

CAST-256

A Submission for the Advanced Encryption Standard

Carlisle Adams First AES Candidate Conference August 20-22, 1998

Orchestrating Enterprise Security

"Vital Statistics"

Name

• CAST-256

Inventors

 Carlisle Adams, Howard Heys, Stafford Tavares, Michael Wiener

Key Sizes

• 128, 160, 192, 224, 256 bits

Block Size

• 128 bits

Outline

- History
- + Description
- Analysis
- "Features and Advantages"
- +Conclusions

History

+1985-86

• Advice: "don't go into crypto.; no future"

+1988-90

- design procedure for symmetric ciphers
 - Boolean functions, s-boxes, round functions, key scheduling, overall framework

+1992-93

- the name "CAST" introduced
- specification of various parameters
- CAST-1, CAST-2 in first Entrust product

History (cont'd)

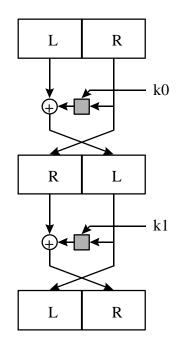
+1993-95

- modified key schedule: CAST-3
- further concentration on round function
- further concentration on s-box design, efficient (networked) construction
 - preliminary s-boxes: CAST-4
 - final s-boxes: CAST-5
- CAST-5 published as "CAST-128"
- +1995-97
 - draft paper distributed and on web site
 - interest begins to rise

Orchestrating Enterprise Security

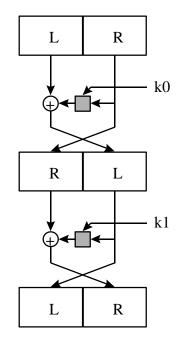
History (cont'd)

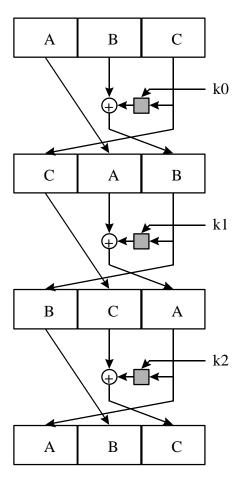
- +1997
 - CAST paper published (DCC)
 - CAST-128 cipher published (RFC 2144)
 - interest rises significantly
- **+**1997-98
 - CAST-128 used to form basis of CAST-256
- **+**1998
 - CSE endorsement of CAST-128
 - CAST-256 submitted as AES candidate



Description

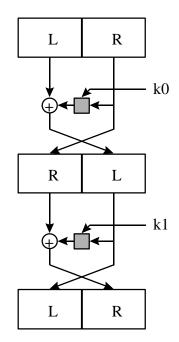
- +Based on CAST-128
 - identical round function
- +Expansion to 128-bit block
 - simple generalization of Feistel structure
- +Expansion to 256-bit key
 - uses encryption (256-bit block) to generate round keys

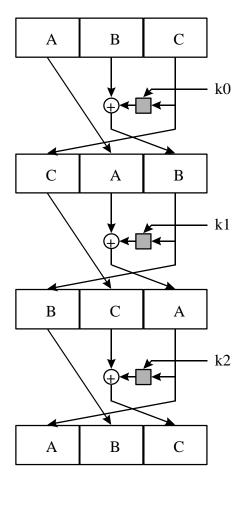

Feistel Network

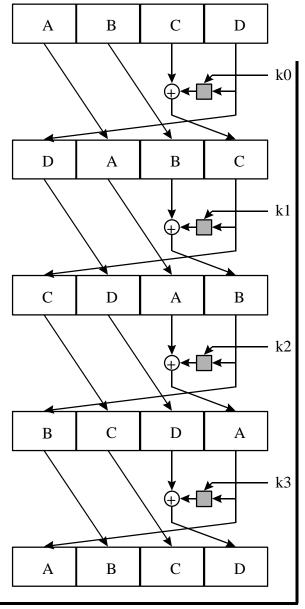


Orchestrating Enterprise Security

"Incomplete" Feistel Network

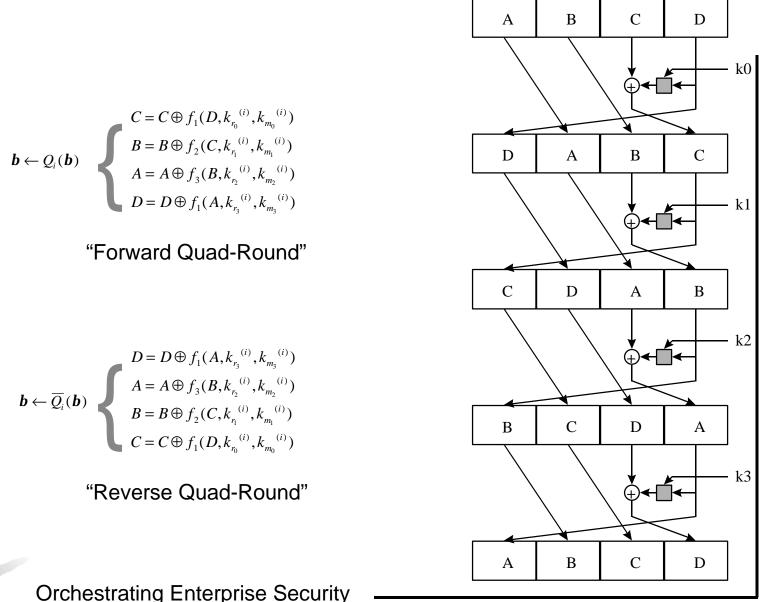






Orchestrating Enterprise Security

"Incomplete" Feistel Network



Orchestrating Enterprise Security

CAST-256 Notation

Orchestrating Enterprise Security

©1997 Entrust Technologies p. 11

CAST-256 Cipher

b = 128 bits of plaintext.

for(i = 0; i < 6; i + +) $\boldsymbol{b} \leftarrow Q_i(\boldsymbol{b})$ for(i = 6; i < 12; i + +) $\boldsymbol{b} \leftarrow \overline{Q_i}(\boldsymbol{b})$

128 bits of ciphertext = b

Orchestrating Enterprise Security

CAST-256 Key Schedule

k = ABCDEFGH = 256 bits of primary key, K.

for
$$(i = 0; i < 12; i + +)$$
{
 $\mathbf{k} \leftarrow \mathbf{w}_{2i}(\mathbf{k})$
 $\mathbf{k} \leftarrow \mathbf{w}_{2i+1}(\mathbf{k})$
 $k_r^{(i)} \leftarrow \mathbf{k}$
 $k_m^{(i)} \leftarrow \mathbf{k}$
}

$$G = G \oplus f_1(H, t_{r_0}^{(i)}, t_{m_0}^{(i)})$$

$$F = F \oplus f_2(G, t_{r_1}^{(i)}, t_{m_1}^{(i)})$$

$$E = E \oplus f_3(F, t_{r_2}^{(i)}, t_{m_2}^{(i)})$$

$$D = D \oplus f_1(E, t_{r_3}^{(i)}, t_{m_3}^{(i)})$$

$$C = C \oplus f_2(D, t_{r_4}^{(i)}, t_{m_4}^{(i)})$$

$$B = B \oplus f_3(C, t_{r_5}^{(i)}, t_{m_5}^{(i)})$$

$$A = A \oplus f_1(B, t_{r_6}^{(i)}, t_{m_6}^{(i)})$$

$$H = H \oplus f_2(A, t_{r_7}^{(i)}, t_{m_7}^{(i)})$$

Orchestrating Enterprise Security

CAST-256 Key Schedule (cont'd)

$$c_m = 2^{30} \sqrt{2} = 5A827999_{16}$$

 $m_m = 2^{30} \sqrt{3} = 6ED9EBA1_{16}$
 $c_r = 19$
 $m_r = 17$

for(i = 0; i < 24; i + +)
for(j = 0; j < 8; j + +){

$$t_{m_j}^{(i)} = c_m$$

 $c_m = (c_m + m_m) \mod 2^{32}$
 $t_{r_j}^{(i)} = c_r$
 $c_r = (c_r + m_r) \mod 32$
}

Orchestrating Enterprise Security

Outline

- History
- + Description
- Analysis
 - "Features and Advantages"
 - +Conclusions

Orchestrating Enterprise Security

Analysis

+ Inherited from CAST-128

- Boolean functions
- Substitution boxes
- Key mixing per round
- Mixed operations
- Multiple round functions

Analysis

Inherited from CAST-128

- Boolean functions
- Substitution boxes
- Key mixing per round
- Mixed operations
- Multiple round functions

Boolean Functions

- "Bent" functions of 8 variables
 - highest possible nonlinearity over all binary Boolean functions (120)
 - nonlinear order of 4 (highest possible for bent functions)

Analysis

Inherited from CAST-128

- Boolean functions
- Substitution boxes
- Key mixing per round
- Mixed operations
- Multiple round functions

S-Boxes

Properties

- XOR difference table of 0's and 2's
- nonlinearity of 74
- DMOSAC = 0
- $DHOBIC_{32,1} = 36$
- row weight distribution: approx. binomial
- row pair wt. distribution: approx. binomial
- average column weight: 128

Analysis

Inherited from CAST-128

- Boolean functions
- Substitution boxes
- Key mixing per round
- Mixed operations
- Multiple round functions

Key Mixing

Non-surjective attack considerations

- key entropy per round = 37 bits
- Differential, Linear considerations
 - combination of masking key, rotation key, and mixed operations for data combining

Analysis

Inherited from CAST-128

- Boolean functions
- Substitution boxes
- Key mixing per round
- Mixed operations
- Multiple round functions

Mixed Operations

- Experimental work
 - combinations of *pairs* and *triples* of s-boxes using XOR, addition, subtraction
 - -examination of XOR diff. distribution table
 - -significant drop in maximum entry
- Theoretical work
 - deriving probability of maximum entry exceeding a specific bound
 - -supports experimental evidence

Mixed Operations (cont'd)

Appear to

- increase resistance to linear, differential attacks by decreasing round probability
- Appear to
 - significantly increase resistance to higherorder differential attacks

Orchestrating Enterprise Security

Analysis

Inherited from CAST-128

- Boolean functions
- Substitution boxes
- Key mixing per round
- Mixed operations
- Multiple round functions

Multiple Round Functions

Appear to

- increase complexity of constructing differential and linear characteristics
 - order of round functions precludes iteration of some low-round characteristics

Orchestrating Enterprise Security

Analysis (cont'd)

♦ Particular to CAST-256

- Generalized ("incomplete") Feistel
 - -security of quad-round
 - -security of "forward then reverse" quad-rounds
 - -number of rounds
- Key schedule
 - -security of overall structure
 - -equivalent, weak, semi-weak keys

Outline

- History
- + Description
- Analysis
- +"Features and Advantages"
 - +Conclusions

Orchestrating Enterprise Security

"Features and Advantages"

History

- CAST design procedure has been under scrutiny for almost 10 years (both public and private)
- minor weaknesses have been found

 non-surjective attack, HOD attack
 but nothing extendable beyond 5-6 rounds
- CAST-128 has received most extensive analysis and appears to be strong
- CAST-256 inherits the strength of the round fn.

"Features and Advantages" (cont'd)

+Framework

- generalized Feistel structure is a clean, intuitive design that facilitates understanding and analysis
- single structure for encryption and decryption
- other blocksizes can be accommodated, if desired
- 48 rounds is a lot of rounds...!

"Features and Advantages" (cont'd)

Key Schedule

- properties of cipher give properties of round keys (e.g., independence)
- provable non-existence of equivalent keys, unlikelihood of weak and semi-weak keys
- partial knowledge of round keys is of little help

Conclusion

- CAST-256 is a strong candidate for AES – performance is quite good (2/3 that of CAST-128)
 - code size and complexity are reasonable
 - multiple key sizes supported (without any change in performance)
 - multiple block sizes may also be specified
- Thanks again to NIST for designing and running the AES process as well as they have!

