E2 - A Candidate Cipher for AES

Masayuki Kanda, Shiho Moriai, Kazumaro Aoki, Hiroki Ueda, Miyako Ohkubo, Youichi Takashima, Kazuo Ohta, Tsutomu Matsumoto*

> e2@isl.ntt.co.jp http://info.isl.ntt.co.jp/e2/

Nippon Telegraph and Telephone Corporation (NTT) *Yokohama National University

- Overview
- Design
- Security
- Performance
- Conclusion

First AES Candidate Conference

Design Goals

- A 128-bit symmetric block cipher
- Key length of 128, 192, and 256 bits
- Security : secure against all known attacks and more
- Efficiency : faster than DES
- Flexibility : efficient implementations on various platforms

First AES Candidate Conference

Brute Force Attacks

First AES Candidate Conference

Brute Force Attacks

Differential Cryptanalysis

First AES Candidate Conference

First AES Candidate Conference

Linear Cryptanalysis

Higher Order Differential Attack

There are many attacks....

First AES Candidate Conference

First AES Candidate Conference

First AES Candidate Conference

E2 is proven to have sufficient security

First AES Candidate Conference

First AES Candidate Conference

E2 supports 128-bit block size and 128,192, 256-bit key sizes

First AES Candidate Conference

Design Goals (cont.)

- A 128-bit symmetric block cipher
- Key length of 128, 192, and 256 bits
- Security : secure against all known attacks and more
- Efficiency : faster than DES
- Flexibility : efficient implementations on various platforms

Efficiency and Flexibility of E2

First AES Candidate Conference

Efficiency and Flexibility of E2

First AES Candidate Conference

- Overview
- <u>Design</u>
- Security
- Performance
- Conclusion

First AES Candidate Conference

High-level Structure of E2

Plaintext P Key K Key Scheduling k_2 Part LA12 ×15 1516 Ciphertext C

First AES Candidate Conference

High-level Structure of E2

Plaintext P Key K Data randomizing Key part Kg Scheduling Part ×12 ×15 ×16 Ciphertext C First AES Candidate Conference

High-level Structure of E2

Data Randomizing Part Framework

- *IT*-Function (Initial Transformation)
- Feistel structure
- *FT*-Function
 (Final Transformation)

First AES Candidate Conference

Design Rationale of Framework

- Feistel structure
 - Widely known and thought to offer long-term security
 - Symmetric encryption and decryption
 - Evaluation of security against DC and LC has been well studied
- *IT*-Function and *FT*-Function
 - Offer a proactive design and hinder later attacks

Design Rationale of Framework

- Feistel structure
 - Widely known and thought to offer long-term security
 - Symmetric encryption and decryption
 - Evaluation of security against DC and LC has been well studied
- IT-Function and FT-Function
 Offer a proactive design and hinder later attacks

Design Rationale of F-Function (1)

- Structures for which security evaluation against DC and LC is easy
 - 1-round SPN structure (e.g., DES)
 - Recursive structure (e.g., MISTY)
 - 2-round SPN structure
- Comparing the speed at the same level of security, we decided to adopt 2-round SPN structure

Design Rationale of F-Function (1)

- Structures for which security evaluation against DC and LC is easy
 - 1-round SPN structure (e.g., DES)
 - Recursive structure (e.g., MISTY)
 - 2-round SPN structure
- Comparing the speed at the same level of security, we decided to adopt 2-round SPN structure

Design Rationale of F-Function (1)

- Structures for which security evaluation against DC and LC is easy
 - 1-round SPN structure (e.g., DES)
 - Recursive structure (e.g., MISTY)
 - 2-round SPN structure
- Comparing the speed at the same
 level of security, we decided to adopt
 2-round SPN structure

Evaluated using practical measure

Practical Measure for Feistel Cipher

- General case [Knudsen (FSE'93)]
 - Number of rounds: R = 2r, 2r + 1
 - Evaluation: $UDCP^{(R)} = p^r$, $ULCP^{(R)} = q^r$
- Bijective case [Kanda et al. (SAC'98)]
 - ◆ Number of rounds: *R* = 3*r*, 3*r* + 1, 3*r* + 2
 - Evaluation: *UDCP* $(R) = p^{2r}$, *ULCP* $(R) = q^{2r}$ (R = 3r, 3r + 1)

$$UDCP^{(R)} = p^{2r+1}, \quad ULCP^{(R)} = q^{2r+1}$$

$$(R = 3r + 2)$$

Note: *p*, *q* : Maximum differential and linear prob. of round function

First AES Candidate Conference

Practical Measure for Feistel Cipher

General case [Knudsen (FSE'93)]

- Number of rounds: R = 2r, 2 When R = 6
- Evaluation: $UDCP^{(R)} = p^r$, $UDCP = p^3$ [General]

Bijective case [Kanda et a UDCP = p⁴ [Bijective]

- Number of rounds: *R* = 3*r*, 3*r* + 1, 3*r* + 2
- Evaluation: *UDCP* $(R) = p^{2r}$, *ULCP* $(R) = q^{2r}$ (R = 3r, 3r + 1)

UDCP $(R) = p^{2r+1}$, ULCP $(R) = q^{2r+1}$ (R = 3r + 2)

Note: *p*, *q* : Maximum differential and linear prob. of round function

First AES Candidate Conference

Design Rationale of F-Function (2)

First AES Candidate Conference

F - Function Overview

First AES Candidate Conference

Design Rationale of P-Function

- Maximize minimum number of active s-boxes
 - Minimize upper bound of maximum differential / linear prob. of round function
- Use only XOR operation
 - Simple construction
 - Efficient implementations in both software and hardware
- Minimize gate counts required for hardware

Design Rationale of P-Function

- Maximize minimum number of active s-boxes
 - Minimize upper bound of maximum differential / linear prob. of round function
- Use only XOR operation
 - Simple construction
 - Efficient implementations in both software and hardware
- Minimize gate counts required for hardware

of Active s-boxes = 3 (Bad P-Function)

of Active s-boxes ≥ 5 (E2 P-Function)

First AES Candidate Conference

of Active s-boxes \geq 5 (cont.)

First AES Candidate Conference

Design Rationale of s-box

1. Suitability for various platforms

2. No trap-doors

3. No vulnerability to known attacks
Rationale 1 : Suitability for Various Platforms

Table-lookup

 efficiency does not depend on processors with various word-lengths (8, 16, 32, 64 bits)

- One 8-by-8-bit s-box
 - consideration for 8-bit smart card implementations

Rationale 2 : No trap-doors

• Design principle is publicly given

 Based on well-known mathematical functions

Candidates of s-box

• $s: GF(2)^8 \longrightarrow GF(2)^8$; $x \longmapsto s(x) = g(f(x))$

 candidates of f(x) and g(x)

 I. x^k in $GF(2^8)$ $\forall k \in GF(2^8), k \neq 1$

 II. u^x in $Z/(2^8+1)Z$ $\forall u \in Z/(2^8+1)Z, u \neq 0,1$

 III. x^k in $Z/(2^8+1)Z$ $\forall k \in Z/(2^8+1)Z, k \neq 1$

 IV. ax+b in $Z/(2^8)Z$ $\forall a, b \in Z/(2^8)Z$

 V. ax+b in $Z/(2^8+1)Z$ $\forall a, b \in Z/(2^8+1)Z, k \neq 1$

 V. ax+b in $Z/(2^8+1)Z$ $\forall a, b \in Z/(2^8+1)Z, k \neq 1$

Note that $256 \in \mathbb{Z}/(2^8+1)\mathbb{Z}$ corresponds to $0 \in \mathbb{GF}(2)^8$.

Rationale 3 : No Vulnerability to Known Attacks

 Considered Attacks Differential cryptanalysis [BS90] Linear cryptanalysis [M93] Higher order differential attack [JK97] Interpolation attack [JK97] Partitioning cryptanalysis [HM97]

How to select s-box

• $s: GF(2)^8 \longrightarrow GF(2)^8$; $x \mapsto s(x) = g(f(x))$ I. $f(x) = x^e$ in $GF(2^8)$ IV. g(y) = ay + b in $Z/(2^8)Z$

> <u>Composition of functions</u> <u>from different groups</u>

expected to be effective in thwarting algebraic attacks, e.g., interpolation attack

- $s: \operatorname{GF}(2)^{8} \longrightarrow \operatorname{GF}(2)^{8} ; x \mapsto s(x) = g(f(x))$ $f(x) = x^{e} \quad \text{in } \operatorname{GF}(2^{8})$ $g(y) = ay + b \quad \text{in } \mathbb{Z}/(2^{8})\mathbb{Z}$
- Criteria for the considered 5 attacks
- Bijectivity
- Hamming weight of a, b
- Differential-linear prob.

First AES Candidate Conference

coeff₂⁸ s : large? Interpolation Attack

First AES Candidate Conference

First AES Candidate Conference

First AES Candidate Conference

 $s: \mathbf{GF}(2)^8 \longrightarrow \mathbf{GF}(2)^8 ; x \mapsto s(x) = g(f(x))$ $f(x) = x^e \quad \text{in } \mathbf{GF}(2^8)$ $g(y) = ay + b \quad \text{in } \mathbb{Z}/(2^8)\mathbb{Z}$

e = 127, 191, 223, 239, 247, 251, 253, 254(a, b) = (97, 97), (97, 225), (225, 97), (225, 225)

First AES Candidate Conference

 $s: \mathbf{GF}(2)^8 \longrightarrow \mathbf{GF}(2)^8 ; x \mapsto s(x) = g(f(x))$ $f(x) = x^e \quad \text{in } \mathbf{GF}(2^8)$ $g(y) = ay + b \quad \text{in } \mathbb{Z}/(2^8)\mathbb{Z}$

e = 127, 191, 223, 239, 247, 251, 253, 254(a, b) = (97, 97), (97, 225), (225, 97), (225, 225)

(*a*, *b*, *e*) = (97, 225, 127) was selected.

First AES Candidate Conference

High-level Structure of E2

Design Rationale of IT / FT-Functions

Goal: To protect *E2* against future advances in cryptanalysis *IT*-Function: avoid linking plaintext to inputs to first *F*-Function *FT*-Function: avoid linking ciphertext to outputs from last *F*-Function

IT-Function and FT-Function Overview

First AES Candidate Conference

Design Rationale of IT / FT-Functions (cont.)

multiplication ⊗

- in order for each bit of the subkey to change many bits of output
- four 32-bit integer multiplications
- OR ⊕
 - improves the level of confusion by mixing incompatible group operations
- byte permutation BP
 - links different subblocks

IT-Function and FT-Function Overview

First AES Candidate Conference

Deriving subkeys or master key from other subkeys is computationally infeasible

First AES Candidate Conference

Key Scheduling Part (2)

Key Scheduling Part (2)

Key Scheduling Part (2)

First AES Candidate Conference

- Overview
- Design
- <u>Security</u>
- Performance
- Conclusion

First AES Candidate Conference

Security of Data Randomizing Part

- s-box is designed to provide reasonable security against
 - Differential cryptanalysis
 - Linear cryptanalysis
 - Higher order differential attack
 - Interpolation attack, etc.

Properties of s-box

	Criteria	Value	Related Attacks				
	bijectivity	OK	Differential/Linear				
	$w_{\rm H}(a)$	$3 \le w_{\rm H}(a) \le 5$					
	$W_{\rm H}(b)$	$3 \le w_{\rm H}(b) \le 5$					
	ρ_s	2 -4.67	Differential				
	q_{s}	2 -4.38	Linear				
	r _s	2 -2.59	(Differential-linear)				
	deg s	7	Higher order differential				
	coeff ₂₈ s	254	Interpolation				
	coeff _p s	254	Interpolation				
First AES Candidate Conference p : prime, 256 < p < 512 Copyright NTT 199							

Security of Data Randomizing Part (cont.)

- s-box is designed to provide reasonable security against DC, LC, higher order differential attack, interpolation attack, etc.
- 9-round E2 without IT / FT-Functions has sufficient security against DC and LC
- IT / FT-Functions are added for "insurance policy"
 - E2 has 3-round margin + IT / FT-Functions

Security of Key Scheduling Part

- No known weak keys
- No known equivalent keys
- No known complementation properties

- Overview
- Design
- Security
- <u>Performance</u>
- Conclusion

First AES Candidate Conference

Current Software Performance

Platform	Language	Key length (bits)	Key setup (clocks)	Encryption Decryption (clocks/block) (bits/sec)	
Intel Pentium Pro (200MHz)	ANSI C (Borland C++5.02)	128 192 256	2,076 2,291 2,484	711	36.0 M
	Assembly	all		420	61.0 M
Hitachi H8 / 300 (5MHz) 8bit CPU for smart card	Assembly	128 192 256	14,041 15,284 16,518	6,374	100.5 k
DEC 21164A (600MHz)	Assembly	all		600	128.0 M

E2 requires no algorithm setup. The results contain no API overhead.

First AES Candidate Conference

Current Hardware Performance

CMOS 0.25 μm cell based library

- 1 Gbits/sec (typical)
- 482 Mbits/sec
- Total 127k gates
 - including key scheduling, control logic and buffers
- Not fully optimized

- Overview
- Design
- Security
- Performance
- Conclusion

First AES Candidate Conference

E2 is

First AES Candidate Conference

E2 is

• Secure : secure against all known attacks with enough margin

E2 is

- Secure : secure against all known attacks with enough margin
- Fast : faster than DES

E2 is

- Secure : secure against all known attacks with enough margin
- Fast : faster than DES
- Flexible: efficient implementations on various platforms

http://info.isl.ntt.co.jp/e2/

Latest information is available.

e-mail: e2@isl.ntt.co.jp

First AES Candidate Conference