
TM: Java and Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

Cryptographic API Profile
For AES Candidate Algorithm Submissions

(For Java™ implementations)

Original: January 16, 1998
Revision 1: February 6, 1998
Revision 2: March 19,1998
Revision 3: April 6,1998

1. Overview

This document specifies interface profiles for implementations of AES candidate
algorithms. Since AES submissions will be written in the Java™ and C languages, two
profiles are required. (4/6/98 The ANSI C profile is now included in a separate file.)

The Java profile is a direct adaptation from Sun Microsystems’ Java Cryptography
Extension (JCE) v1.2 and the Java Development Kit (JDK) v1.2 specifications. Both are
available in beta release form on Sun’s Java Developer’s Connection:

<http://developer.javasoft.com/developer/jdchome.html>

as of January 12, 1998. In cases where there is a discrepancy between this specification
and the documentation published by Sun, Sun’s specifications shall take precedence.

The Java interface profile assumes that AES submitters have coded their Java
implementations according to the methods specified in the Java Cryptography Architecture
and Java Cryptography Extension v1.2 documentation published by Sun. These documents
and associated software development tools are available at the URL listed above.

(3/19/98) To accommodate international submitters who may not have access to the U.S.
domestic version of JCE1.2, NIST is willing to accept AES packages constructed under
international versions of the JCE (sometimes called IJCE) that are compatible with JCE1.1
or greater. One such implementation has been created by the Cryptix Development Team
(http://www.t-and-g.fl.net.au/java/cryptix/aes/#IJCE), and links to other international JCE
implementations are included in a Cryptix FAQ. Any JCE implementation used to create
an AES submission package must be freely available to NIST.

(3/19/98) AES provider packages will be installed in the test environment as described in
the Java Cryptography Architecture Specification, and must follow the naming
conventions set by NIST. Packages shall be named as recommended by Sun in the JDK
documentation. A sample name is "COM.acme.provider.ALGORITHM-NAME", where
the candidate algorithm ALGORITHM-NAME, from the company at the domain
acme.com, submits a provider package.

2

(2/6/98) Also note that, since JCE provides the connection between the cryptographic
API and the lower level Service Provider Interface (SPI), Java AES provider packages
will implement the SPI.

(2/6/98) Note that there are some modifications to the following sections, in light of the
previous paragraph.

(3/19/98) A separate and distinct ANSI C language profile was added, in order to clarify
the requirements for implementers. The Java API specification was also reformatted for
improved readability.

 (4/6/98) The ANSI C profile has been extracted and is provided as a separate file.

2. Key Generation Interface

Each AES submitter will be required to implement this interface, because NIST anticipates
that some candidate algorithms will have unique requirements for and methods of key
generation. Implementations shall support generation of 128, 192, and 256-bit keys, and
are responsible for controlling the key generation process to avoid the possibility of
creating the equivalent of weak keys for a given algorithm.

The following methods belong to the KeyGenerator and SecretKeyFactory classes. The
AES subclass of KeyGenerator shall be AESKeyGenerator. Key objects with
predetermined values will be created by instantiating AESKeySpec objects containing the
desired key material, and then calling the generateSecret method of the SecretKeyFactory
class to convert these key specifications into opaque key objects.

q Package javax.crypto.spec

§ public class AESKeySpec
extends Object
implements KeySpec

v AESKeySpec

public AESKeySpec (byte[] key) throws InvalidKeyException

Uses the first 128, 192, or 256 bytes in key as the AES key

Parameters:
key – the buffer with the AES key

3

Throws:
InvalidKeyException - if the given key material is not of the
correct length

v getKey

public byte[] getKey()

Returns the AES key.

Returns:
the AES key

§ Class javax.crypto.KeyGenerator

Public class KeyGenerator
extends Object

v getInstance

public static final KeyGenerator getInstance(String algorithm, String
provider) throws NoSuchAlgorithmException, NoSuchProviderException

Generates a KeyGenerator object for the specified key algorithm
from the specified provider.

Parameters:
algorithm - the standard name of the requested key
algorithm, “AES”
Provider - the name of the provider as assigned by NIST

Returns:
the new KeyGenerator object

Throws:
NoSuchAlgorithmException - if the key generator for the
requested algorithm is not available

NoSuchProviderException - if the requested provider is not
available

v Init

4

public final void Init(AlgorithmParameterSpec params, SecureRandom
random) throws InvalidAlgorithmParameterException

Initializes the key generator with the specified parameter set and a
user-provided source of randomness.

 Parameters:
params - the key generation parameters. The first element
in this parameter list will be the required keylength in bits,
e.g. the ASCII text representation of the decimal number
128, 192, or 256.
random - the source of randomness for this key generator.
This parameter is not relevant to the AES test process and
can be ignored by a given AES implementation. It will be
set to an arbitrary value by the AES test suite unless a
submitter specifically requires it’s use as stated in the
provider documentation.

Throws:
InvalidAlgorithmParameterException - if params is
inappropriate for this key generator

v GenerateKey

public final SecretKey GenerateKey()

Generates a secret key.

Returns:
the new key

§ public class SecretKeyFactory
extends Object

v getInstance

public static final SecretKeyFactory getInstance (String algorithm, String
provider) throws NoSuchAlgorithmException, NoSuchProviderException

Parameters:

5

algorithm – the standard name of the requested secret key
algorithm, e.g. “AES”
provider – the name of the provider

Returns:
A SecretKeyFactory object for the specified secret key
algorithm.

Throws:
NoSuchAlgorithmException - if the algorithm is not
available from the specified provider
NoSuchProviderException -if the provider has not been
configured.

v generateSecret

public final SecretKey generateSecret (KeySpec keySpec) throws
InvalidKeySpecException

Generates a SecretKey object from the provided key specification
(key material)

Parameters:
keySpec – the specification (key material) of the secret key

Returns:
the secret key

Throws:
InvalidKeySpecException - if the given key specification is
inappropriate for this key factory to produce a secret key.

3. Cipher Object Interface

(3/19/98) The NIST test code will instantiate objects of type Cipher by calling Cipher’s
getInstance method with the appropriate transformation string and provider name. The
transformation string shall be of the form “AES/<mode>/NoPadding”, where <mode> is
replaced with "ECB", "CBC", or "CFB" as appropriate. "CFB" shall indicate 1-bit cipher
feedback specifically. The Monte Carlo and Known Answer tests specified by NIST do
not require cryptographic service provider packages to implement padding schemes.

§ Class javax.crypto.Cipher

6

public class Cipher
extends Object

v getInstance

public static final Cipher getInstance(String transformation, String
provider) throws NoSuchAlgorithmException, NoSuchProviderException,
NoSuchPaddingException

Creates a Cipher object that implements the specified
transformation, as supplied by the specified provider.

Parameters:
transformation - the string representation of the requested
algorithm, as described above
provider - the name of the cipher provider

Returns:
a cipher that implements the requested algorithm

Throws:
NoSuchAlgorithmException - if the requested algorithm is
not available
NoSuchProviderException - if the requested provider is not
available
NoSuchPaddingException - if the requested padding is not
available

v Init

public final void Init (int opmode, Key key, AlgorithmParameterSpec
params, SecureRandom random) throws InvalidKeyException,
InvalidAlgorithmParameterException

Initializes this cipher with a key, a set of algorithm parameters, and
a source of randomness. The cipher is initialized for encryption or
decryption, depending on the value of opmode.

If this cipher (including its underlying feedback or padding scheme)
requires any random bytes, it will get them from random.

7

Parameters:
opmode - the operation mode of this cipher (this is either
ENCRYPT_MODE or DECRYPT_MODE)
key - the encryption key
params - the algorithm parameters (implementation defined)
random - the source of randomness

Throws:
InvalidKeyException - if the given key is inappropriate for
initializing this cipher
InvalidAlgorithmParameterException - if the given
algorithm parameters are inappropriate for this cipher

v Update

public final byte[] Update (byte input[], int inputOffset, int inputLen)
throws IllegalStateException

Continues a multiple-part encryption or decryption operation
(depending on how this cipher was initialized), processing another
data part.

The first inputLen bytes in the input buffer, starting at inputOffset,
are processed, and the result is stored in a new buffer.

Parameters:
input - the input buffer
inputOffset - the offset in input where the input starts
inputLen - the input length

Returns:
the new buffer with the result, or null if the underlying
cipher is a block cipher and the input data is too short to
result in a new block.

Throws:
IllegalStateException - if this cipher is in a wrong state
(e.g., has not been initialized)

v DoFinal

public final int DoFinal (byte input[], int inputOffset, int inputLen) throws
IllegalBlockSizeException, BadPaddingException

8

Encrypts or decrypts data in a single-part operation, or finishes a
multiple-part operation. The data is encrypted or decrypted,
depending on how this cipher was initialized.

The first inputLen bytes in the input buffer, starting at inputOffset,
and any input bytes that may have been buffered during a previous
update operation, are processed, with padding (if requested) being
applied. The result is stored in a new buffer.

Parameters:
input - the input buffer
inputOffset - the offset in input where the input starts
inputLen - the input length

Returns:
the new buffer with the result

Throws:
IllegalStateException - if this cipher is in a wrong state
(e.g., has not been initialized)
IllegalBlockSizeException - if this cipher is a block cipher,
no padding has been requested (only in encryption mode),
and the total input length of the data processed by this
cipher is not a multiple of block size
BadPaddingException - if this cipher is in decryption mode,
and (un)padding has been requested, but the decrypted data
is not bounded by the appropriate padding bytes

v GetOutputSize

public final int getOutputSize (int inputLen) throws IllegalStateException

Returns the length in bytes that an output buffer would need to be
in order to hold the result of the next update or doFinal operation,
given the input length inputLen (in bytes).

This call takes into account any unprocessed (buffered) data from a
previous update call, and padding.

The actual output length of the next update or doFinal call may be
smaller than the length returned by this method.

Parameters:

9

inputLen - the input length (in bytes)

Returns:
the required output buffer size (in bytes)

Throws:
IllegalStateException - if this cipher is in a wrong state
(e.g., has not yet been initialized)

