
From: maro@isl.ntt.co.jp
To: AESFirstRound@nist.gov
Subject: Comments on NIST's Efficiency Testing for Round1

AES Candidates
Date: Thu, 15 Apr 1999 23:09:50 JST
Sender: maro@sucaba.isl.ntt.co.jp

Dear AES Candidate Comments Secretariat,

I submitted the report titled
 Comments on NIST's Efficiency Testing for Round1 AES Candidates
using PostScript. The file is generated with gzip and
uuencode. If you cannot print the file, I will help you.

Best regards,

/ NTT Laboratories
/ AOKI, Kazumaro
/ E-mail: maro@isl.ntt.co.jp

Comments on NIST’s Efficiency Testing

for Round1 AES Candidates

Kazumaro AOKI∗

April 12, 1999

NIST presented “NIST’s Efficiency Testing for Round1 AES Candidates” at the Second

AES Conference, AES2. The presentation included a performance comparison using the sub-

mitted codes of all AES candidates. We think that the presentation failed to offer a fair

comparison. We described the problems on the copy of slides distributed at AES2.

1. In Slide #29, NIST summarized Java Values. We found that the speeds of E2, HPC,

RC6, and SERPENT are very different from the data as shown in Table 1. Please confirm

the test once again.

Table 1: Rank Comparison of Java Encryption Efficiency Test

NIST DFC teama Folmsbeeb Oursc

Algorithm MCT KAT

E2 12 6 3 4 3

HPC 13 4 5 7 6

RC6 10 1 1 1 1

SERPENT 14 5 6 5 5

aTable 2 in “Report on the AES Candidates” in proceedings of AES2 on page 56.

The results were obtained on UltraSparc-I with JDK-1.2 (JIT).
bTable 3 in “AES Java Technology Comparisons” in proceedings of AES2 on page 39.

The results were obtained on UltraSparc with JIT.
c“Java Performances of AES Candidates (draft)” distributed at AES2. The results

were obtained on Pentium Pro with JDK-1.1.7 (JIT).

2. In the “Reference” configuration (Slides #9–12), NIST measured one block encryption

time, which includes NIST API overhead. The NIST API overhead of the code of each

AES candidate differs according to the programmers’ policy. A fair comparison should

reflect the algorithms’ efficiency only, i.e., should be done without NIST API.

∗NTT Laboratories (maro@isl.ntt.co.jp)

1

A method of removing the NIST API overhead is as follows. Roughly speaking, the clock

cycles required by blockEncrypt() can be written as follows

b× n+ a,

where b is the average time for one block encryption, n is the number of blocks for an

encryption, and a is the required time for NIST API.

NIST required that blockEncrypt() encrypt just one block, but all submitted codes can

encrypt several blocks. Slides #9–12 show b+ a but we need b. Thus, if NIST measures

2 block encryption time, 2b+ a, NIST will get b by computing (2b+ a)− (b+ a) = b, for
example.

NIST also tested the encryption of 1MB data (Slide #21). Because we know the E2

cycles, we guess that the tests used only one blockEncrypt() call with inputLen as

65538 × 128 bits. Slide #21 shows “Kb/s” not “cycles,” but we can easily calculate
cycles (= 65538b+ a) with the knowledge of the platform frequency (200MHz). We can

then calculate the averaged cycles for one block encryption (= b+a/65538). Because a is

smaller than b+a, and b+a is smaller than 9401, which one encryption of HPC requires,

a/65538 ≤ 9401/65538 ≈ 0. So, Slide #21 can be used to indicate block encryption time
without NIST API overhead. NIST wrote that the NIST API has minimal impact (Slide

#19). However, comparing Slides #16 with #21 shows that there are big differences as

shown in Table 2. Note that some candidates are slower at 1MB encryption than one

block encryption. We guess that cache effects are bigger than NIST API overhead for

these candidates.

3. The Slide #15 compares the Key Setup (128-bits). The slide refers to Gladman’s result.

However, he did not optimize for key setup (by personal email). This comparison should

be done much more carefully. That is, a simple ranking should be avoided for the

following reason.

makeKey() includes ASCII to binary conversion. Some candidates that have fast key

setup require longer time for ASCII to binary conversion than key scheduling. The key

scheduling of MAGENTA is clearly fastest, but the key setup for CRYPTON is faster

than that for MAGENTA according to NIST’s result.

4. In Slide #29, NIST summarized Java Values. According to the slide, E2 requires about

259KB for heap. It is the largest requirement among the candidates, however, because

recent computers have a lot of memory, requiring 300KB memory is no problem.

The submitted code of E2 was optimized for speed rather than memory. The code

combines 2 s-box tables which requires 256KB memory for the s-box table. We also

developed a 1 s-box table version which requires 1KB memory for the s-box table. Thus,

it is possible to reduce memory by about 255KB at the cost of a 25% speed decrease.

(See the AES electronic forum for E2, a related topic was discussed.)

2

Table 2: Number of clock cycles for 1 block encryption on Pentium Pro

Slide#16 Slide#21
difference
(S16− S21)

ratio
((S16− S21)/S16)

CAST-256 2169 1832 +337 +16%

CRYPTON 579 669 −90 −16%
DEAL 3197 3148 +49 +2%

DFC 3491 3981 −490 −14%
E2 1523 996 +527 +35%

FROG 1611 2431 −820 −51%
HPC 9401 15629 −6228 −66%
LOKI97 3077 3782 −705 −23%
MAGENTA 9253 15440 −6187 −67%
MARS 807 639 +168 +21%

RC6 636 683 −47 −7%
RIJNDAEL 809 1116 −307 −38%
SAFER+ 2095 2829 −739 −35%
SERPENT 1629 1825 −196 −12%
TWOFISH 973 1197 −224 −23%

5. Slides #7-8 summarize the compile options used in testing. The speed comparison should

be done with the fastest speeds that the codes achieve. NIST fixed the compiler options,

however, some candidates run faster than the executables generated with the ‘best’ com-

piler optimization option. Refer to Makefile of II-DES. The Makefile tests all combi-

nations of optimization options.

(ftp://ftp.iij.ad.jp/pub/IIJ/dist/IIDES/iides-1.1.tar.gz)

3

