(This document is being submitted electronically to AESFirstRound@nist.gov)

Date: 14 April 1999

From: Charles S. Williams
Chief Scientist
Cylink Corporation
910 Hermosa Court
PO Box 3759
Sunnyvale CA 94088-3759
Tel: (408) 328-5540

To: Information Technology Laboratory
Attn: AES Candidate Comments, Room 540
National Institute of Standards and Technology
100 Bureau Drive, STOP 8970
Gaithersburg, MD 20899-8970

Subj: Comments on Cylink’s AES Candidate Algorithm SAFER+
Outline of Comments

1. Introduction
. ANSI C Implementation
2.1 Pentium Pro (200 MHz)
2.2 Sun UltraSPARC Il (300 MHZz)
3. Microsoft Java Virtual Machine Implementation
4. Hardware Implementation
5. Key Schedules for 192 and 256 Bit Keys
6
7

N

. Security against Differential and Linear Cryptanalysis
. Files Sent Separately to NIST
References

1. Introduction

Since our original submission of SAFER+ as a candidate algorithm for the
Advanced Encryption Standard (AES), Cylink Corporation has made substantial
improvementsin its implementations of thisalgorithm. Thishasresultedin a
many fold speed increase in both software and hardware implementations. In
Section 2, we describe the performance of our improved ANSI C implementation
on the Pentium Pro (200 MHZz) platform and on the Sun 11 (300 MHz) platform.
Section 3 gives the performance of our improved Java implementation on a
Microsoft Java Virtual Machine. Our improved hardware implementation is
described in Section 4.

At the Second Advanced Encryption Standard (AES) Candidate
Conference in Rome, Italy, March 22-23, 1999, J. Kelsey [1] described an
“academic weakness’ in the 192 and 256 bit key schedules for SAFER+ that allow
akey search to be performed somewhat faster than by exhaustive search. In
Section 5, we describe a modification of the SAFER+ key schedule that removes
this “weakness’, but does not affect the 128 bit key schedule. This modification
was described by J. L. Massey in his presentation in the Algorithm Submitter
Rebuttals and Discussion session at the Second Advanced Encryption Standard
(AES) Candidate Conference.

Section 6 indicates how interested parties can obtain copies of our reports
detailing the immunity of SAFER+ to differential cryptanalysis and linear
cryptanalysis.

Section 7 describes the program files of Cylink’s new software
implementations that are being sent directly to NIST. Because of export
considerations, these files are not made a part of this public comment.

2. ANSI C Implementation

We have made major improvements in our standard ANS| C
implementation of SAFER+. The ANSI C programs described in Section 7
achieve the performances listed below on the indicated platforms with a 128 bit
key. Itisimportant to note that these figures are for single block encryption (as
opposed to pipelined encryption of several blocks) and hence apply whether ECB
mode or CBC mode is used for encryption. It should also be mentioned that a
speed increase of at least 50% could be achieved on a 64-bit processor for an
ANSI C implementation similar to that developed here for 32-bit processors.

2.1 Pentium Pro (200 MH2)

Number of clock cyclesfor encryption = 859
Encryption (or decryption) speed = 29 Mbit/s

These figures should be compared to the 2095 clock cycles (or 12.2
Mbit/s) reported on Transparency 16 by NIST [2] and based on the
implementation in our origina submission.

[Remark: In our implementation using "extended ANSI C" that allows
cyclic rotationcommands and is is accepted by the C compiler in the
Microsoft Visual C++ 5.0 (or higher) system, the number of clock cycles
reduces to 751 and the encryption speed increases to 33 M bit/s.]

2.2 Sun UltraSPARC 11 (300 MHz)

Number of clock cyclesfor encryption = 810
Encryption (or decryption) speed = 45 Mbit/s

This speed figure should be compared to the 10.2 Mbit/s reported on
Transparency 21 by NIST [2] and based on the ANSI C implementation in
our original submission.

3. Microsoft Java Virtual Machine Implementation

We have made major improvements in our Java implementation of
SAFER+. The Java programs described in Section 6 achieve the performance
listed below for the Microsoft Java Virtual Machine on the Pentium Pro (200
MHZz) platform with a 128 bit key.

Encryption (or decryption) speed = 11 Mbit/s

This speed figure should be compared to the 2.6 Mbit/s reported on
Transparency 29 by NIST [2] and based on the Java implementation in our
original submission.

4. Hardware I mplementation

We have made even greater improvements in our hardware implementation of
SAFER+ than in our software implementations. For 0.25 micron CMOS cell
based |ogic technology, our new hardware implementation with a system clock
rate of 44 MHz requires only 181 nanoseconds to encrypt or decrypt a 128 bit
block using a 128 bit key. Thistranslatesto an encryption / decryption rate of 704
Mbit/sin either ECB or CBC mode. Thisfigure should be compared with the
58.9 Mbit/s given in our submission document.

5. Key Schedulesfor 192 and 256 Bit Keys

Figures 1 and 2 of this comment diagram the new SAFER+ Unified Key
Schedule that was described by J. L. Massey in his presentation in the Algorithm
Submitter Rebuttals and Discussion session at the Second Advanced Encryption

Standard (AES) Candidate Conference. This key schedule removes the
“weakness’, which was mentioned in Section 1 above, in the 192 bit and 256 bit
key schedules of our original submission. We use the description “unified” to
reflect the fact that the 256 bit key schedule can also be used to perform either the
128 bit key schedule or the 192 bit key schedule simply by proper choice of the
last 128 bits or last 64 bits, respectively, of the 256 bit user-selected key.
Similarly, the 192 bit key schedule can also be used to perform the 128 bit key
schedule simply by proper choice of the last 64 bits of the 192 bit user-selected
key. The salient properties of this new schedule are the following:

® Every byte of the user-selected key isused in every round. (Thisisthe
property that removes the weakness described in Section 1.)

® For the 128-bit key, the new key schedule gives exactly the same subkeys as
the key schedulein our submission proposal.

® For the 192-bit key, if bytes 17, 18, ... 24 are chosen equal to bytes 1, 2, ... 8,
then the result reduces to the 128-bit key schedule.

® For the 256-bit key,
if bytes17, 18, ... 32 are chosen equal to bytes 1, 2, ... 16,
then the result reduces to the 128-bit key schedule.

If bytes 15, 26, ... 32 are chosen equal to the byte-by-byte
modulo-two sum of (1) bytes 1, 2, ... 8; (2) bytes 9, 10, ... 16;
and (3) bytes 17, 18, ... 24, then the result reduces to the
192-hit key schedule.

The design principles of the new SAFER+ Unified Key Schedule key schedule are
identical to those used in the key schedule for SAFER SK-128, which has a 64 bit
block size and 128 bit key, in the previous SAFER family of ciphers.

If SAFER+ is selected for the second round of the AES competition, we
will submit the new SAFER+ Unified Key Schedule key scheduleto NIST asa
“tweak” on the algorithm.

6. Security against Differential and Linear Cryptanalysis

It was stated in our submission document that exhaustive cryptanalyses
had shown that SAFER+ with 6 or more rounds is secure against differential
cryptanalysis and that SAFER+ with 2.5 or more rounds is secure against linear
cryptanalysis. Those interested in receiving copies of these cryptanalyses can
obtain them by request to Dr. Gurgen Khachatrian (gurgenkh@forof.sci.am) or
Prof. James L. Massey (101767.233@compuserve.com).

7. Files Sent Separately to NIST

C Program Package:
main.c
AES SP.c
AES SP.h
(ANSI C Programs:)
ANSI_SP.c
ANSI_SP.h
(“Extended” ANSI C Programs:)
EXT_SP.c
EXT_SP.h

Java Package:
Safer_Algorithm
Safer_Properties
Safer_SecretKey
SaferPlus

References

[1] J. Kelsey, “Key Schedule Weaknesses in SAFER+”, Second Advanced
Encryption Standard (AES) Candidate Conference, Rome, Italy, March 22-23,
1999.

[2] “NIST’ s Efficiency Testing for Roundl AES Candidates’, Second Advanced
Encryption Standard (AES) Candidate Conference, Rome, Italy, March 22-23,
1999.

Bytes 1, 2, ... 16 of User-Selected Key

Compute Parity Byte

v

Insert as 17th Byte

—

Expanded Key (17 Bytes) —

Select Bytes
1,2,3,...15,16 —»
K

v
Rotate each Byte 6 bits left

Ba

v
(17 Bytes) —»
v

Select Bytes
3,4,5,...17,1

Rotate each Byte 6 bits left

v
(17 Bytes) —»
v

Select Bytes
5,6,...17,1,2,3

Rotate each Byte 6 bits left
v

h 4
(17 Bytes) —>

v

Select Bytes
14,..17,1,...12

Rotate each Byte 6 bits left

v
(17 Bytes) —>

Select Bytes
16,17,1,...14

v
B*::
4>@—>
B 21
v
—»@—»
Baa
v
—»@—»

Fig. 1. SAFER+ Unified Key Schedule: Treatment of first 16 User-Selected Key Bytes

(S denotes bytewise mod 256 addition.)

Ka

Ke

Ka1

Kaa

If key length = 128 bits, enter bytes 1, 2, ...16 of user-selected key.

If key length = 192 bits, enter bytes 17, 18, ... 24 of user-selected key
followed by byte-by-byte modulo-two sum of

*bytes 1, 2, ... 8 of user-selected key,
*bytes 9, 10, ... 16 of user-selected key, and
*bytes 17, 18, ... 24 of user-selected key.

If key length = 256 bits, enter bytes 17, 18, ... 32 of user-selected key.

v
(16 Bytes) —p» Compute Parity Byte
v v
Expanded Kfy (17 Bytes) <« Insert as 17th Byte
Rotate each Byte 3 bits left Bo

v Select Bytes
(17 Bytes) —» 2,3,...15,16,17
|

v

Rotate each Byte 6 bits left

Ko

v Select Bytes
(17 Bytes) —» 45,...17,1,2

v
Rotate each Byte 6 bits left

Ka

v Select Bytes
(17 Bytes) —» 6,...17,1,2,3,4

v
Rotate each Byte 6 bits left

v
| Ban

i

Ka

A 4 Select Bytes v
(17 Bytes) —»| 15,..17,1,...13 —»@—»K”

Fig. 2. SAFER+ Unified Key Schedule: Treatment of Remaining User-Selected Key Bytes
(S denotes bytewise mod 256 addition.)

