The RC6 Block Cipher: A simple fast secure AES proposal

Ronald L. Rives $\mathcal{M I T}$
Matt Robshaw RSALAbs
Ray Sidney RSALabs
Yiqun Lisa Yin RSALabs

Outline

- De sign Philos opfy
- Description of RC6
- Implementation Results
- Security
- Conclusion

De sign Philos ophy

- Leverage our experience witf RC5: use data-dependent rotations to acfieve a figfr level of security.
- Adapt RC5 to meet $\mathcal{A E S}$ requirements
- Take advantage of a new primitive for increased security and efficiency: 32×32 multiplication, wficfiexecutes quickly on modern processors, to compute rotation amounts.

Description of RC6

Description of RC6

- RC6-w/r/b parameters:
- Word size in 6its: $\quad w(32)(\lg (w)=5)$
- Number of rounds: $\quad r$ (20)
- Number of key bytes: 6 (16, 24, or 32)
- Key Expansion:
- Produces array S [0...2r+3] of w-6it round keys.
- Encryption and Decryption:
- Input/Output in 32-6itregisters $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$

RC6 Primitive Operations

$$
\begin{gathered}
\text { RC6 Encryption (Generic) } \\
\mathcal{B}=\mathcal{B}+\mathcal{S}[0] \\
\mathcal{D}=\mathcal{D}+\mathcal{S}[1] \\
\text { for } i=1 \text { to rio } \\
\left\{\begin{array}{l}
t=(\mathcal{B} x(2 \mathcal{B}+1)) \ll \mathcal{L g}(w) \\
u=(\mathcal{D} \chi(2 \mathcal{D}+1)) \ll \lg (w) \\
\mathcal{A}=((\mathcal{A} \oplus t) \ll u)+S[2 i] \\
\mathcal{C}=((\mathcal{C} \oplus u) \ll t)+\mathcal{S}[2 i+1] \\
(\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D})=(\mathcal{B}, \mathcal{C}, \mathcal{D}, \mathcal{A}) \\
\} \\
\mathcal{A}=\mathcal{A}+\mathcal{S}[2 r+2] \\
\mathcal{C}=\mathcal{C}+\mathcal{S}[2 r+3]
\end{array}\right.
\end{gathered}
$$

RC6 Encryption (for $\mathcal{A E S}$)
$\mathcal{B}=\mathcal{B}+\mathcal{S}[0]$
$\mathcal{D}=\mathcal{D}+\mathcal{S}[1]$
for $i=1$ to 20 do
f
$t=(\mathcal{B} \chi(2 \mathcal{B}+1)) \ll 5$
$u=(\mathcal{D} \chi(2 \mathcal{D}+1)) \lll 5$
$\mathcal{A}=((\mathcal{A} \oplus t) \lll u)+S[2 i]$
$C=((C \oplus u) \ll t)+S[2 i+1]$
$(\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D})=(\mathcal{B}, \mathcal{C}, \mathcal{D}, \mathcal{A})$
\}
$\mathcal{A}=\mathcal{A}+S[42]$
$\mathcal{C}=\mathcal{C}+S[43]$

Key Expansion (Same as RC5's)

- Input: array L[0...c-1] of input key words
- Output: array S[0...43] of round key words
- Procedure:

S[0]=0xB7E15163
for $i=1$ to 43 do $S[i]=S[i-1]+0 \times 9 \mathfrak{E} 3779 \mathcal{B 9}$
$\mathcal{A}=\mathcal{B}=i=j=0$
for $s=1$ to 132 do

$$
\{\mathcal{A}=\mathcal{S}[i]=(S[i]+\mathcal{A}+\mathcal{B}) \lll \mathcal{3}
$$

$$
\mathcal{B}=\mathcal{L}[j]=(\mathcal{L}[j]+\mathcal{A}+\mathcal{B}) \lll(\mathcal{A}+\mathcal{B})
$$

$i=(i+1) \bmod 44$ $j=(j+1) \bmod c \quad\}$

$$
\begin{aligned}
& \text { RC6 Decryption (for } \mathcal{A E S} \text {) } \\
& c=c \cdot S[43] \\
& \mathcal{A}=\mathcal{A}-S[42] \\
& \text { for } i=20 \text { downto } 1 \text { do } \\
& \text { f } \\
& (\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D})=(\mathcal{D}, \mathcal{A}, \mathcal{B}, \mathcal{C}) \\
& u=(\mathcal{D} x(2 \mathcal{D}+1)) \ll 5 \\
& t=(\mathcal{B} x(2 \mathcal{B}+1)) \ll 5 \\
& C=((C \cdot S[2 i+1]) \ggg t) \oplus u \\
& \mathcal{A}=((\mathcal{A}-\mathcal{S}[2 i]) \ggg \boldsymbol{u}) \oplus t \\
& \text { \} } \\
& \mathcal{D}=\mathcal{D}-\mathcal{S}[1] \\
& \mathcal{B}=\mathcal{B}-\mathcal{S}[0]
\end{aligned}
$$

From RC5 to RC6 in seveneasy steps

(1) Start with RC5

RC5 encryption inner loop:

$$
\begin{aligned}
& \text { for } i=1 \text { to } r \text { do } \\
& \quad\left\{\begin{array}{l}
\mathcal{A}=((\mathcal{A} \oplus \mathcal{B}) \lll \mathcal{B})+\mathcal{S}[i] \\
\quad(\mathcal{A}, \mathcal{B})=(\mathcal{B}, \mathcal{A})
\end{array}\right.
\end{aligned}
$$

Can RC5 be strengthened by faving rotation amounts depend on all the bits of \mathcal{B} ?

Better rotation amounts?

- Modulo function?

Use low-order bits of ($\mathcal{B} \bmod d)$
Too slow!

- Line ar function?

Ole figh-order bits of ($c \not \subset \mathcal{B})$ Hard to pick c well!

- Quadratic function? Use figh-order 6 its of $(\mathcal{B} \chi(2 \mathcal{B}+1))$ Just right!
$\mathcal{B} \chi(2 \mathcal{B}+1)$ is one-to-one $\bmod 2^{w}$
Proof: $\mathcal{B y}$ contradiction. If $\mathcal{B} \neq C$ but $\mathcal{B} \times(2 \mathcal{B}+1)=\mathcal{C} \times(2 \mathcal{C}+1)\left(\bmod 2^{w}\right)$ then
$(\mathcal{B}-\mathcal{C}) \times(2 \mathcal{B}+2 \mathcal{C}+1)=0 \quad\left(\bmod 2^{w v}\right)$ $\mathcal{B u t}(\mathcal{B}-\mathcal{C})$ is nonzero and $(2 \mathcal{B}+2 \mathcal{C}+1)$ is odd; their product cant be zero! \square

Corollary:
\mathcal{B} uniform $\rightarrow \mathcal{B} \times(2 \mathcal{B}+1)$ uniform
(and figh-order bits are uniform too!)

$\mathcal{H i g h}$-order 6 its of $\mathcal{B} \chi(2 \mathcal{B}+1)$

- The figh-order bits of

$$
f(\mathcal{B})=\mathcal{B} \chi(2 \mathcal{B}+1)=2 \mathcal{B}^{2}+\mathcal{B}
$$

depend on all the bits of \mathcal{B}.

- Let $\mathcal{B}=\mathcal{B}_{31} \mathcal{B}_{30} \mathcal{B}_{29} \ldots \mathcal{B}_{1} \mathcal{B}_{0}$ in binary.
- Flipping 6 it i of input \mathcal{B}
- Leaves bits 0 ...i-1 of $f(\mathcal{B})$ unchanged,
- Flips bit i of $f(\mathcal{B})$ with probability one,
- Flips bit j of $f(\mathcal{B})$, for $j>i$, with probability approximately $1 / 2$ (1/4..1),
- is likely to change some figh-order bit.

(2) Quadratic Rotation Amounts

$$
\begin{aligned}
& \text { for } i=1 \text { to } r \text { do } \\
& \qquad \begin{aligned}
t & =(\mathcal{B} \times(2 \mathcal{B}+1)) \lll 5 \\
\mathcal{A} & =((\mathcal{A} \oplus \mathcal{B}) \lll t)+S[i] \\
& (\mathcal{A}, \mathcal{B})=(\mathcal{B}, \mathcal{A})
\end{aligned}
\end{aligned}
$$

But now much of the output of this nice multiplication is being wasted...

(3) Use t, not \mathcal{B}, as xor input

for $i=1$ to r do $\{$
$t=(\mathcal{B} x(2 \mathcal{B}+1)) \lll 5$
$\mathcal{A}=((\mathcal{A} \oplus t) \ll t)+\mathcal{S}[i]$
$(\mathcal{A}, \mathcal{B})=(\mathcal{B}, \mathcal{A})$ \}
\mathcal{N} ow $\mathcal{A E S}$ requires $128-6$ it 6 locks. We could use two 64-bit registers, but 64- Git operations are poorly supported with typic al C compile rs...

(4) Do two RC5's in parallel

Use four 32-6it refs $(\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D})$, and do
$\mathcal{R C 5}$ on $(\mathcal{C}, \mathcal{D})$ in parallel $[$ with $\mathcal{R C 5}$ on $(\mathcal{A}, \mathcal{B})$:
for $i=1$ to r do \{

$$
t=(\mathcal{B} x(2 \mathcal{B}+1)) \ll 5
$$

$$
\mathcal{A}=((\mathcal{A} \oplus t) \ll t)+S[2 i]
$$

$$
(\mathcal{A}, \mathcal{B})=(\mathcal{B}, \mathcal{A})
$$

$$
u=(\mathcal{D} x(2 \mathcal{D}+1)) \ll 5
$$

$$
C=((C \oplus u) \ll u)+S[2 i+1]
$$

$$
(\mathcal{C}, \mathcal{D})=(\mathcal{D}, \mathcal{C})
$$

\}

(5) Mix up data between copies

S witch rotation amounts between copies, and cyclically permute registers instead of swapping:
for $i=1$ to r do \{

$$
\begin{aligned}
& t=(\mathcal{B} x(2 \mathcal{B}+1)) \ll 5 \\
& u=(\mathcal{D} x(2 \mathcal{D}+1)) \ll 5 \\
& \mathcal{A}=((\mathcal{A} \oplus t) \lll u)+S[2 i] \\
& \mathcal{C}=((\mathcal{C} \oplus u) \ll t+\mathcal{t}[2 i+1] \\
& (\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D})=(\mathcal{B}, \mathcal{C}, \mathcal{D}, \mathcal{A})
\end{aligned}
$$

One Round of RC6

(6) Add Pre - and Post-Whitening

$$
\begin{aligned}
& \mathcal{B}=\mathcal{B}+\mathcal{S}[0] \\
& \mathcal{D}=\mathcal{D}+\mathcal{S}[1] \\
& \text { for } i=1 \text { to } r \text { do } \\
& \text { \{ } \\
& t=(\mathcal{B} \chi(2 \mathcal{B}+1)) \ll 5 \\
& u=(\mathcal{D} x(2 \mathcal{D}+1)) \ll 5 \\
& \mathcal{A}=((\mathcal{A} \oplus t) \ll u)+S[2 i] \\
& \mathcal{C}=((\mathcal{C} \oplus u) \ll t)+S[2 i+1] \\
& (\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D})=(\mathcal{B}, \mathcal{C}, \mathcal{D}, \mathcal{A}) \\
& \mathcal{A}=\mathcal{A}+S[2 r+2] \\
& \mathcal{C}=\mathcal{C}+S[2 r+3]
\end{aligned}
$$

$$
\begin{aligned}
& \text { (7) Set } r=20 \text { for high security } \\
& \mathcal{B}=\mathcal{B}+\mathcal{S}[0] \quad \text { (based on analyse is) } \\
& \mathcal{D}=\mathcal{D}+\mathcal{S}[1] \\
& \text { for } i=1 \text { to } 20 \text { do } \\
& \text { \{ } \\
& t=(\mathcal{B} x(2 \mathcal{B}+1)) \ll 5 \\
& u=(\mathcal{D} x(2 \mathcal{D}+1)) \ll 5 \\
& \mathcal{A}=((\mathcal{A} \oplus t) \ll u)+S[2 i] \\
& \mathcal{C}=((\mathcal{C} \oplus u) \ll t)+S[2 i+1] \\
& (\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D})=(\mathcal{B}, \mathcal{C}, \mathcal{D}, \mathcal{A}) \\
& \text { \} } \\
& \mathcal{A}=\mathcal{A}+\mathcal{S}[42] \\
& C=C+S[43]
\end{aligned}
$$

RC6 Implementation Results

CPU Cycles / Operation

Iava Borland \mathcal{C} Assembly
$\begin{array}{llll}\text { Setup } & 110000 \quad 2300 & 1108\end{array}$

Encrupt 16200
616
254
Decrupt 16500
566
254
Less than two clocks per bit of plaintext!

Operations/Second (200 MHz)

	gava	Borland C	
Assembly			
$\underline{\text { Setup }}$	1820	86956	180500
$\frac{\text { Encrypt }}{}$	12300	325000	787000
$\underline{\text { Decrupt }}$	12100	353000	788000

Encryption Rate (200 MAHz)

MegaBytes / second
MegaBits / second
gava Borland C Assembly
$\begin{array}{llll}\text { Encrupt } & 0.197 & 5.19 & 12.6\end{array}$

	1.57	41.5
Decrypt	0.194	5.65
1.55	45.2	100.8
		10.6
Over 100 Megabits / second!		

Onan8-bit processor

- On an Intel MCS 51 (1 Mhzclock)
- Encrypt/decrypt at 9.2 Kbits/second (13535 cycles/block; from actual implementation)

Key setup in 27 milliseconds

- Only 176 bytes needed for table of round keys.
Fits on smart card (<256 bytes RAM).

Custom RC6 IC

- 0.25 micron CMOS process
- One round/clock at 200 MHz
- Conventional multiplier designs
- $0.05 \mathrm{~mm}^{2}$ of silicon
- 21 milliwatts of power
- Encrypt/decrypt at 1.3 Gbits/second
- With pipelining, cango faster, at cost of more area and power

RC6 Security Analys is

Analysis procedures

- Intensive analysis, based on most effective known attacks (e.g. line ar and differential cryptanalysis)
- Analyze not only RC6, but also several "simplified" forms (e.g. with no quadratic function, no fixed rotation by 5 bits, etc..)

Line ar analysis

- Find approximations for r-2 rounds.
- Two ways to approximate $\mathcal{A}=\mathcal{B} \lll \mathcal{C}$
- with one bit each of $\mathcal{A}, \mathcal{B}, \mathcal{C}$ (type I)
- with one bit each of \mathcal{A}, \mathcal{B} only (type II)
- each fave bias 1/64; type I more useful
$-\mathcal{N}$ on-zero bias across $f(\mathcal{B})$ only when input 6 it $=$ output 6 it. (Best for ls 6.$)$
- Also include effects of multiple linear approximations and line ar fulls.

Security against linear attacks

Estimate of number of plaintext/ciphertext pairs required to mount a line ar attack. (Only 2^{128} such pairs are available.)

Differential analys is

- Considers use of (iterative and noniterative) (r-2)-round differentials as well as (r-2)-round characteristics.
- Considers two notions of "difference":
- exclusive -or
- subtraction (better!)
- Combination of quadratic function and fixed rotation by 5 bits very good at thwarting differential attacks.

An iterative RC6 differential

$-\mathcal{A}$	\mathcal{B}	\mathcal{C}	\mathcal{D}
$1 \ll 16$	$1 \ll 11$	0	0

$1 \ll 11$	0	0	0
0	0	0	$1 \ll s$
0	$1 \ll 26$	$1 \ll s$	0

$1 \ll 26 \quad 1 \ll 21 \quad 0 \quad 1 \ll v$
$1 \ll 21 \quad 1 \ll 16 \quad 1 \ll v \quad 0$
$1 \ll 16 \quad 1 \ll 11 \quad 0 \quad 0$

- Probability $=2^{-91}$

Security against

differential attacks

Estimate of number of plaintext pairs required to mount a differential attack.
(Only 2^{128} such pairs are available.)

Security of Key Expansion

- Key expansion is identical to that of RC5; no known weaknesses.
- No known we ak keys.
- No known related-key attacks.
- Round keys appear to be a "random" function of the supplied key.
- Bonus: Key expansion is quite "one. way"-.-difficult to infer supplied key from round keys.

Conclusion

- RC6 more than meets the requirements for the $\mathcal{A E S}$; it is
- simple,
- fast, and
- secure.
- For more information, including copy of these slides, copy of RC6 description, and security analysis, see www.rsa.com/rsalabs/aes

