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Optimized Software Implementations of E2*

Kazumaro AokKr*** and Hiroki UEDAT

NTT Laboratories?

Abstract. This paper describes many techniques for optimizing soft-
ware implementations of E2 on various platforms. It is relatively easy
to implement a byte-oriented cipher such as F2 on an 8-bit processor,
but it is difficult to implement it efficiently on a 32-bit processor or
a 64-bit processor. In particular, this paper shows several optimization
techniques for SPN (Substitution-Permutation Network) on 32- or 64-
bit processors. They are also applicable to other byte-oriented ciphers.
As a result, E2 achieves the encryption speeds of 100.5kb/s, 68.3Mb/s,
162.3Mb/s, and 130.8Mb/s for H8/300 (5MHz), Pentium Pro (200MHz),
Pentium II (450MHz), and 21164A (600MHz).
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1 Introduction

NTT submitted E2 [N98a, N98b] as an AES candidate in response to the call
issued by NIST in 1997 [U97]. E2 is a byte-oriented® cipher, and was designed
to be fast on 8-bit processors as well as 32-bit processors, which are current
standards, and 64-bit processors, which are considered to be the next generation
standard. Since E2 is byte-oriented, it is not obvious how to implement E2
efficiently on 32- or 64-bit processors.

This paper describes some techniques for optimizing software implementa-
tions of E2 on such processors. Optimization techniques are introduced for each
part of E2. In particular, the optimization techniques for SPN (Substitution-
Permutation Network) on a 32- or 64-bit processor are applicable to other byte-
oriented ciphers as well.

2 Specification of E2

Figure 1 shows the outline of the E2 encryption process. E2 has a 12-round Feis-
tel structure with a preprocess, IT-Function, and a postprocess, F'T-Function.
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The decryption process is the same as the encryption process except for the
order of the subkeys. Figure 2 outlines F-Function. F-Function consists of S-
Functions, P-Function, and BRL-Function.

Refer to [N98a] for details of the specification and notations.

3 Optimization of Each Part of E2

Several optimization techniques were shown in [N98b]. However, this paper shows
all known techniques including those described in [N98b].

3.1 Setup

3.1.1  f(v_,)

In the E2 key scheduling part, G-Function shown in Fig. 4 is computed 9 times.
In the first computation of G-Function, f(v_1) can be calculated in the setup
stage, since U = v_; holds and v_; is a constant defined in the specification.

3.1.2 128- and 192-bit Key

When the key is 128- or 192-bits long, E 2 performs the same key scheduling tasks
as in the case of the 256-bit key after padding the shorter keys with some constant
values. Thus, f-Function which depends on only constants can be calculated in
the setup stage. 18 or 9 f-Functions can be calculated for 128- or 192-bit keys,
respectively, in the setup stage.

3.1.3 Inverse

The operation @ in FT-Function requires an inverse in mod 232. This depends
only on the key, i.e., it does not depend on plaintexts. Thus, the inverse can be
calculated in the setup stage.

An inverse can be calculated by using the extended Euclidean algorithm.
However, the extended binary GCD (ex., in [K97, Algorithm Y in p.646] and
in [HKQ99, Figure 1 in p.101(p.7)]: the latter is optimized for mod 2") and
Hensel lifting (ex., in [DK91, MODULAR-INVERSE algorithm in pp.235-236]) are
more effective on a variety of platforms since the modulus has a special form.

Moreover, the Hensel lifting quadratic version proposed by Zassenhaus [Z69]
is quite effective if the platform can use an effective 32-bit multiplier. We used
Zassenhaus’ algorithm to create Algorithm 1 for calculating inverses. It is useful
for general processors whose word lengths are longer than 32 bits.

3.2 Encryption Process

3.2.1 S-Function

S-Function in F-Function consists of 8 s-boxes whose input and output lengths
are 8 bits. Figure 2 shows that 8 s-boxes can be calculated in parallel. Preparing
the table (z,y) — (s(z),s(y)) halves the number of memory references. This
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technique requires as much as 128KB memory for the table, however, it is effec-
tive in the following cases.

1. The table can be stored in fast memory such as the 1st cache.
2. The 1st cache is hard to control such as in Java.

Referring to each s-box table is preferred if the size of the 1st cache is less
than 128KB. Note that recent processors can cause a penalty when data that
are not aligned on word boundary are accessed. For example, prepare table
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Algorithm 1. Calculation of ¥ = =~ mod 22" Let a and b be temporary vari-
ables, and [z] be Gauss’ symbol (which denotes maximum integer which does not
exceed z), and the bit lengths of z, y, a, and b be 2".

Step 1: Input z. (z is assumed as an odd integer.)

Step 2: Do the initial process as follows.

L b= [g]
2. a := least significant bit of b
3. b [0

4. y := least significant 2 bits of z
Step 3: Do the following for i = 1,2,...,n — 1.

1. a:=—by
2. b:= [b+qa:]
22°

3. y:=y+ax 9%
Step 4: Output y.




x +— (0,0,0,s(x)) for a 32-bit processor instead of a simple 256 byte s-box table.
Moreover, preparing the tables

0
0)

eliminates the data position adjustment processes. However, we should ensure
that the size of these tables does not exceed the size of the 1st cache.

3.2.2 BP-Function

BP-Function shown in Fig. 3 changes the order of bytes in I7T-Function. A 32-
bit or a 64-bit processor requires a large number of instructions if B P-Function
is implemented in a straightforward manner since the number of instructions
needed to handle byte operations is very large. Considering the processors re-
quirements, we usually divide the input of F-Function into bytes for s-box input
as described in Sect. 3.2.1. Thus, it is not necessary to follow the specification
in terms of the byte order of an F-Function input, because no additional costs
are incurred even if the byte-order is changed. When 16 bytes are divided into
2 eight bytes for input to the Feistel structure, we should efficiently extract 2
sets of 8 bytes which are outputs of BP-Function, which are left or right halves
defined in the specification, and put them into registers. Since F-Function re-
quires byte operations, the transformed F-Function which differs only in input
byte order is not slower than the original F-Function.

To achieve this purpose, if we change the byte order

01234567 89ABCDEF > O5AF49E3 8D27C16B

into
01234567 89ABCDEF — 09A345EF 812BCD67,

then the number of masking operations etc. is reduced to about a half. Note that
each letter represents 1 byte.

To get the correct ciphertext as defined in the specification, apply a similar
technique to BP~!-Function in FT-Function.

3.2.3 BRL-Function

BRL-Function is at the end of F-Function. If BRL-Function and S-Function are
calculated at the same time, no time is required for BRL-Function. That is, we
should put the output bytes from s-boxes into the correct positions considering
the effect of BRL-Function using (1), when bytes are changed to words.



3.2.4 P-Function

P-Function, which realizes linear transformation layer in F-Function, is repre-
sented as multiplication using an 8 x 8 matrix. If we consider the operation unit
as a byte, the calculation requires 36 XORs, however, if we follow Fig. 2, only
16 XORs are required.

Algorithm 2 requires only 4 cycles if the algorithm is implemented on recent
processors which offer pipelining, parallel execution, and 32-bit rotation. The
byte order of the output does not match the specification, however, suitable
coding may prevent a speed decrease, since each s-box is processed individually
in S-Function.

Algorithm 2. Calculation of Z' = P(Z). Let RLy(X) mean b-byte left rotation
of X.

Step 1: Input (H, L) = ((21, 22, 23, 24), (25, 26, 27, 28)).

Step 2: Do the operations as the following order.

cycle| Operation |order of H order of L
1 [L:=H&®L 1234 5678
1 |H:=RLyo(H)| 3412 5678
2 [ H:=H®L 3412 5678
2 |L:=RLs(L) | 3412 8567
3 |[L:=H&®L 3412 8567
3 |H:=RLi(H)| 4123 8567
4 [ H:=H®L 4123 8567
Step 3: Output (H, L) = ((24, 21, 23, 25), (28, 25, 26, 27))-

3.2.5 Substitution and Permutation
This section uses the notation

sbiba -+ by, i x> (b1s(x), bas(x),. .., bys(x)),

where b; € {0,1}. For example, s0010 means z — (0,0, s(x),0).
The substitution and the permutation in F-Function of E2 is represented as
Tlet 2p - zg) = P Ts(a1) s(zh) -+ s(z})]
using the matrix } )
01111110
10110111
11011011
11101101
11011100
11100110
01110011
110111001 |




where z} is the XORed value of z; and K () in Fig. 2, and the superscript T
means matrix transposition.

Rijmen et al. proposed an effective implementation of the substitution and
permutation in SHARK [RDP196]. This section studies the implementation of
substitution and permutation for 64- and 32-bit processors based on the imple-
mentation of SHARK.

64-bit processor Using the implementation technique of SHARK directly means
that tables

501111101, s10111110, s11010111, s11101011,
510111001, s11011100, 511100110, s01110011

are required. The computation cost of this technique is summarized as follows.

Required memory 16KB
Number of table references 8
Number of XORs 7

When the size of the 1st cache is less than 16KB, 8 tables described above may be
generated from just s11111111 using masks. This case is summarized as follows.

Required memory 2KB
Number of table references 8
Number of masks 8
Number of XORs 7

82-bit processor The previous section describing the implementation for 64-bit
processors only discussed the implementation of P(S(-)), since no effective im-
plementation of BRL(S(-)) has been found. This section considers the memory
required for implementing the 2nd non-linear layer (substitution) in F-Function
on a 32-bit processor, which causes good results.

Suppose that tables

51000, s0100, s0010, s0001

as described in Sect. 3.2.1 are prepared for implementing the 2nd non-linear
layer. They occupy a total of 4KB. Note that for time complexity we consider
only P(S(:)); we do not consider the 2nd non-linear layer.

Following the SHARK implementation technique directly, similarly to the
case of 64-bit processors, tables

s0111, s1011, s1101, s1110,
50011, s1001, s1100, s0110,
51000, 0100, s0010, s0001

are required for 32-bit processors. This case is summarized as follows.



Required memory 12KB
Number of table references 16
Number of XORs 14

If 4 bytes are stored in a 32-bit register in any order, the speed is the same,
since the implemented process unit is a byte as described in Sect. 3.2.1. For
example, changing the order of calculation as follows:

2! (011111107 [
A 1011(1001 | |2
2L 1101(1100]| |23
Z 1 |1110(1101] |z
2| T |01110011] |2 |°
PA 1011{0111| |2
4 1101{1011| |2
26| |11100110] |2 |

means that tables

s0111, s1011, s1101, s1110, s0101, s1111,
1000, s0100, s0010, s0001

are required, and memory references and XOR operations of high and low words
corresponding to z1, 2o, 23, 24 are the same. This improved case is summarized
as follows.

Required memory 10KB
Number of table references 12
Number of XORs 11

Consider the case that required memory exceeds the size of the cache or the
case that the latency” of memory references is problematic. For example, if we
change the order of calculation to

[ 2] (011111107 [2]
2 101110111 )
2 1110j]1101 z3
25| |1101]1011 24
z5| 101110011 z5
P 10111001 |26
26 1110[0110 27
2] |11011100] | 2]

and prepare tables

s0111, s1011, s1101, s1110,
51000, 50100, s0010, s0001,

T Cycles after issuing an instruction before being able to access the result.



memory references corresponding to zs, zg, 27, 25 are directly used for 21, 25, 2},
24, and 27, 2§, 2§, 2, are calculated as right 1 byte, right 2 bytes, left 1 byte, and
left 2 bytes logical shifted from 21, 2}, 2}, 25, respectively. This case is summarized
as follows.

Required memory 8KB
Number of table references 8
Number of XORs 11
Number of shifts 4

P-Function of E2 has an interesting property. First, we change the order of
the calculations to

[ 2} 0111111107 [2
24 10110111 29
24 1101]1011 23
zy| |1110/1101 24
z'7 01110011 25
24 1011{1001 26
z5 1101|1100 27
_zé_ 111100110 |=2s]|
We focus on the top right and bottom right submatrices:
1110 0011
0111 1001
Qu=1i011]"92= 1100
1101 0110

Letting SD(X) be b-byte down-shift of X, and SU,(X) be b-byte up-shift of X
yields

1101

1110
Que@p= 0111

1011
SD1(Qu) @ SU3(Qu).

This means that we can calculate P(S(-)) using tables

s0111, s1011, s1101, s1110,
51000, s0100, s0010, s0001.

This case is summarized as follows.

Required memory 8KB
Number of table references 8
Number of XORs 9
Number of shifts 2

If the rotation is available, we can reduce the computation cost to
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Required memory 8KB
Number of table references 8
Number of XORs 8"
Number of rotations 1

4 Implementation Results

We optimized E2 implementations for several processors. Table 1 shows the
results for the key scheduling part, and Table 2 shows the results for data ran-
domizing part.

To achieve high performance on recent processors, it is important to con-
sider instruction scheduling as well as decreasing the number of instructions.
We achieved 2.45 [uops/cycle] parallel execution on a Pentium IT and 1.73 [in-
structions/cycle] parallel execution on an Alpha processor (average values) using
the implementations described in Table 2. We think that these implementations
realize parallel execution efficiently.

Table 1. Key Scheduling Part

Key length Speed

Processor (bits)  (cycles/key)
Pentium Pro? 128 1868
192 2031
256 2294
Pentium II° 128 1804
192 1991
256 2228
H8/300° 128 14041
192 15284
256 16518

¢IBM PC/AT compatible, Pentium Pro(200MHz), 64MB RAM, MS-
Windows95, Microsoft Visual C++ 5.0 Enterprise Edition

»IBM PC/AT compatible, Pentium I1(450MHz), 256MB RAM, MS-
Windows95, Microsoft Visual C++ 5.0 Enterprise Edition

¢ H8/300(5MHz) emulator on FreeBSD, assembly

5 Conclusion
We analyzed each part of E2 and studied how to implement them efficiently

on various platforms. As a result, we achieved faster implementation on 32-
bit processors, which are the current standard, and a 64-bit processor, which is
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Table 2. Data Randomizing Part

Speed
Processor  (cycles/block) (bits/second)
Pentium Pro® 375 68.3M
Pentium II° 355 162.3M
Java VM° 2370 10.8M
Java VM 28800 0.9M
Alpha® 587 130.8M
H8/3007 6374 100.5k

¢ IBM PC/AT compatible, Pentium Pro(200MHz), 64MB RAM, assembly

® IBM PC/AT compatible, Pentium I1(450MHz), 256MB RAM, assembly

¢ IBM PC/AT compatible, Pentium Pro(200MHz), 64MB RAM, JDK 1.1.6
with JIT

¢ IBM PC/AT compatible, Pentium Pro(200MHz), 64MB RAM, JDK 1.1.6
without JIT

¢ Alpha AXP 21164A (600MHz), 8MB 3rd cache, 256MB RAM, Digital Unix
4.0, assembly

7 H8/300(5MHz) emulator on FreeBSD, assembly

considered to be the next generation standard, even though E2 is a byte-oriented

cipher.
NTT will continue to optimize E2 implementation. The latest implementa-
tion results are available at http://info.isl.ntt.co.jp/e2/.
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Appendix: Implementation for Low Memory Environment

E2 can be implemented even in low memory environments such as low-end smart
cards where not all subkeys can be stored in RAM. In this case, each subkey
should be generated on-the-fly by calling the key scheduling part several times
during the data randomizing.

First, we estimate the required RAM size by the implementation for 128-bit
key. The minimum required RAM size is 56 bytes: 16 bytes for a plaintext or
ciphertext we call ‘PC area,” 16 bytes for a master key we call ‘M area,” and 24
bytes for subkey generation we call ‘SG area.” The PC area is also used for storing
the intermediate data in data randomizing part, and the SG area is also used for
storing the working data required for computing F-, IT-, and FT-Functions®.

Second, we estimate how many times key scheduling calls are required. Let
A be the available RAM size. Because E2 requires sixteen 16 bytes for subkeys

A—
1656H key scheduling calls.

generation, the implementation requires [16/ {

We summarize the results in Table 3.

Table 3. Number of key scheduling calls required for encryption

Available RAM (bytes)|> 72|> 88|> 104|> 120|> 152|> 184|> 312
# of calls 16 | 8 6 4 3 2 1

This article was processed using the IATEX macro package with LLNCS style

8 Moreover, because some intermediate values required by key scheduling depend on
constant values, the intermediate values can be computed before coding as stated in
Sect. 3.1.2. These 144 bytes can be stored in ROM.
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