
32 617.00 602.60 595.00 589.10 569.80 556.50 543.00 542.80 
64 620.00 590.10 569.90 568.70 572.70 563.20 563.30 558.00 
128 566.00 568.40 644.50 559.60 566.90 555.50 548.90 575.00 
256 560.50 555.90 560.20 557.10 564.60 572.50 554.90 548.80 
512 561.20 573.70 564.40 562.00 553.80 557.80 569.10 549.30 
1024 570.10 583.80 588.70 580.90 561.50 568.80 553.40 543.90 

PHOTON-Beetle-Hash[32] hashing (cycles/byte) 

mlen 0 16 32 64 128 256 512 1024 

- 431.90 650.70 726.90 834.70 764.70 539.40 541.80 

mlen: length of messages in Bytes, adlen: length of AD in Bytes. 
The programs are compiled using GNU gcc 7.5.0. The processor is Intel(R) Core(TM) i7-6700 (Skylake). 
Hyper-threading and Turbo Boost are turned o˙ during timing. The timing method used was that in 
http://github.com/BrianGladman/AES. 

http://github.com/BrianGladman/AES

	Updated on Software Implementations on 8-bit AVR
	Software Implementations on General-Purpose Computers

