
Organization: ESAT, K.U.Leuven, Belgium
Date: Fri, 28 Aug 1998 11:36:03 +0200 (METDST)
From: Johan Borst <Johan.Borst@esat.kuleuven.ac.be>
Reply-To: Johan Borst <Johan.Borst@esat.kuleuven.ac.be>
To: AESFirstRound@nist.gov
cc: Bart Preneel <preneel@esat.kuleuven.ac.be>,
        Vincent Rijmen <rijmen@esat.kuleuven.ac.be>,
        Bart Van Rompay <vrompay@esat.kuleuven.ac.be>
Subject: analysis CRYPTON

Hello,

Regarding the call of NIST for comments on the AES-candidates here is a
report of a preliminary analysis of CRYPTON, that identifies a class of
weak keys.
It is attached in gzipped postscript format.

Regards,
Johan Borst.

---------------------------------------
Johan Borst
Katholieke Universiteit Leuven
Departement Elektrotechniek-ESAT/COSIC
Kardinaal Mercierlaan 94
B-3001 Heverlee
Belgium

Tel.: ++ 32 16 321862
Fax : ++ 32 16 321986

email: Johan.Borst@esat.kuleuven.ac.be
http://www.esat.kuleuven.ac.be/~borst



Weak Keys of CRYPTON

Johan Borst

K.U. Leuven, Dept. Elektrotechniek-ESAT/COSIC
Kardinaal Mercierlaan 94, B-3001 Heverlee Belgi�e

Johan.Borst@esat.kuleuven.ac.be

Abstract

The block cipher CRYPTON is a candidate proposal for the AES standard. In
this report we describe a class of 232 weak keys. This is mainly a consequence of
the use of linear operations in the key schedule. These weak keys especially have
consequences for the use of CRYPTON in certain hash function constructions.

1 Introduction

The AES candidate CRYPTON is an iterated block cipher with block size 128. Its key
size is variable and can be chosen to be each whole number of bytes between 8 and
32. Hence, the key sizes 128, 192 and 256 are supported, as requested by NIST for the
AES standard. The design is based on SQUARE [DKR97].

In this report we describe a class of 232 weak 256-bit keys. When such a key is used
for encryption plaintexts from certain subsets of the text space always have ciphertexts
in a speci�ed subset. This is mainly caused by the use of linear transformations and
symmetrical constants in the key schedule. The weakness for example can be exploited
to �nd collisions when CRYPTON with a 256-bit key is used in the Davies-Meyer hash
function construction.

The rest of this report is organized as follows. In Section 2 we describe the features
of CRYPTON that are relevant for our analysis. In Section 3 we describe the weak
key class and in Section 4 its consequences. We conclude in Section 5.

2 The Cipher

CRYPTON is de�ned as a 12-round block cipher preceded by an initial transformation
and followed by a �nal output transformation. Each round transformation is composed
of four di�erent, consecutive transformations. All transformations operate on 16-byte
strings. The round transformations for odd and even rounds are slightly di�erent,
though have a same structure. They are de�ned as

�Kr
(A) = (�Kr

� � � �o � o)(A); odd rounds: r = 1; 3; : : : ;

�Kr
(A) = (�Kr

� � � �e � e)(A); even rounds: r = 2; 4; : : : ;

1



for Ki; A 2 f0; 1g128. The initial transformation is de�ned by �K0
. The �nal output

transformation is de�ned by � � �e � � . In the following we omit the o and e subscripts
as the properties we use hold for both even and odd round transformations.

The round keys1 Ki each consist of four 32-bit words which we denote with (K[4i+
3]; K[4i+ 2]; K[4i + 1]; K[4i]). The expanded keys are derived from the user key by a
key schedule as follows. The �rst 8 expanded keys K[i]; i = 0 : : : 7; are derived from
the user key via an invertible transformation. After that for each i 2 f0 : : : 7g each
expanded key K[i + 8j]; j = 1 : : : 6 only depends on K[i].

For further details we refer to [Lim98].

3 The Weak Keys

The only operations that are used in the second phase of the key scheduling are rota-
tions with a multiple of 8 and xoring with round constants of the form aaaa, where a
are byte values. This has as consequence that if for one of the �rst eight expanded keys
K[i] = aaaa for some byte value a, then all derived expanded keys K[i+8j] = bbbb for
some b, not necessarily the same b for all j. Furthermore, the xoring and rotations are
done in such a way that, if for a pair (i1; i0) 2 f(7; 5); (6; 4); (3; 1); (2; 0)g the expanded
keys K[i1] = K[i0] = aaaa, then K[i1 + 8j] = K[i0 + 8j] = bbbb.

With the above we can construct 232 user keys for which every round key is of the
form bbbbaaaabbbbaaaa. These user keys can be computed by inverting the �rst phase
of the key schedule. In this way we �nd 232 256-bit (or 32-byte) keys of which about
227:7 have an equivalent 31-byte userkey. We call this set of keys W .

We de�ne three subsets of the text space as follows.

V0 = fx 2 f0; 1g128jx = ghghefefcdcdababg;

V1 = fx 2 f0; 1g128jx = ghefcdabefghabcdg and

V2 = fx 2 f0; 1g128jx = efghabcdefghabcdg;

where a : : : h are byte values. Each of the subsets contains 264 elements.
For the key addition � with a round key of the form K = bbbbaaaabbbbaaaa as well

as for  it holds that if x 2 Vi then also �K(x) 2 Vi and (x) 2 Vi, for all i. For the
other two transformations the following holds. � maps an element of V0 to an element
of V1, V1 to V0 and V2 to V2. This is clari�ed in Appendix A. Finally, � maps V0 to V2,
V1 to V1 and V2 to V0.

From this it can be seen that a CRYPTON round with a round key of the form
bbbbaaaabbbbaaaa maps an element of V0, V1 and V2 to an element of respectively V1, V2
and V0. Furthermore the �nal output transformation maps V0, V1 and V2 to respectively
V0, V2 and V1.

Hence, for each of the keys in W CRYPTON (with 12 rounds) will encrypt an
element of V0, V1 and V2 to an element of respectively V0, V2 and V1.

1In [Lim98] a distinction is made between round keys for encryption and decryption, given by
K

i
e and Ki

d
. As the properties described here hold for both, we omit the subscript and lower the

superscript.

2



4 Consequences

There is only a small probability that a weak key is used when a user key is generated
randomly. On the other hand with a few chosen plaintexts it can be easily tested if a
weak key of W is used for encryption. However, the weak key class certainly inuences
security if an attacker can choose the key. An example of that is the following.

In [Lim98] it was mentioned that CRYPTON can be used as underlying block cipher
in the Davies-Meyer hash function construction. Here the hash Hm on a message
x0x1 : : : xm is de�ned recursively by

Hi = Hi�1 � Exi
(Hi�1);

where H0 is an initial vector. If Hi�1 2 V0 for some i and xi 2 W , then Exi
(Hi�1) 2 V0

and also Hi 2 V0. In accordance with the birthday paradox by varying H0 2 V0 and
x0 2 W one �nds a collision forH1 with probability� 0:39 in 216 hash calculations. We
generated 1000 sets of 216 according to the above method generated hash calculations.
427 sets contained at least one collision, which is slightly higher than expected. Note
that to mount a practical attack we should also have to allow an attacker to be able
to inuence the initial vector as the probability that an Hi 2 V0 is again very small.

Remark: Due to the non-linear �rst phase of the key schedule, there is no obvious
way in which the algebraic properties of this section might be used to mount an attack
on the Matyas-Meyer-Oseas or the Miyaguchi-Preneel hash function constructions.

5 Conclusion

We conclude that CRYPTON has a class of 232 weak 256-bit keys. Hence care has to be
taken when CRYPTON with 256-bit keys is used in applications where an attacker can
choose the key, such as the Davies-Meyer hash function construction. A way to resolve
this weakness is to strengthen the key schedule. This can be done by introducing more
non-linearity in the key schedule, as for example was done in Rijndael [DR98], whose
design also was based on SQUARE.

References

[DKR97] J. Daemen, L.R. Knudsen, V. Rijmen, \The block cipher SQUARE," Fast

Software Encryption, Proc. Fourth International Workshop, LNCS 1267, Springer-
Verlag, 1997, pp. 149{165.

[DR98] J. Daemen and V. Rijmen, \AES Proposal: Rijndael,", AES Proposal, 1998,
available via http://www.esat.kuleuven.ac.be/~rijmen/rijndael/index.ht ml.

[Lim98] C. H. Lim, \CRYPTON: A New 128-bit Block Cipher,", AES Proposal, 1998,
available via http://crypt.future.co.kr/~chlim.

3



A The Transformation �

In this appendix we do not distinguish between the � transformations of even and odd
rounds as the properties we use hold for both. The transformations of CRYPTON can
be viewed upon as operating on a 4� 4 byte array. The transformation � consists of
four separate transformations, which are transformations on the separate columns of
the array. We can thus write �(x3; x2; x1; x0) = (�3(x3); �2(x2); �1(x1); �0(x0)), where
we notate the 4� 4 array by its four columns. Now the following properties hold.

� For all i: �i(abab)
T = (cdcd)T , where a : : : d are byte values.

� If �i(abcd)
T = (efgh)T then �(i+2) mod 4(abcd)

T = (ghef)T for all i.

With this properties we can deduce the following.
For ghghefefcdcdabab 2 V0 it holds that

0
BBB@

a b a b

c d c d

e f e f

g h g h

1
CCCA

�
�!

0
BBB@

i m k o

j n l p

k o i m

l p j n

1
CCCA 2 V1:

For ghefcdabefghabcd 2 V1 it holds that

0
BBB@

a b c d

e f g h

c d a b

g h e f

1
CCCA

�
�!

0
BBB@

i m i m

j n j n

k o k o

l p l p

1
CCCA 2 V0:

For efghabcdefghabcd 2 V2 it holds that

0
BBB@

a b c d

e f g h

a b c d

e f g h

1
CCCA

�
�!

0
BBB@

i k m o

j l n p

i k m o

j l n p

1
CCCA 2 V2:

4


