Decorrelated Fast Cipher
 Serge Vaudenay
 Ecole Normale Supérieure - CNRS

August 1998

First Advanced Encryption Standard Conference

Private Communications

message space: $\mathcal{M}=\{0,1\}^{128}$
message block: $\mathrm{PT} \in \mathcal{M}$
encryption function: AES_{K} (permutation over \mathcal{M})

Security of Block Ciphers

Random Tape ω

Ram

\rightarrow (secret) random permutation with a given (public) distribution
\rightarrow we study the attack "on average" on the key
Definition. AES is ϵ-secure against a class CL of attack if

$$
\forall \mathcal{A} \in \mathrm{CL} \quad \underset{\omega, K}{\operatorname{Pr}}\left[\mathcal{A}^{\mathrm{AES}_{K}}=K\right] \leq \epsilon
$$

Previous Work on Provable Security

[Shannon 49]: notion of perfect secrecy, impossibility of achieving it [Wegman-Carter 81]: provably secure MAC with universal hashing [Luby-Rackoff 88]: the Feistel scheme with random round function is "almost" a random permutation
[Biham-Shamir 90]: notion of differential cryptanalysis
[Lai-Massey-Murphy 91]: notion of Markov cipher
[Matsui 93]: notion of linear cryptanalysis
[Nyberg-Knudsen 92]: construction of cipher which is provably resistant against differential cryptanalysis
[Matsui 96]: construction of MISTY which is provably resistant against differential and linear cryptanalysis

To the order 1:
$\forall \mathrm{PT} \mathrm{AES}_{K}(\mathrm{PT})$ has a uniform distribution

To the order 2:
$\forall \mathrm{PT} \neq \mathrm{PT}^{\prime} \quad\left(\mathrm{AES}_{K}(\mathrm{PT}), \mathrm{AES}_{K}\left(\mathrm{PT}^{\prime}\right)\right)$ has a uniform distribution (among all $\left(\mathrm{CT}, \mathrm{CT}^{\prime}\right)$ such that $\mathrm{CT} \neq \mathrm{CT}^{\prime}$)

To the order d :

$$
\forall\left(\mathrm{PT}_{i} \neq \mathrm{PT}_{j}\right) \quad\left(\mathrm{AES}_{K}\left(\mathrm{PT}_{1}\right), \ldots, \mathrm{AES}_{K}\left(\mathrm{PT}_{d}\right)\right) \text { uniform }
$$

(among all $\left(\mathrm{CT}_{1}, \ldots, \mathrm{CT}_{d}\right)$ such that $\mathrm{CT}_{i} \neq \mathrm{CT}_{j}$)

Resistance Against Differential Cryptanalysis

If AES has a perfect decorrelation to the order 2 , then for all $a \neq 0$ and $b \neq 0$, we have

$$
\underset{K, \mathrm{PT}}{\operatorname{Pr}_{K}}\left[\mathrm{AES}_{K}(\mathrm{PT} \oplus a)=\operatorname{AES}_{K}(\mathrm{PT}) \oplus b\right]=\frac{1}{2^{128}-1}
$$

\rightarrow AES resists "on average" against any differential attack with a fixed characteristic.

The Vernam Cipher (One-time pad) [Vernam 26]

$$
\mathrm{AES}_{K}(\mathrm{PT})=\mathrm{PT} \oplus K \text { with } K \in_{U}\{0,1\}^{128}
$$

\rightarrow perfect decorrelation to the order 1

Basic COCONUT Cipher

$\operatorname{AES}_{A, B}(\mathrm{PT})=(A \times \mathrm{PT}) \oplus B$ with $(A, B) \in_{U} \mathrm{GF}\left(2^{128}\right)^{*} \times \mathrm{GF}\left(2^{128}\right)$
\rightarrow perfect decorrelation to the order 2

Design Strategy

- we do not need "perfect" decorrelation: we tolerate imperfect decorrelation as long as we can quantify it
- we do not want $\mathrm{GF}\left(2^{m}\right)$ multiplication: we want fast software implementations
\rightarrow use the integer multiplication
- we do not want ad hoc construction: we want to get decorrelation on arbitrary cipher by adding a few "decorrelation modules"
\rightarrow we add the

$$
F_{A, B}(x)=(A \times x+B) \bmod p \bmod 2^{m}
$$

decorrelation module with $(A, B) \in_{U}\left\{0, \ldots, 2^{m}-1\right\}^{2}$.

To each random mapping F from \mathcal{A} to \mathcal{B} we associate the $\mathcal{A}^{2} \times \mathcal{B}^{2}$-matrix $[F]^{2}$: the pairwise distribution matrix.
Given $x=\left(x_{1}, x_{2}\right) \in \mathcal{A}^{2}$ and $y=\left(y_{1}, y_{2}\right) \in \mathcal{B}^{2}$, we have

$$
[F]_{x, y}^{2}=\operatorname{Pr}\left[F\left(x_{1}\right)=y_{1}, F\left(x_{2}\right)=y_{2}\right] .
$$

Definition. Given two random functions F and G from \mathcal{A} to \mathcal{B}, the pairwise decorrelation distance between F and G is

$$
\left\|[F]^{2}-[G]^{2}\right\|=\max _{x_{1}, x_{2}} \sum_{y_{1}, y_{2}}\left|\operatorname{Pr}\left[\begin{array}{l}
F\left(x_{1}\right)=y_{1} \\
F\left(x_{2}\right)=y_{2}
\end{array}\right]-\operatorname{Pr}\left[\begin{array}{l}
G\left(x_{1}\right)=y_{1} \\
G\left(x_{2}\right)=y_{2}
\end{array}\right]\right|
$$

Theoretical Results

If

$$
F_{A, B}(x)=(A x+B) \bmod \left(2^{64}+13\right) \bmod 2^{64}
$$

for $(A, B) \in_{U}\{0,1\}^{128}$ and F^{*} is a random function on $\{0,1\}^{64}$ with a uniform distribution then

$$
\left\|[F]^{2}-\left[F^{*}\right]^{2}\right\| \approx 2^{-58}
$$

If $\mathrm{DFC}_{A_{1}, B_{1}, \ldots, A_{6}, B_{6}}$ is a 6 -round Feistel cipher in which each round function can be written

$$
\mathrm{RF}_{i}(x)=\mathrm{CP}\left(\left(A_{i} x+B_{i}\right) \bmod \left(2^{64}+13\right) \bmod 2^{64}\right)
$$

for $\left(A_{1}, B_{1}, \ldots, A_{6}, B_{6}\right) \in_{U}\{0,1\}^{768}$ and C^{*} is a random permutation on $\{0,1\}^{128}$ with a uniform distribution then

$$
\left\|[\mathrm{DFC}]^{2}-\left[C^{*}\right]^{2}\right\| \approx 2^{-113}
$$

Let $\epsilon=\left\|[\mathrm{DFC}]^{2}-\left[C^{*}\right]^{2}\right\|$.
For any differential or linear distinguisher, if the complexity is far less than ϵ^{-1}, then the success probability is negligible.
\rightarrow no such attacks possible if a key is used less than 2^{92} times.

For any iterated attack of order 1, if the complexity is far less than $\epsilon^{-\frac{1}{2}}$, then the success probability is negligible.
\rightarrow no such attack possible if a key is used less than 2^{48} times.

Iterated Attack of Order 1

Input: a cipher AES, a complexity n, a test \mathcal{T}, an acceptance set A

1. for i from 1 to n do
(a) get a new (X, Y) pair with $Y=\operatorname{AES}(X)$ pair
(b) set $T_{i}=0$ or 1 with an expected value $\mathcal{T}(X, Y)$
2. if $\left(T_{1}, \ldots, T_{n}\right) \in A$ accept otherwise reject

The attack is successful if AES is likely to be accepted and a random permutation is likely to be rejected.

One Encryption

We let $\mathrm{RK}_{i}=\left(\mathrm{ARK}_{i}, \mathrm{BRK}_{i}\right)$.
The output of the decorrelation module is

$$
\left(\mathrm{ARK}_{i} \times R_{i}+\mathrm{BRK}_{i}\right) \bmod \left(2^{64}+13\right) \bmod 2^{64}
$$

The Confusion Permutation

We use a Round Table $\operatorname{RT}(0), \ldots, \operatorname{RT}(63)$.

We use two linear functions EF_{1} and EF_{2} and let $\mathrm{RK}_{0}=0$. $\mathrm{EF}_{1}(K)$ and $\mathrm{EF}_{2}(K)$ are used exactly 4 times.

Implementations

microprocessor	cycles-per-bit	clock-frequency	bits-per-second
AXP	4.36	600 MHz	137.6 Mbps
Pentium	5.89	200 MHz	34.0 Mbps
SPARC	6.27	170 MHz	27.1 Mbps

Motorola 6805 (smart cards): one encryption within 9.80 ms .

Security

Assumption:
$E n c_{E F_{1}}$ indistinguishable from a random permutation within 4 calls

- no differential or iterated attack of order 1 on 6 rounds
- weak keys for $\mathrm{ARK}_{2}=\mathrm{ARK}_{4}=\mathrm{ARK}_{6}=0$ (one out of 2^{192})
- exhaustive search on 80 keys within 22 years for $2^{56} \mathrm{bps}$ possible
- no timing attacks (with constant-time implementations)
- no photofinishing attack (no bitslice)
- weak when reduced downto 4 rounds

Errata

Last lines of EES in the extended abstract (p. 9):

> 78d56ced 94640d6e f0d3d37b e67008e1 86d1bf27 5b9b241d x $\underline{\text { eb64749a }} \mathrm{x}$

Eq. (26) in the extended abstract (p. 8) and Eq. (22) in the full report (p. 9):

$$
\mathrm{EES}=\mathrm{RT}(0)|\mathrm{RT}(1)| \ldots|\mathrm{RT}(63)| \underline{\mathrm{KD} \mid \mathrm{KC}}
$$

