
Date: Thu, 15 Apr 1999 18:17:51 +0200
From: Louis Granboulan <Louis.Granboulan@ens.fr>
To: AESFirstRound@nist.gov
Cc: maro@isl.ntt.co.jp, Serge <Serge.Vaudenay@ens.fr>
Subject: Analysis of the RefCode and OptCCode submissions
Reply-To: Louis Granboulan <Louis.Granboulan@ens.fr>
X-Mailer: Mutt 0.95.3i

Here is official comment I have written about the C programs
submitted for AES CD2. This is a technical view point on the
API correctness and portability of these programs.

Best regards,
Louis Granboulan

AES : Analysis of the RefCode and OptCCode submissions

Louis Granboulan

April 15, 1999

Abstract

In this document, I review all AES submission from a C programmer’s point of view. I check if they
correctly implement AES API and if they really are portable ANSI C.

1 API correctness
Cast 256 Crypton DEAL DFC E2 Frog HPC Loki 97 Magenta Mars RC6 Rijndael Safer + Serpent Twofish

Headers OK OK OK OK OK OK OK OK OK OK OK OK no OK OK
makeKey OK no no OK OK OK no OK OK no OK no OK OK OK
cipherInit no no OK no OK OK no OK OK no OK no OK OK OK
blockEncrypt OK OK OK no OK no OK no OK OK OK OK no OK OK
Library OK no no OK OK OK OK OK OK OK OK OK OK no no

ECB OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK
CBC OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK
CFB1 OK no OK OK OK no OK OK OK no OK OK OK OK OK

1.1 Can we easily make a cryptographic library having NIST API?

The NIST specified an ANSI C interface [2] that should be followed by the submissions in the CD [1]. I tried
to build a Unix library with the files from AES CD, either RefCode or OptCCode submissions. I asked that
building this library should be as easy as possible. I checked the following points :

• Does it respect API values in header files
In the NIST API document, there is an example of a header file for AES API, that give some numeric values
for error codes. There is the possibility to put additional error codes if needed. All candidates respect the
values defined in this file and give other values to their additional error codes, with the exception of

– Safer + : it adds the error code BAD_KEY_LEN which changes the values of NIST defined error codes
BAD_KEY_INSTANCE, BAD_CIPHER_MODE and BAD_CIPHER_STATE.

• The function makeKey
The NIST API document describes the structure keyInstance that will store all the key information.
Since nothing in the API allows to free pointers referenced in this structure, it should contain only scalar
or arrays if we don’t want to fill the memory 1.

– Crypton misunderstood the specification and handles keyMaterial as a binary value instead of an
ASCII string.

1But the aes.h example shows as an example the BYTE *KS pointer to a key schedule. This should not be followed!

1

– DEAL does not allocate the memory needed for the pointer key->kss, and it is never freed (cf. the
former remark).

– HPC allocates three blocks of memory key->KS, key->hpc_kmbits and ((U64**)key->KS)[HPCM]
that may never be freed (cf. the former remark).

– on success, MARS returns 0 instead of TRUE.

– Rijndael has an additionnal argument that is not compatible with the prototype in the API :
blockLen.

• The function cipherInit
The NIST API document ot fair here... the parameter IV is a string that is translated into an array
of BYTE and stored in the cipherInstance. But the parameter keyMaterial for makeKey was stored
unchanged in the keyInstance.

– Cast 256 (RefCode only) needs that we set cipher->verboseoutfile to NULL before calling cipherInit.

– Crypton misunderstood the specification and handles IV as a binary value instead of an ASCII string.

– DFC does not understand NULL or non valid IV in ECB mode, but it should not use this parameter.

– HPC allocates one block of memory that cannot be freed and we need to set cipher->blockSize to
128.

– on success, MARS returns 0 instead of TRUE.

– Rijndael has an additionnal argument that is not compatible with the prototype in the API :
blockLen.

• The function blockEncrypt The parameter inputLen is the size of the input in bits and the return value
is the number of bits encrypted.

– DFC understands the parameter inputLen in bytes instead of bits (mimics the Java API).

– Frog, Safer + and Loki 97 return TRUE instead of the number of bits encrypted.

• The compilation of the library

– for Crypton and Twofish, the file that defines all the API routines also defines the main procedure.
You have to delete it to make a library that can be linked with other programs.

– DEAL is not consistent for the case of filenames : deal.c, dealref.c and dealkeys.c include
DEAL.h but dealapi.c includes deal.h.

– Serpent’s header file serpent-api.h in RefCode defines a macro named r with value 32. This
should be avoided because of possible conflicts with variable names or struct members, for example
in standard include header files.

1.2 Can we decrypt an encrypted message?

I encrypt a random 128 bits blocks with a random 128 bits key and then decrypt the result and check the
equality.

• ECB mode
All candidates are OK.

2

• CBC mode
The NIST API says that cipherInit stores the initialisation vector in the cipherInstance. It is not
clear if encryption or decryption should change the initialisation vector in the cipherInstance.

– Cast 256, Crypton, DEAL, Frog, HPC, RC6, Safer + and Twofish change the initialisation vector.

– DFC, E2, Loki 97, Magenta and Mars don’t change the initialisation vector.

– Crypton RefCode does not decrypt well, but the NIST did only require OptCCode implementations
of CBC.

• CFB1 mode
Note that the NIST API cannot be used to decrypt in CFB1 mode, since you need to use the DIR_ENCRYPT
key schedule with the blockDecrypt function and that is forbidden (returns a BAD_KEY_MAT).
I changed the API to allow DIR_ENCRYPT key schedule (and only this one) for blockDecrypt in CFB1
mode. I made the tests with this modified API.
DEAL and FROG implementors had already noticed this problem.

– Crypton : neither RefCode nor OptCCode decrypts a 128 bits encrypted sequence.

– Frog changes only the first 8 bits for a 128 bits message, and the decryption code is missing a break
to have a valid return value.

– Mars accepts CFB1 encyption only for 1 bit messages.

– with Rijndael, only OptCCode has CFB1 mode, since the NIST did not require RefCode implemen-
tations of CFB1.

– with Serpent and Twofish, only RefCode decrypts well, but the NIST did require OptCCode imple-
mentations of CFB1.

2 ANSI conformance and portability

Cast 256 Crypton DEAL DFC E2 Frog HPC Loki 97 Magenta Mars RC6 Rijndael Safer + Serpent Twofish
RefCode OK no no OK OK OK OK no OK OK OK OK OK OK OK
OptCCode OK no OK OK OK OK OK no OK OK OK OK OK OK OK

Endian & align OK OK OK OK no OK no OK OK no no no OK no OK
Word length OK OK OK OK no OK no OK OK no no OK OK OK OK
Portable no no OK OK no OK no OK OK no no no OK no no

2.1 Is it strict ANSI?

Many compilers understand a superset of ANSI C. We test ANSI conformance with the lcc strict ANSI compiler
[3] with options -A -A. Sun’s compiler with options -v -Xc give some additional warnings (constant correctness).

• Crypton mixes char and unsigned char as if they were the same type. Some functions are defined with
old-style K&R argument declaration.

• DEAL declares xor8 and copy8 as extern and then defines them as static (file dealref.c. We also notice
that local int k is defined in generateRandomKey but never used (file dealapi.c.

• E2 negates an unsigned value (function e2ModularInverse in file r-e2.c).

3

• with HPC, we notice that local ul64 difference is defined in subEq_ul64 and local int nv is defined
in strtoU64 but are never used (file hpc-ansi.c).

• Loki 97 defines static function puthex as returning an int but it never returns a value. Some prototypes
are missing and other are old-style K&R. The constant DELTA is missing const qualifier.

• for Safer +, some prototypes are missing and other are old-style K&R.

• Serpent defines the function hex that may call exit and then return no value (file serpent-aux.c). It
defines serpent_encrypt and serpent_decrypt as returning and int but they never return a value. (file
serpent.c). Many prototypes are missing, some local variables are not used.

2.2 Do we have problems with endianess and word length?

The API represents the cleartext and ciphertext as unsigned char *, which representation is clearly defined by
ANSI. The output on the encryption function should be independant of the internal representation of integers.
Many AES candidates suppose that they can have 32-bits integers, but ANSI standard only requires that long
are at least 32-bits long. No integer type is garanteed to be exactly 32-bits. Luckily, most AES candidates have
a typedef definition that is easy to set to some 32-bits integer type.
Many AES candidates use ”casts” to convert data types. They suppose that the internal representation of
characters and integers follow some particular rules. This may cause problems if the system is little endian or
big endian or something even stranger. Some AES candidates check their hypothesis about endianess by looking
at the internal representation of integers, but their codes are not likely to run on a PDP11 box (I don’t have
one, so I did not the test). The best solution is to avoid casts that are not specified by the standard.

• Endianess and alignment

– for Cast 256, you need to change the macro littleendian in cast.h.

– Crypton (OptCCode) the function CryptonExpandKey casts BYTE* to DWORD*, but this does not cause
alignment problems on the computers I used.

– E2 (OptCCode) the macros LOAD_L_HIGH and many others in defcode.c makes dangerous casts :
dumps a core on many architectures (alignment problem).

– HPC does not give the same encrypted messages, depending on endianess.

– Mars casts BYTE* to DWORD* and this can cause alignment problems (function cipherInit). There is
a test in sbox.c, mars-ref.c and mars-opt.c that defines (or not) SWAP_BYTES and that you need
to update to deal with endianess.

– RC6 (OptCCode) give different results depending on endianess. The file aes.c says that “We’ll
make use of the fact that Intels are little-endian.”

– Rijndael makes some casts from word8* to word32* that may cause alignment problems.

– Serpent give byte-swapped encrypted messages depending on endianess.

– Twofish make many casts to do byte-swap and other things, and this may cause alignement problems.
You have to adapt platform.h to you architecture and define LittleEndian if needed. If we compile
Twofish with the bad endianess definition, the function makeKey returns BAD_KEY_MAT, which is a
strange behaviour!

4

• Word length

– Cast 256 supposes that the type uns32 in cast.h is exactly 32-bits long.

– Crypton supposes that the type DWORD in crypton.h is exactly 32-bits long.

– for E2, you need to change the type uint32 in r-e2.h. But with OptCCode, it is not a solution
because they suppose uint32 and pointers have same size.

– HPC suppose that if you did not define HAVE_64bit_LONG, then unsigned long are exactly 32-bits
long.

– Mars supposes that the type WORD in aes.h is exactly 32-bits long.

– RC6 need to check that all occurence of long is a 32-bits integer type. This makes RefCode work.
For OptCCode, we need to check 16-bits types too... this is nearly impossible to make work.

– Rijndael supposes that the type word32 in rijndael-alg-fst.h is exactly 32-bits long.

– Serpent (OptCCode) need to check that all occurence of long is a 32-bits integer type.

– Twofish supposes that the type DWORD in aes.h is exactly 32-bits long. You also need to change int
to an integer type of the same size as pointers for all casts in twofish.c (test for checking alignment
in RefCode).

• Portability
Best programs are the ones which don’t need any change if the internal representation of integers changes.
So I test if the type unsigned long can be 64-bits or f unsigned short can be 32-bits. I did not
make exhaustive tests, for example negative integers could have an other representation than their 2’s
complement...

– Crypton does special optimizing hacks if WIN32 is defined.

– Twofish does special optimizing hacks if _M_IX86 or _MSC_VER or __BORLANDC__ are defined. There
is a ALIGN32 macro that should be defined if the cpu needs data alignment.

2.3 Conclusion

It is not easy to write a C program that respects the AES API, that has the same behaviour on all machines
that that is an efficient cryptosystem. Only Magenta did a perfect work, all other submissions had major or
minor faults. Magenta is the slowest and probably the less secure of the submissions.

People should not give too much importance to the comparison of the performance of C programs, because
they are not really more portable than assembly.

References

[1] NIST – AES CD2

[2] NIST – ANSI C Cryptographic API Profile for AES Candidate Algorithm Submissions Revision 5: April
15, 1998

[3] lcc, a retargetable compiler for ANSI C (version 4.0) http://www.cs.princeton.edu/software/lcc/

5

