
Decorrelated Fast Cipher

Serge Vaudenay

Ecole Normale Sup�erieure { CNRS

August 1998

First Advanced Encryption Standard Conference

Private Communications

PT - AES
CT

insecure -
CT

AES�1 - PT

K

?

K

?

secure -

message space: M = f0; 1g128

message block: PT 2 M

encryption function: AESK (permutation over M)



Security of Block Ciphers

Attacker A
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CT = AESK(PT)
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- K 0

- Random Secret Key K

-Random Tape !

! (secret) random permutation with a given (public) distribution

! we study the attack \on average" on the key

De�nition. AES is �-secure against a class CL of attack if
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Previous Work on Provable Security

[Shannon 49]: notion of perfect secrecy, impossibility of achieving it

[Wegman-Carter 81]: provably secure MAC with universal hashing

[Luby-Racko� 88]: the Feistel scheme with random round function

is \almost" a random permutation

[Biham-Shamir 90]: notion of di�erential cryptanalysis

[Lai-Massey-Murphy 91]: notion of Markov cipher

[Matsui 93]: notion of linear cryptanalysis

[Nyberg-Knudsen 92]: construction of cipher which is provably

resistant against di�erential cryptanalysis

[Matsui 96]: construction of MISTY which is provably resistant

against di�erential and linear cryptanalysis



Perfect Decorrelation

To the order 1:

8PT AESK(PT) has a uniform distribution

To the order 2:

8PT 6= PT0 (AESK(PT);AESK(PT
0)) has a uniform distribution

(among all (CT;CT0) such that CT 6= CT0)

To the order d:

8(PTi 6= PTj) (AESK(PT1); : : : ;AESK(PTd)) uniform

(among all (CT1; : : : ;CTd) such that CTi 6= CTj)

Resistance Against Di�erential Cryptanalysis

If AES has a perfect decorrelation to the order 2, then for all a 6= 0

and b 6= 0, we have

Pr
K;PT

[AESK(PT� a) = AESK(PT)� b] =
1

2128 � 1
:

! AES resists \on average" against any di�erential attack with a

�xed characteristic.



Basic Examples

The Vernam Cipher (One-time pad) [Vernam 26]

AESK(PT) = PT�K with K 2U f0; 1g
128

! perfect decorrelation to the order 1

Basic COCONUT Cipher

AESA;B(PT) = (A�PT)�B with (A;B) 2U GF(2128)��GF(2128)

! perfect decorrelation to the order 2

Design Strategy

� we do not need \perfect" decorrelation: we tolerate imperfect

decorrelation as long as we can quantify it

� we do not want GF(2m) multiplication: we want fast software

implementations

! use the integer multiplication

� we do not want ad hoc construction: we want to get

decorrelation on arbitrary cipher by adding a few

\decorrelation modules"

! we add the

FA;B(x) = (A� x+ B) mod p mod 2m

decorrelation module with (A;B) 2U f0; : : : ; 2
m � 1g2.



Decorrelation Distance

To each random mapping F from A to B we associate the

A2 � B2-matrix [F ]2: the pairwise distribution matrix.

Given x = (x1; x2) 2 A
2 and y = (y1; y2) 2 B

2, we have

[F ]2x;y = Pr[F (x1) = y1; F (x2) = y2]:

De�nition. Given two random functions F and G from A to B,

the pairwise decorrelation distance between F and G is

jj[F ]2 � [G]2jj = max
x1;x2

X
y1;y2

����Pr
�
F (x1) = y1

F (x2) = y2

�
� Pr

�
G(x1) = y1

G(x2) = y2

�����

Theoretical Results

If

FA;B(x) = (Ax+B) mod (264 + 13) mod 264

for (A;B) 2U f0; 1g
128 and F � is a random function on f0; 1g64

with a uniform distribution then

jj[F ]2 � [F �]2jj � 2�58:

If DFCA1;B1;:::;A6;B6
is a 6-round Feistel cipher in which each round

function can be written

RFi(x) = CP((Aix+Bi) mod (264 + 13) mod 264)

for (A1; B1; : : : ; A6; B6) 2U f0; 1g
768 and C� is a random

permutation on f0; 1g128 with a uniform distribution then

jj[DFC]2 � [C�]2jj � 2�113:



Security Results

Let � = jj[DFC]2 � [C�]2jj.

For any di�erential or linear distinguisher, if the complexity is far

less than ��1, then the success probability is negligible.

! no such attacks possible if a key is used less than 292 times.

For any iterated attack of order 1, if the complexity is far less than

��
1

2 , then the success probability is negligible.

! no such attack possible if a key is used less than 248 times.

Iterated Attack of Order 1

Input: a cipher AES, a complexity n, a test T , an acceptance set A

1. for i from 1 to n do

(a) get a new (X;Y ) pair with Y = AES(X) pair

(b) set Ti = 0 or 1 with an expected value T (X;Y )

2. if (T1; : : : ; Tn) 2 A accept otherwise reject

The attack is successful if AES is likely to be accepted and a

random permutation is likely to be rejected.



One Encryption
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The Round Function

We let RKi = (ARKi;BRKi).

The output of the decorrelation module is

(ARKi � Ri +BRKi) mod (264 + 13) mod 264

� CP

�

�

dec. � Ri

?
RKi

yr

yl

The Confusion Permutation

We use a Round Table RT(0); : : : ;RT(63).

?

+ � KD
? ?

� �� KC
?

RT � trunc6

?

yl

?

yr

�



The Expansion Function

We use two linear functions EF1 and EF2 and let RK0 = 0.

EF1(K) and EF2(K) are used exactly 4 times.

RKi
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?

Enc �
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�
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�

�

K

Implementations

microprocessor cycles-per-bit clock-frequency bits-per-second

AXP 4.36 600MHz 137.6Mbps

Pentium 5.89 200MHz 34.0Mbps

SPARC 6.27 170MHz 27.1Mbps

Motorola 6805 (smart cards): one encryption within 9.80ms.



Security

Assumption:

EncEF1 indistinguishable from a random permutation within 4 calls

� no di�erential or iterated attack of order 1 on 6 rounds

� weak keys for ARK2 = ARK4 = ARK6 = 0 (one out of 2192)

� exhaustive search on 80 keys within 22 years for 256bps possible

� no timing attacks (with constant-time implementations)

� no photo�nishing attack (no bitslice)

� weak when reduced downto 4 rounds

Errata

Last lines of EES in the extended abstract (p. 9):

78d56ced 94640d6e f0d3d37b e67008e1 86d1bf27 5b9b241dx

eb64749ax

Eq. (26) in the extended abstract (p. 8) and Eq. (22) in the full

report (p. 9):

EES = RT(0)jRT(1)j : : : jRT(63)jKDjKC


