Decorrelated Fast Cipher

Serge Vaudenay

Ecole Normale Supérieure – CNRS

August 1998

First Advanced Encryption Standard Conference

Previous Work on Provable Security

[Shannon 49]: notion of perfect secrecy, impossibility of achieving it [Wegman-Carter 81]: provably secure MAC with universal hashing [Luby-Rackoff 88]: the Feistel scheme with random round function is "almost" a random permutation

[Biham-Shamir 90]: notion of differential cryptanalysis

[Lai-Massey-Murphy 91]: notion of Markov cipher

[Matsui 93]: notion of linear cryptanalysis

[Nyberg-Knudsen 92]: construction of cipher which is provably resistant against differential cryptanalysis

[Matsui 96]: construction of MISTY which is provably resistant against differential and linear cryptanalysis

Perfect Decorrelation

To the order 1:

 $\forall \text{PT} \ \text{AES}_K(\text{PT})$ has a uniform distribution

To the order 2:

 $\forall PT \neq PT' \quad (AES_K(PT), AES_K(PT')) \text{ has a uniform distribution}$ (among all (CT, CT') such that $CT \neq CT'$)

To the order d:

 $\forall (\mathrm{PT}_i \neq \mathrm{PT}_j) \; (\mathrm{AES}_K(\mathrm{PT}_1), \dots, \mathrm{AES}_K(\mathrm{PT}_d)) \text{ uniform}$

(among all (CT_1, \ldots, CT_d) such that $CT_i \neq CT_j$)

Resistance Against Differential Cryptanalysis

If AES has a perfect decorrelation to the order 2, then for all $a \neq 0$ and $b \neq 0$, we have

$$\Pr_{K,\mathrm{PT}}[\mathrm{AES}_K(\mathrm{PT} \oplus a) = \mathrm{AES}_K(\mathrm{PT}) \oplus b] = \frac{1}{2^{128} - 1}$$

 \rightarrow AES resists "on average" against any differential attack with a fixed characteristic.

Decorrelation Distance

To each random mapping F from \mathcal{A} to \mathcal{B} we associate the $\mathcal{A}^2 \times \mathcal{B}^2$ -matrix $[F]^2$: the **pairwise distribution matrix**.

Given $x = (x_1, x_2) \in \mathcal{A}^2$ and $y = (y_1, y_2) \in \mathcal{B}^2$, we have

$$[F]_{x,y}^2 = \Pr[F(x_1) = y_1, F(x_2) = y_2].$$

Definition. Given two random functions F and G from \mathcal{A} to \mathcal{B} , the pairwise decorrelation distance between F and G is

$$||[F]^{2} - [G]^{2}|| = \max_{x_{1}, x_{2}} \sum_{y_{1}, y_{2}} \left| \Pr \begin{bmatrix} F(x_{1}) = y_{1} \\ F(x_{2}) = y_{2} \end{bmatrix} - \Pr \begin{bmatrix} G(x_{1}) = y_{1} \\ G(x_{2}) = y_{2} \end{bmatrix} \right|$$

Theoretical Results

If

$$F_{A,B}(x) = (Ax + B) \mod (2^{64} + 13) \mod 2^{64}$$

for $(A, B) \in_U \{0, 1\}^{128}$ and F^* is a random function on $\{0, 1\}^{64}$ with a uniform distribution then

$$||[F]^2 - [F^*]^2|| \approx 2^{-58}.$$

If $DFC_{A_1,B_1,...,A_6,B_6}$ is a 6-round Feistel cipher in which each round function can be written

$$RF_i(x) = CP((A_ix + B_i) \mod (2^{64} + 13) \mod 2^{64})$$

for $(A_1, B_1, \ldots, A_6, B_6) \in U \{0, 1\}^{768}$ and C^* is a random permutation on $\{0, 1\}^{128}$ with a uniform distribution then

$$||[DFC]^2 - [C^*]^2|| \approx 2^{-113}$$

Security Results

Let $\epsilon = ||[DFC]^2 - [C^*]^2||.$

For any differential or linear distinguisher, if the complexity is far less than ϵ^{-1} , then the success probability is negligible.

 \rightarrow no such attacks possible if a key is used less than 2⁹² times.

For any iterated attack of order 1, if the complexity is far less than $e^{-\frac{1}{2}}$, then the success probability is negligible.

 \rightarrow no such attack possible if a key is used less than 2⁴⁸ times.

We use two linear functions EF_1 and EF_2 and let $RK_0 = 0$. $EF_1(K)$ and $EF_2(K)$ are used exactly 4 times.

Implementations			
microprocessor	cycles-per-bit	clock-frequency	bits-per-second
microprocessor AXP	cycles-per-bit 4.36	clock-frequency 600MHz	bits-per-second 137.6Mbps
	· -		-

Errata			
Last lines of EES in the extended abstract (p. 9):			
78d56ced 94640d6e f0d3d37b e67008e1 <u>86d1bf27 5b9b241d$_{ m x}$</u>			
<u>eb64749a</u> _x			
Eq. (26) in the extended abstract (p. 8) and Eq. (22) in the full report (p. 9):			
$EES = RT(0) RT(1) \dots RT(63) \underline{KD} \underline{KC} $			