
1

Twofish
A Block Encryption Algorithm

Bruce Schneier, Counterpane Systems
John Kelsey, Counterpane Systems

Doug Whiting, Hi/fn
David Wagner, UC Berkeley

Chris Hall, Counterpane Systems
 Niels Ferguson, Counterpane Systems

http://www.counterpane.com/twofish.html

2

T wofish Overview

■ 128-bit block Feistel network
■ 16 rounds (nominal)
■ Pre- and post-whitening
■ Key-dependent S-boxes
■ Key schedule computable “on-the-fly”
■ Wide range of speed/cost tradeoffs.

2

3

T wofish Performance S ampler

■ Encrypt/decrypt data at 285 clocks/block on a
Pentium Pro CPU (i.e., 90 Mbit/sec at 200 MHz),
after a 12700 clock key setup.

■ Encrypt/decrypt data at 860 clocks/block on a
Pentium Pro, after a 1250 clock key setup.

■ Almost identical throughput on Pentium CPU.
■ Encrypt/decrypt at 26,500 clock cycles/block on 6805

after a 1750 clock key setup (20 Kbit/sec at 4 MHz).
■ Encrypt/decrypt at 80 Mbits/sec with 14K gates,1200

Mbits/sec with 30K gates.

4

T wofish Round Function Block Diagram

Sbox 0

Sbox 1

Sbox 2

Sbox 3

MDS

Sbox 0

Sbox 1

Sbox 2

Sbox 3

MDS

PHT

Subkeys

<<< 8

X0 X1 X2 X3

<<<1

>>> 1

3

5

Building Block: Keyed S -boxes

■ Twofish builds four bijective key-dependent
8x8-bit S-boxes using a key/permutation
“sandwich” (shown for a 128-bit key):

s0(x) = q1[q0[q0[x] ^ k0] ^ k1]

s1(x) = q0[q0[q1[x] ^ k2] ^ k3]

s2(x) = q1[q1[q0[x] ^ k4] ^ k5]

s3(x) = q0[q1[q1[x] ^ k6] ^ k7]

where q0,q1 are two fixed 8-bit permutations.

6

Why Keyed S -boxes?

■ Fixed S-boxes (e.g., DES) allow attackers to
study S-boxes and find weak points.

■ With key-dependent S-boxes, attacker
doesn’t know what the S-boxes are.

■ Defense against “unknown attacks.”
■ Complexity of keyed S-box depends on the

length of the key.
■ Downside: takes longer to set up for a key,

since S-boxes have to be built for each key.

4

7

What About Weak S -boxes?

■ Based on two fixed S-boxes with strong
properties.

■ Keyed S-boxes can be tested for desired
security properties:
• Exhaustive testing for 128-bit keys.
• Monte Carlo testing for 192- and 265-bit

keys.

8

Building Block: MDS Matrix

■ 4x4 matrix multiply over GF(256): v = M u .
■ Maximum Distance Separable (MDS) property

guarantees that there are at least five nonzero bytes
in u,v.

■ Used as the main diffusion mechanism in Twofish.
■ Minimum binary Hamming weight output difference

for single byte input difference = 8 bits.
■ Preserves MDS property for single byte input

difference even after single-bit “rotate right” of v
(treated as a 32-bit quantity).

5

9

Building Block: PHT

■ Pseudo-Hadamard Transform: simple, fast,
reversible diffusion mechanism.

 a’ = a + b
 b’ = a + b*2

■ Twofish uses 32-bit PHT on pairs on MDS
outputs.

10

Building Block: 1-bit Rotation

■ Used in each Twofish round to break up the
byte-aligned nature of other operations.

■ Each of the four 32-bit quantities in the block
is used once in each of the eight possible bit
positions (mod 8).

6

11

Key S chedule

■ Design the key schedule for the cipher
■ Reuse the same primitives
■ Use all key Bytes in the same way
■ Make it hard to attack both the S-box and the

subkey generation processes

12

Key S chedule

■ Key-dependent S-boxes
■ Round subkeys:

• Based on same construction as key-
dependent S-boxes.

• Can be precomputed or constructed on the
fly.

■ Every key bit affects every round.

7

13

S etup time vs . T hroughput

■ Basic tradeoffs involve how much of the S-
box and MDS matrix multiply we
“precompute”.

■ The more we precompute, the faster we can
encrypt, but setup takes longer.

■ Several levels of trade-offs available.

14

T wofish In S oftware

■ Algorithm uses only “simple” RISC operations
and table lookups (i.e., runs equally fast on
Pentium and Pentium Pro CPU families).

■ Fastest version requires less than 5K bytes of
table space per key.

■ Code fits easily in cache of modern CPUs (less
than 2500 bytes each for encryption and
decryption on a Pentium Pro).

■ Encryption/decryption throughput is
independent of key size (for long key setup).

8

15

Key S etup T ime vs . T hroughput

■ Basic tradeoffs involve how much of the S-
box and MDS multiply we “precompute”.

■ More precomputation: faster encryption,
longer setup.

■ Many possible levels of precomputation:
• Zero -- no S-box precomputation
• Minimal -- precompute part of S-box
• Partial -- precompute full S-box
• Full -- precompute full S-box plus MDS
• Compiled -- Full + subkey-specific

compiled code

16

T wofish in C on Pentium or Pentium Pro

Keying RAM Key Setup Clocks Clocks to

Option bytes 128-bit 192-bit 256-bit Encrypt

Full 4500 8000 11200 15700 600

Partial 1400 7100 9700 14100 800

Minimal 1400 3000 7800 12200 1130

Zero 200 2450 3200 4000 1750*

* clocks to encrypt with 128-bit key (larger keys are slower)

9

17

T wofish in AS M on Pentium or Pentium
Pro

Keying RAM Key Setup Clocks Clocks to

Option bytes 128-bit 192-bit 256-bit Encrypt

Compiled 4500 12700 15400 18100 285

Full 4500 7800 10700 13500 315

Partial 1400 4900 7600 10500 460

Minimal 1400 2400 5300 8200 720

Zero 200 1250 1600 2000 860*

* clocks to encrypt with 128-bit key (larger keys are slower)

18

S peed: Key S etup + Encryption

■ 16 bytes - 140 clocks/byte
■ 64 bytes - 73 clocks/byte
■ 256 bytes - 48 clocks/byte
■ 1K bytes - 27 clocks/byte
■ 4K bytes - 21 clcoks/byte
■ 16K bytes - 19 clocks/byte
■ 64K bytes - 18 clocks/byte

10

19

T wofish on S martcards

■ “On-the-fly” key schedule implies no RAM
needed to hold subkeys, small key setup time
(less than 1/10 of block encrypt time).

■ If 160 bytes of RAM available to hold
precomputed subkeys, throughput doubles.

■ q0,q1 ROM tables = 512 bytes, no RAM
needed for S-boxes

■ Compute MDS matrix explicitly, with several
possible speed-space tradeoffs.

20

T wofish on a 6805

Notes:
■ RAM includes 32 bytes for block and 128-bit key.
■ ROM includes code and tables
■ If key is in EEPROM, then only 36 RAM bytes are required.

RAM
(bytes)

ROM
(bytes)

Clocks per
block

Throughput
@ 4MHz

60 2200 26500 19.3 Kbps

60 2000 35000 14.6 Kbps

60 1760 37100 13.8 Kbps

11

21

T wofish on Even Less Powerful Platforms

■ q0,q1 can be calculated from eight 16-
element permutations.

■ All subkeys can be calculated as needed.
■ No table storage required.
■ This will be very slow.

22

T wofish in Hardware

■ Wide variety of area-speed tradeoffs.
■ Performance estimates assume “commodity”

0.35 micron CMOS.
■ No custom design required for high

performance (even higher performance
possible for custom layouts).

■ Highest throughput achievable in ECB or
interleaved chaining mode.

12

23

T wofish Hardware E s timates

Gate
count

Clocks
per block

Interleave
level

Clock
Speed

Throughput
(Mbits/sec)

14000 64 1 40 MHz 80

19000 32 1 40 MHz 160

23000 16 1 40 MHz 320

26000 32 2 80 MHz 640

28000 48 3 120 MHz 960

30000 64 4 150 MHz 1200

80000 16 1 80 MHz 640

24

Cryptanalys is of T wofish

■ 5-round Twofish (without pre- and post-
whitening) can be broken with 222.5 chosen
plaintext pairs and 251 work.

■ 10-round Twofish (without the pre- and post-
whitening) can be broken with a chosen-key
attack, requiring 232 chosen plaintexts and
about 211 adaptive chosen plaintexts, with 232

work.

13

25

Cons lus ions

■ Twofish offers a unique combination of:

• Conservative Design
• Fast
• Flexible

26

Cons lus ions: Conservative Des ign

■ Based on well-understood primitives:
■ Feistel networks
■ S-boxes
■ More than enough rounds
■ Nothing with obvious timing problems

■ Twofish’s design is easy to extend:
■ longer keys
■ up to 124 rounds.

14

27

Conclus ions: Fast and F lexible

■ Twofish is fast: can encrypt data at 17.8 clock
cycles per byte on Pentium-class CPUs.

■ Twofish is flexible: there are many tradeoffs
of key-setup versus encryption speed.

■ Twofish is suited for smart cards: minimal
table requirements, efficient on 8-bit CPUs.

■ Twofish is suited for hardware: many
tradeoffs of gates versus speed.

28

T wofish S ource Code

■ Source code is available in optimized C and
assembly (for Pentium, Pentium Pro, and
Pentium II), 6805 assembly, and Java.

■ Other implementations coming soon.
■ Available on the Counterpane website:

• http://www.counterpane.com/twofish.html
■ Available outside the U.S. from several

websites
• See the Counterpane website for pointers.

15

29

T wofish Paper

■ On the CD (and on our website) is a LONG
paper describing Twofish, our design
rationale, and our analysis.

■ It’s easy to read (and we think it’s interesting).
■ Additional cryptanalysis will be published as

“Twofish Technical Reports.”
• The first one is available outside.

30

T wofish Paper (cont.)

■ Section 1: Introduction
■ Section 2: Twofish Design Goals
■ Section 3: Twofish Building Blocks
■ Section 4: Twofish Description
■ Section 5: Performance
■ Section 6: Twofish Design Philosophy
■ Section 7: Design Details
■ Section 8: Crptanalysis

16

31

S ection 11.8: Family Key Variant

■ Allows for non-imeroperable variants of
Twofish, with the addition of a “family key.”

■ No family key variant is weaker than the
original cipher.

■ Related-key attacks against unknown but
related family keys should be hard.

■ The family key should not merely reorder the
128-bu-128-bit permutations provided by the
cipher; it should change the set.

32

More Information

■ See our homepage for more details:
• http://www.counterpane.com/ twofish.html

■ You can also sign up for email notification of
new Twofish results.

http://www.counterpane.com/twofish.html

