AE S J ava ${ }^{(T N)}$ Technology Comparisons

A lan Folmsbee
Sun M icrosystems, Inc.

A genda

- The Fractional Feistel Dimension
- Nearly-Ideal A valanche
- Excess A valanche M etrics
- Speed Comparisons
- M emory Comparisons
- Conclusions

Example Fracstel Calculation

$$
F=\frac{r p}{p-c} \text { (units of rounds) }
$$

F describes the number of rounds needed so each plaintext bit causes avalanche.
For Twofish, F is an integer:

$$
F=\frac{1^{*} 12800}{12800-6400}=(2 \text { rounds })
$$

Geneva - Mel Friedman

Discussion of the Fracstel

Candidates have Integer Feistel Dimensions and Fractional Feistel Dimensions:

RC6:
$F=\frac{1 * 12800}{12800-3280}=1.34$ rounds
HPC:
$F=\frac{0.1 * 12800}{12800-6145}=0.19$ rounds
"N early-Ideal" A valanche Round

Loki97
Find the earliest round where avalanche is nearly-ideal

Histogram of avalanche for 12800 encryptions

Geneva - Mel Friedman

M ARS A valanche
 for 1, 4 and 32 Rounds

Geneva - Mel Friedman

Serpent A valanche
 for 1,2 and 32 Rounds

Number of Bits that Changed

Geneva - Mel Friedman

Crypton A valanche for 2 and 3 Rounds

\#Occur.

Frog A valanche for 1, 1.5 and 8 Rounds

Geneva - Mel Friedman

E2 A valanche for 1, 2 and 12 Rounds

\#Occur.

M agenta A valanche for
1, 2 and 6 Rounds

Number of Bits that Changed

Geneva - Mel Friedman

Cast A valanche for 1, 4 and 8 Rounds

HPC Avalanche

for 0.2, 0.5 and 1 Round

Geneva - Mel Friedman

DFC A valanche for 1,2 and 8 Rounds

\# Occur.

Number of Bits that Changed

Loki97 A valanche
 for 1, 2, 3 and 4 Rounds

Number of Bits that Changed

Geneva - Mel Friedman

Twofish A valanche for 1, 2 and 4 Rounds

Rijndael A valanche for 1 and 2 Rounds

Geneva - Mel Friedman

A verage A valanche

Geneva - Mel Friedman

A valanche Comparisons

Candidate	Total Rounds	Nearly- ldeal Round	Avalanche Ratio Beyond Nearly-Ideal	Fracstel (rounds)	Excess Fracstel Ratio
SERPENT	32	2	16.0	1.00	32.0
HPC	8	1	8.0	0.19	42.1
RC6	20	3	6.6	1.34	14.9
MARS	32	5	6.4	1.28	25.0
CAST256	48	8	6.0	4.00	12.0
E2	12	2	6.0	1.03	11.6
FROG	8	1.5	5.3	1.00	8.0
LOK197	16	3	5.3	2.00	8.0
TWOFISH	16	3	5.3	2.00	8.0
RIJNDAEL	10	2	5.0	1.00	10.0
CRYPTON	14	3	4.6	1.00	14.0
SAFER+	8	2	4.0	1.00	8.0
DFC	8	3	2.6	2.00	4.0
MAGENTA	6	3	2.0	2.00	3.0
DEAL	6	4	1.5	2.00	3.0

Two Excess A valanche M etrics

Candidates

Table of Speed Comparisons

Name	UltraSparc 200 Mhz Encrypt Java Application	UltraSparc MCT Java Application	UltraSparc KAT Java Application
MARS	$8400 \mathrm{kilobit/s}$	3284 kilobit/s	270 kilobit/s
RC6	7840	5061	355
E2	6500	2934	265
SERPENT	4300	2544	238
HPC	4100	2710	185
CRYPTON	4000	2710	281
CAST256	2000	1213	214
TWOFISH	1400	1729	156
FROG	1150	1029	7
SAFER +	790	811	169
DEAL	660	664	176
RISNDAEL	520	513	184
LOKI97	410	420	161
MAGENTA	150	164	106
DFC	33	35	16

J ava CPU Speed vs. J ava V irtual M achine

Cryptographic Algorithm	MicroJava 701 100 Mhz clock	UltraSparc 200 Mhz clock
MARS	4142 kbits/second	$8005 \mathrm{kbits/second}$
RC6	2300	4880
E2	1641	6700
SERPENT	513	3900
HPC	920	3000
CRYPTON	1094	2500
CAST256	782	1760
TWOFISH	724	1440
FROG	563	1130
SAFER+	329	770
DEAL	142	590
RIJNDAEL	74	420
LOKI97	74	380
MAGENTA	25	140
DFC	8	28

Table of M emory Comparisons

Name	RAM size bytes	ROM size bytes
SAFER	320	13200
MARS	456	19719
MAGENTA	464	6088
RC6	480	7800
FROG	576	14100
DFC	632	11147
CRYPTON	800	13979
E2	880	275857
SERPENT	1248	38900
CAST256	2260	29000
DEAL	4355	20043
TWOFISH	8000	19181
LOKI97	10240	15956
HPC	15000	44889
RIJNDAEL	20000	18405

Concluding Recommendations

- The top five candidates are:
- RC6
- Mars
- Serpent
- Hasty Pudding Cipher
- Crypton
- This conclusion used weights of:
- 4 for Excess Fracstel Ratio
- 1 for RAM
- 1 for ROM
- 1 for Encryption Speed

Geneva - Mel Friedman

