Date: Mon, 22 Feb 1999 15:38:25 +1100 From: Emanoil Daneliuc <emanoil@akyman.com.au> X-Mailer: Mozilla 4.07 [en] (Win98; I) To: aesfirstround@nist.gov Subject: official comments on AES candidates

Dear Sir/Madam,

On behalf of Akyman Financial Services Pty. Ltd., I send you our comments on the AES candidate algorithms (attached in "my opinion for NIST AES.doc" document). Please note that it is a *Microsoft Office* 97 - *Winword* document.

Regards,

Emanoil Daneliuc

(Firmware Engineer)

(Incorporated in Victoria A.C.N. 006 668 962)

19-Feb-99

Dear Sir/Madam,

We, at Akyman, have analysed the "Advanced Encryption Standard Development Effort" CD-ROM titled "CD-2 Algorithm Code", that was received from you by Toni Stojanovski, who used to be a "Cryptography Specialist" at Akyman.

In the following, I will present our conclusions.

Sincerely yours,

Emanoil Daneliuc

(Firmware Engineer)

We classified the algorithms by their speed and memory requirements. (On IBM-PC the memory requirements only matter by their indirect effect on speed by exceeding the 1st level cache of the CPU (usually a Pentium).)

1 Our conclusion (think of it as Akyman's "vote") is:

The best-preferred algorithm – in our vision – is:	RIJNDAEL
The second best is:	CRYPTON
The third best is:	TWOFISH

1.1 Rationale:

1.1.1 Preselection

Out of the initial algorithms list, which comprises 15 algorithms (CAST-256, CRYPTON, DEAL, DFC, E2, FROG, HPC, LOKI97, MAGENTA, MARS, RC6, RIJNDAEL, SAFER+, SERPENT, TWOFISH), we have to discard:

- DEAL for reasons:
 - is slow (about 12 times slower than good algorithms on Pentium processors, as a reference)
 - has some security weakness (according to "CAESAR" Internet site)
- HPC requires about 2KB RAM, which practically forbids it on current smart cards
- CAST-256 requires 6KB ROM, which is going to be expensive on smart cards. It is not particularly fast on either 32- or 8 bit CPU's.
- FROG for 2 reasons:
 - requires 2,300 Bytes on a smart card, which can not be provided conveniently
 - it seems that it has been already broken (according to the "AES Discussion Forum" files, to which the AES Internet site points)
- LOKI97 has been broken (according to tekst.ps file, in the "loki97_ps.gz" gzip file, in the AES Discussion Forum)

(Incorporated in Victoria A.C.N. 006 668 962)

• MAGENTA – for 2 reasons:

- has a serious security weaknesses, according to "CAESAR" Internet site
- it is about 40 times slower than fast algorithms on Pentium
- SAFER+ is too slow on 8-bit CPU's (over 20 times slower than RIJNDAEL). (Besides, there are 2 strictly academic attacks, as mentioned in the "*AES Discussion Forum*" files.)

So, only 8 algorithms remain in the competition: CRYPTON, DFC, E2, MARS, RC6, RIJNDAEL, SERPENT, TWOFISH

At Akyman, we develop smart-card-based devices; therefore we keep in mind:

- running speed of algorithms on 8-bit CPUs
- running speed of algorithms on 32-bit CPUs
- security level

1.1.2 Running speed on 8-bit CPU's:

Note: for all speeds, we will count just the encryption/decryption time (without the key preparation time).

The best algorithms are:

Ra bes	Ranking (1 = best)		Algorithm	CPU clock cycles for encrypt or decrypt 128-bit block with	RA M	ROM requir	Comments
By speed	By RAM requirements	By ROM requirements		128-bit key	requ irem ents	ement s	
3	2	4	CRYPTON	12,000 cycles on a hypothetical CPU approx. = 8051 power	52B ytes	<2KB	good
4	4	5	DFC	35,500cycles on 6805 CPU (= approx 29,000 cycles on 8051 CPU)	<60 Byte s	<2KB	If not given more than 100Bytes RAM => multiply speed by 6
8	8	6	E2	6,300cycles (= approx. 4,800 cycles on 8051 CPU)	256 Byte s	<2KB	Rather much RAM required
6	6	7	MARS	5,000cycles on a hypothetical CPU (1 cycle/instruction) = 12,000 cycles on 8051 CPU	160 Byte s	2KB	
7	7	2	RC6	13,900 cycles on 8051 CPU	210 Byte s	Appro x 1KB	A bit high RAM requirements
1	1	3	RIJNDAEL	3,100 cycles for encryption on 8051 CPU, 6,200 for decryption	52B ytes	<2KB	Best performance, least requirements

(Incorporated in Victoria A.C.N. 006 668 962)

Ranking (1 = best)		(1 =	Algorithm	CPU clock cycles for encrypt or decrypt 128-bit block with	RA M	ROM requir	Comments
By speed	By RAM requirements	By ROM requirements		128-bit key	requ irem ents	ement s	
2	3	1	SERPENT	34,000 on 6805 CPU (= approx 28,300cycles on 8051 CPU) if coded in Ada => some 9,000 cycles for 8051 CPU in assembler	<60 Byte s	<1KB	More than 9,000 8051 CPU cycles required when using only the 60Bytes RAM quoted left
5	5	8	TWOFISH	26,500 on 6805 CPU (= approx 22,000cycles on 8051 CPU) or 37,100on 6805 CPU (= approx 31,000 cycles on 8051 CPU)	60B ytes	2.2KB or 1.76K B	

So we can eliminate E2 and RC6 from the competition, as being on the last places for speed on 8-bit CPU's.

1.1.3 Running speed on Pentium CPU

Note: The Minimal Secure Rounds value is the ultimate estimation, so we will use it.

Ranking (1 = best)			Algorithm	CPU clock cycles for encrypt or decrypt 128-bit block with 128-bit key			Comments	
Weighted average (coef. = 1:3:2)	By algorithm Specification	By Min. Security Reguirements	By Nistefficiency1.pdf document		Specif icatio n	Minimal Secure Rounds (<i>aes-</i> <i>performa</i> <i>nce.pdf</i>)	Nisteff icienc y1.pdf docu ment	
4	4	6	1	CRYPTON	390	358	630	Best by <i>Nistefficiency1.pdf</i> document
7.67	6	8	8	DFC	750	844	4413	Worst by Min. Sec. Req. and by <i>Nistefficiency1.pdf</i> document
5	7	5	4	E2	843	342	898	
3.33	5	1	6	MARS	393	200	984	Best by Min. Sec. Req.

Ranking (1 = best)			Algorithm	CPU clock cycles for encrypt or decrypt 128-bit block with 128-bit key			Comments	
Weighted average (coef. = 1:3:2)	By algorithm Specification	By Min. Security Requirements	By Nistefficiency1.pdf document		Specif icatio n	Minimal Secure Rounds (<i>aes-</i> <i>performa</i> <i>nce.pdf</i>)	Nisteff icienc y1.pdf docu ment	
2.67	1	3	3	RC6	254	250	842	Best by algorithm specification
3.17	3	4	2	RIJNDAEL	320	256	800	Worst by algorithm specification
7.17	8	7	7	SERPENT	1730	478	3506	
3	2	2	5	TWOFISH	285	211	937	

(Incorporated in Victoria A.C.N. 006 668 962)

So we can eliminate DFC and SERPENT from the competition, by being ranked on the last 2 places on at least 2 comparison criteria.

1.1.4 Security Level

There have been noted some security weaknesses in:

Rankin $\alpha (1 - $	Algorithm	Security weaknesses	Comments
best)			
4	CRYPTON	1 fixed point has been noticed, but it doesn't	2 nd choice
		look dangerous	
7	DFC	Uses multiplication so one must be careful	3 rd choice
		about potential timing attacks	
3	E2	No security comment	
8	MARS	2^{16} effort to find an equivalent key (because	A bit suspicious
		feedback cancels out when size $= 160$ bits)	
6	RC6	Timing attacks have to be kept in mind	Best by algorithm
		(because of the <i>data dependent rotations</i> and	specification
		multiplications being used).	
1	RIJNDAEL	No security comment	OK
2	SERPENT	No security comment	OK
5	TWOFISH	Slight weakness for keys of the type:	
		0001,8000,0001,8000	

So we can eliminate here: MARS and DFC

(Incorporated in Victoria A.C.N. 006 668 962)

1.1.5 Conclusions:

After eliminating the algorithms mentioned above (based on the respective criteria), the following algorithms remain:

CRYPTON, RIJNDAEL, TWOFISH.

	Algorithm	security	8-bit	32-bit	Hardware
			performance	performance	performance
50					(according to
al] cin					aes-
ver ank					performance.p
0 R					df)
2	CRYPTON	1 fixed point has been	Above	Just under	Very good
		noticed, but it doesn't look	average	average	
		dangerous	C C	0	
1	RIJNDAEL	No security comment	Best by speed	Pretty Good	Pretty Good
			and RAM		
3	TWOFISH	Slight weakness for keys	Under average	Good	Good
		of the type:			
		0001,8000,0001,8000			

1.1.6 Important warning

Fighting hardware attacks:

Because all of the algorithms fail to be secure against the *Differential Power Attack* (which consists of monitoring the current consumption of the microprocessor while encryption/decryption is being performed), all smart card hardware manufacturers need to be specifically warned to take hardware countermeasures against a *Differential Power Attack*. I can think here of 2 methods: 1). use a circuit that would equalise the current consumption irrespective of current operation being performed

2). use a "Differential Power Attack confusing circuit", which will simply add some random (or following some well-thought algorithm in relation to data being processed) current consumption.

Both of these methods will increase the power consumption of the smart card. The second will be more economical. The Differential Power Attack confusing algorithm will have to be designed containing clearly defined elements (especially timing), as well as pseudo random elements (to hide the real data).

Appendix:

Algorithm performance parameters as we were able to extract them directly from the Algorithm Specifications provided on "<u>NIST, AES Round 1, CD-2</u>" CD-ROM. Note that later in the document, the data from AES Internet sites have also been used along with it.

Algorithm	Clocks	per 128-Bytes block (with	required	Security level	Comments
C	128-By	tes key) encryption	RÂM	•	
	Pentiu sample 8 bit CPU		amount		
	m	-	[Bytes]		

1st Floor 71-73 Church St Brighton Victoria 3186 AustraliaPh: (61) (3) 9593 1477Fax: (61) (3) 9593 1637E-mail:emanoil@akyman.com.auPage 5 of 7

		× 1		,	
Algorithm	Clocks	per 128-Bytes block (with	required	Security level	Comments
	128-By	tes key) encryption	RAM		
	Pentiu	sample 8 bit CPU	amount		
	m		[Bytes]		
CAST-256	890	26,000 (6811µP)	4,000		Not suitable for
					smart cards
CRYPTON	390	12,000 (hypothetical µP	48		Very low
		3 clocks/instruction \cong			requirements:
		power of 8051µP)			good
DEAL	7,200	233,000 (hypothetical	128 (faster		Rather slow
		μ P, 32 times slower than	with		
		a Pentium at same clock)	1,000)		
DFC	750	35.000 (6805µP)	200		H/w
					implementation
					difficult because
					of multiplication
E2	843	6,300 (Hitachi	256		1
		H8/300µP)			
FROG	800	17.900 (Z80µP)	5.000		Not suitable for
		1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			smart cards. New
					approach => hard
					to assess
HPC	3,500	35.000 (Z80µP)	2,000		Not suitable for
	,		,		smart cards (10KB
					code memory)
LOKI97	4,800	8,000 (emulated PDP-	2,000	Gives	Slow, not suitable
		$11\mu P$		mathematical	for smart cards
				proof	
MAGENT	23,60	55.000 (Z80µP)	256 (not	1	Very slow
А	0		sure)		5
MARS	393	5,000 (hypothetical 1	2,200	Math. proof	Good speed, too
		cvcle/instruction uP)	,	1	much RAM for
		- , ,			smart cards
RC6	254	13.900 (8051µP)	176		Very fast on
					Pentium. Still the
					best for smart
					cards
RIJNDAEL	320	3.100 for 8051µP. 8.300	1.000		Too much RAM
		for 68080P	_,		for a smart card
SAFFR+	2 000	80,000 (8051µP)	mayhe		Ouite slow for 8
57 II LIC	2,000	80,000 (8031µ1)	256		bit uP's
SEDDENIT	1 730	24,000 (6905D)	<u>~1 000</u>		Might be OK for
SEINI EINI	1,750	$54,000(0803\mu P)$	<1,000 (maybe		smart cards if
			(111ay0e 256)		really 256 Bytes
			230)		RAM suffice
TWOFIGU	205	26 500 (CO05D)	60 -		Voru fost if sizer
I WOLI2H	203	20,300 (0803µP)	00 +		very fast frigiven

(Incorporated in Victoria A.C.N. 006 668 962)

(Incorporated in Victoria A.C.N. 006 668 962)

Algorithm	Clocks	per 128-Bytes block (with	required	Security level	Comments
	128-By	tes key) encryption	RAM		
	Pentiu	sample 8 bit CPU	amount		
	m	_	[Bytes]		
			2.2KB		enough key setup
			ROM		time

1st Floor 71-73 Church St Brighton Victoria 3186 AustraliaPh: (61) (3) 9593 1477Fax: (61) (3) 9593 1637E-mail:emanoil@akyman.com.auPage 7 of 7