
Optimized Software Implementations of E2

Kazumaro Aoki? and Hiroki Ueda??

NTT Laboratories???

Abstract. This paper describes some techniques for optimizing soft-
ware implementations of E2 on various platforms. It is relatively easy to
implement a byte-oriented cipher such as E2 on an 8-bit processor, but
it is difficult to implement it efficiently on a 32-bit processor or a 64-bit
processor. In particular, this paper shows some optimization techniques
for SPN (Substitution-Permutation Network) on 32- or 64-bit processors.
They are also applicable to other byte-oriented ciphers.

Keywords. E2, SPN, optimization, 32-bit processor, 64-bit processor, inverse

1 Introduction

NTT submitted E2 [KMA+98, MAK+98] as an AES candidate in response to
the call issued by NIST in 1997 [U97]. E2 is a byte-oriented4 cipher, and was
designed to be fast on 8-bit processors as well as 32-bit processors, which are
current standards, and 64-bit processors, which are considered to be the next
generation standard. Since E2 is byte-oriented, it is not obvious how to imple-
ment E2 efficiently on 32- or 64-bit processors.
This paper describes some techniques for optimizing software implementa-

tions of E2 on such processors. Optimization techniques are introduced for each
part of E2. In particular, the optimization techniques for SPN (Substitution-
Permutation Network) on a 32- or 64-bit processor are applicable to other byte-
oriented ciphers as well.
We believe that these optimization techniques strengthen E2 as a top AES

candidate even when implemented on various platforms.

2 Specification of E2

Figure 1 shows the outline of theE2 encryption process.E2 has a 12-round Feis-
tel structure with a preprocess, IT -Function, and a postprocess, FT -Function.
The decryption process is the same as the encryption process except for the order
of the subkeys. Figure 2 outlines F -Function. F -Function consists of S-Function,
P -Function, and BRL-Function.
Refer to [N98a] for details of the specification and notations.

? Email: maro@isl.ntt.co.jp
?? Email: ueda@isl.ntt.co.jp
??? 1-1 Hikarinooka, Yokosuka-shi, Kanagawa-ken, 239-0847 Japan
4 In this paper 1 byte is defined as 8 bits.

IT

F T

F

k1

L 0 R0

M

F

k2

L 1 R1

F

k1 2

L 1 1 R1 1

R2

L 1 2R1 2

k1 3

k1 4

C

k1 5

k1 6

B P

B P- 1

L 2

Fig. 1. Encryption process

2

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

K (2) K (1)

x1

x2

x3

x4

x5

x6

x7

x8

z1

z2

z3

z4

z5

z6

z7

z8

z1'

z2'

z3'

z4'

z5'

z6'

z7'

z8'

y1

y2

y3

y4

y5

y6

y7

y8

S - Func t ionP - Funct ion

F - Funct ion

X

S - Func t ion

Y

BRL -
Func t ion

Fig. 2. F -Function

x1 x1 x1 x1 x2 x2 x2 x2 x3 x3 x3 x3 x4 x4 x4 x4
(1) (1) (1) (1)(2) (2) (2) (2)(3) (3) (3) (3)(4) (4) (4) (4)

x1 x2 x3 x4

x1 x2 x3 x4 x2 x3 x4 x1 x3 x4 x1 x2 x4 x1 x2 x3
(1) (1) (1) (1)(2) (2) (2) (2)(3) (3) (3) (3)(4) (4) (4) (4)

y4y3y2y1

B P

B P- 1

Fig. 3. BP -Function and BP−1-Function

3 Optimization of each part of E2

Several optimization techniques were shown in [N98b]. However, this paper shows
all known techniques including those described in [N98b].

3.1 Setup

3.1.1 f(v−)
In the E2 key scheduling part, G-Function shown in Fig. 4 is computed 9 times.
In the first computation of G-Function, f(v−1) can be calculated in the setup

3

f

f

f

f

f

f

f

f

X

U

V

L

Y

Fig. 4. G-Function

stage, since U = v−1 holds and v−1 is a constant defined in the specification.

3.1.2 128- and 192-bit Key

When the key is 128- or 192-bits long,E2 performs the same key scheduling tasks
as in the case of the 256-bit key after padding the shorter keys with some constant
values. Thus, f -Function which depends on only constants can be calculated in
the setup stage. 18 or 9 f -Functions can be calculated for 128- or 192-bit keys,
respectively, in the setup stage.

3.1.3 Inverse
The operation � in FT -Function requires an inverse in mod 232. This depends
only on the key, i.e., it does not depend on plaintexts. Thus, the inverse can be
calculated in the setup stage.
An inverse can be calculated by using the extended Euclidean algorithm.

However, the extended binary GCD (ex., in [K97, Algorithm Y in p.646]) and
Hensel lifting (ex., in [DK91, Modular-Inverse algorithm in pp.235–236]) are
more effective on a variety of platforms since the modulus has a special form.
Moreover, the Hensel lifting quadratic version proposed by Zassenhaus [Z69]

is quite effective if the platform can use an effective 32-bit multiplier. We used
Zassenhaus’ algorithm to create Algorithm 1 for calculating inverses. It is useful

4

for general processors whose word lengths are longer than 32 bits.

Algorithm 1. Calculation of y = x−1 mod 22
n

. Let a and b be temporary vari-
ables, and [z] be Gauss’ symbol (which denotes maximum integer which does not
exceed z), and the bit lengths of x, y, a, and b be 22

n

.
Step 1: Input x. (x is assumed as an odd integer.)
Step 2: Do the initial process as follows.

1. b := [
x

2
]

2. a := least significant bit of b

3. b := [
ax+ b

2
]

4. y := least significant 2 bits of x
Step 3: Do the following for i = 1, 2, . . . , n− 1.

1. a := −by
2. b := [

b+ ax

22i
]

3. y := y + a× 22i
Step 4: Output y.

3.2 Encryption Process

3.2.1 S-Function
S-Function in F -Function consists of 8 s-boxes whose input and output lengths
are 8 bits. Figure 2 shows that 8 s-boxes can be calculated in parallel. Preparing
the table (x, y) 7→ (s(x), s(y)) halves the number of memory references. This
technique requires as much as 64KB memory for the table, however, it is effective
in the following cases.

1. The table can be stored in fast memory such as the 1st cache.
2. The 1st cache is hard to control such as in Java.

Referring to each s-box table is preferred if the size of the 1st cache is less
than 64KB. Note that recent processors can cause a penalty when data that
are not aligned on word boundary are accessed. For example, prepare table
x 7→ (0, 0, 0, s(x)) for a 32-bit processor instead of a simple 256 byte s-box table.
Moreover, preparing the tables

x 7→ (0, 0, 0, s(x))
x 7→ (0, 0, s(x), 0)
x 7→ (0, s(x), 0, 0)
x 7→ (s(x), 0, 0, 0)

(1)

eliminates the data position adjustment processes. However, we should ensure
that the size of these tables does not exceed the size of the 1st cache.

5

3.2.2 BP -Function

BP -Function shown in Fig. 3 changes the order of bytes in IT -Function. A 32-
bit or a 64-bit processor requires a large number of instructions if BP -Function
is implemented in a straightforward manner since the number of instructions
needed to handle byte operations is very large. Considering the processors re-
quirements, we usually divide the input of F -Function into bytes for s-box input
as described in Sect. 3.2.1. Thus, it is not necessary to follow the specification
in terms of the byte order of an F -Function input, because no additional costs
are incurred even if the byte-order is changed. When 16 bytes are divided into
2 eight bytes for input to the Feistel structure, we should efficiently extract 2
sets of 8 bytes which are outputs of BP -Function, which are left or right halves
defined in the specification, and put them into registers. Since F -Function re-
quires byte operations, the transformed F -Function which differs only in input
byte order is not slower than the original F -Function.

To achieve this purpose, if we change the byte order

01234567 89ABCDEF 7→ 05AF49E3 8D27C16B

into

01234567 89ABCDEF 7→ 09A345EF 812BCD67,

then the number of masking operations etc. is reduced to about a half. Note that
each letter represents 1 byte.

To get the right ciphertext as defined in the specification, apply a similar
technique to BP−1-Function in FT -Function.

3.2.3 BRL-Function

BRL-Function is at the end of F -Function. If BRL-Function and S-Function
are calculated at the same time, no time is required for BRL-Function. That is,
we should put the output bytes from s-boxes into the right positions considering
the effect of BRL-Function using (1), when bytes are changed to words.

3.2.4 P -Function

P -Function, which realizes linear transformation layer in F -Function, is repre-
sented as multiplication using an 8× 8 matrix. If we consider the operation unit
as a byte, the calculation requires 36 XORs, however, if we follow Fig. 2, only
16 XORs are required.

Algorithm 2 requires only 4 cycles if the algorithm is implemented on recent
processors which offer pipelining, parallel execution, and 32-bit rotation. The
byte order of the output does not match the specification, however, suitable
coding may prevent a speed decrease, since each s-box is processed individually
in S-Function.

6

Algorithm 2. Calculation of Z′ = P (Z). Let RLb(X) mean b-byte left rotation
of X.
Step 1: Input (H,L) = ((z1, z2, z3, z4), (z5, z6, z7, z8)).
Step 2: Do the operations as the following order.

cycle Operation order of H order of L

1 L := H ⊕ L 1234 5678

1 H := RL2(H) 3412 5678

2 H := H ⊕ L 3412 5678

2 L := RL3(L) 3412 8567

3 L := H ⊕ L 3412 8567

3 H := RL1(H) 4123 8567

4 H := H ⊕ L 4123 8567

Step 3: Output (H,L) = ((z′4, z
′
1, z

′
2, z

′
3), (z

′
8, z

′
5, z

′
6, z

′
7)).

3.2.5 Substitution and Permutation

This section uses the notation

sb1b2 · · · bn : x 7→ (b1s(x), b2s(x), . . . , bns(x)),
where bi ∈ {0, 1}. For example, s0010 means x 7→ (0, 0, s(x), 0).
The substitution and the permutation in F -Function of E2 is represented as

T [z′1 z
′
2 · · · z′8] = P T [s(x′1) s(x′2) · · · s(x′8)]

using the matrix

P =

0 1 1 1 1 1 1 0
1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1
1 1 0 1 1 1 0 0
1 1 1 0 0 1 1 0
0 1 1 1 0 0 1 1
1 0 1 1 1 0 0 1

,

where x′i is the XORed value of xi and K(1) in Fig. 2, and the superscript T
means matrix transposition.
[RDP+96] proposed an effective implementation of the substitution and per-

mutation in SHARK. This section studies the implementation of substitution
and permutation for 64- and 32-bit processors based on the implementation of
SHARK.

64-bit processor. Using the implementation technique of SHARK directly means
that tables

s01111101, s10111110, s11010111, s11101011,

s10111001, s11011100, s11100110, s01110011

are required. The computation cost of this is summarized as follows.

7

Required memory 16KB
Number of table references 8
Number of XORs 7

When the size of the 1st cache is less than 16KB, 8 tables described above may be
generated from just s11111111 using masks. This case is summarized as follows.

Required memory 2KB
Number of table references 8
Number of masks 8
Number of XORs 7

32-bit processor. The previous section describing the implementation for 64-bit
processors only discussed the implementation of P (S(·)), since no effective im-
plementation of BRL(S(·)) has been found. This section considers the memory
required for implementing the 2nd non-linear layer (substitution) in F -Function
on a 32-bit processor, which causes good results.
Suppose that tables

s1000, s0100, s0010, s0001

as described in Sect. 3.2.1 are prepared for implementing the 2nd non-linear
layer. They occupy a total of 4KB. Note that for time complexity we consider
only P (S(·)); we do not consider the 2nd non-linear layer.
Following the SHARK implementation technique directly, similarly to the

case of 64-bit processors, tables

s0111, s1011, s1101, s1110,

s0011, s1001, s1100, s0110,

s1000, s0100, s0010, s0001

are required for 32-bit processors. This case is summarized as follows.

Required memory 12KB
Number of table references 16
Number of XORs 14

If 4 bytes are stored in a 32-bit register in any order, the speed is the same,
since the implemented process unit is a byte as described in Sect. 3.2.1. For
example, changing the order of calculation as follows:

z′1
z′8
z′5
z′4
z′7
z′2
z′3
z′6

=

0 1 1 1 1 1 1 0
1 0 1 1 1 0 0 1
1 1 0 1 1 1 0 0
1 1 1 0 1 1 0 1
0 1 1 1 0 0 1 1
1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 0 1 1 0

z1
z2
z3
z4
z5
z6
z7
z8

,

8

means that tables

s0111, s1011, s1101, s1110, s0101, s1111,

s1000, s0100, s0010, s0001

are required, and memory references and XOR operations of high and low words
corresponding to z1, z2, z3, z4 are the same. This improved case is summarized
as follows.

Required memory 10KB
Number of table references 12
Number of XORs 11

Consider the case that required memory exceeds the size of the cache or the
case that the latency5 of memory references is problematic. For example, if we
change the order of calculation to

z′1
z′2
z′4
z′3
z′7
z′8
z′6
z′5

=

0 1 1 1 1 1 1 0
1 0 1 1 0 1 1 1
1 1 1 0 1 1 0 1
1 1 0 1 1 0 1 1
0 1 1 1 0 0 1 1
1 0 1 1 1 0 0 1
1 1 1 0 0 1 1 0
1 1 0 1 1 1 0 0

z1
z2
z3
z4
z5
z6
z7
z8

and prepare tables

s0111, s1011, s1101, s1110,

s1000, s0100, s0010, s0001,

memory references corresponding to z5, z6, z7, z8 are directly used for z
′
1, z

′
2, z
′
4,

z′3, and z′7, z′8, z′6, z′5 are calculated as right 1 byte, right 2 bytes, left 1 byte, and
left 2 bytes logical shifted from z′1, z′2, z′4, z′3, respectively. This case is summarized
as follows.

Required memory 8KB
Number of table references 8
Number of XORs 11
Number of shifts 4

4 Implementation Results

We optimized E2 implementations for several processors. Table 1 shows the
results for the key scheduling part, and Table 2 shows the results for data ran-
domizing part.

5 Cycles after issuing an instruction before being able to access the result.

9

To achieve high performance on recent processors, it is important to con-
sider instruction scheduling as well as decreasing the number of instructions.
We achieved 2.32 [µops/cycle] parallel execution for a Pentium Pro and 1.73 [in-
structions/cycle] parallel execution for an Alpha processor (average values) using
the implementations described in Table 2. We think that these implementations
realize parallel execution efficiently.

Table 1. Key Scheduling Part

Processor
Key length
(bits)

Speed
(cycles/key)

Pentium Proa 128 2076
192 2291
256 2484

H8/300b 128 14041
192 15284
256 16518

a IBM PC/AT compatible, Pentium Pro(200MHz), 64MB RAM, MS-
Windows95, Borland C++ 5.02, ANSI C

b H8/300(5MHz) emulator on FreeBSD, assembly

Table 2. Data Randomizing Part

Speed
Processor (cycles/block) (bits/second)

Pentium Proa 415 61.7M
Java VMb 2370 10.8M
Java VMc 28800 0.9M
Alphad 587 130.8M
H8/300e 6374 100.5k

a IBM PC/AT compatible, Pentium Pro(200MHz), 64MB RAM, assembly
b IBM PC/AT compatible, Pentium Pro(200MHz), 64MB RAM, JDK 1.1.6
with JIT

c IBM PC/AT compatible, Pentium Pro(200MHz), 64MB RAM, JDK 1.1.6
without JIT

d Alpha AXP 21164A (600MHz), 8MB 3rd cache, 256MB RAM, Digital Unix
4.0, assembly

e H8/300(5MHz) emulator on FreeBSD, assembly

10

5 Conclusion

We analyzed each part of E2 and studied how to implement them efficiently
on various platforms. As a result, we achieved faster implementation on 32-
bit processors, which are the current standard, and a 64-bit processor, which is
considered to be the next generation standard, even thoughE2 is a byte-oriented
cipher.
NTT will continue to optimize E2 implementation. The latest implementa-

tion results are available at http://info.isl.ntt.co.jp/e2/.

References

[DK91] S. R. Dussé and B. S. Kaliski Jr. A Cryptographic Library for the Motorola
DSP56000. In I. B. Damg̊ard, editor, Advances in Cryptology — EURO-
CRYPT’90, Volume 473 of Lecture Notes in Computer Science, pp. 230–244.
Springer-Verlag, Berlin, Heidelberg, New York, 1991.

[K97] D. E. Knuth. Seminumerical Algorithms, Volume 2 of The Art of Computer
Programming. Addison Wesley, third edition, 1997.

[KMA+98] M. Kanda, S. Moriai, K. Aoki, H. Ueda, M. Ohkubo, Y. Takashima,
K. Ohta, and T. Matsumoto. A New 128-bit Block Cipher E2. Technical
Report ISEC98-12, The Institute of Electronics, Information and Commu-
nication Engineers, 1998. (in Japanese).

[MAK+98] S. Moriai, K. Aoki, M. Kanda, Y. Takashima, and K. Ohta. S-box design
considering the security against known attacks on block ciphers. Technical
Report ISEC98-13, The Institute of Electronics, Information and Commu-
nication Engineers, 1998. (in Japanese).

[N98a] Nippon Telegraph and Telephone Corporation. Specification of E2 — a
128-bit Block Cipher, 1998. (http://info.isl.ntt.co.jp/e2/).

[N98b] Nippon Telegraph and Telephone Corporation. Supporting Document on
E2, 1998. (http://info.isl.ntt.co.jp/e2/).

[RDP+96] V. Rijmen, J. Daemen, B. Preneel, A. Bosselaers, and E. De Win. The Ci-
pher SHARK. In D. Gollmann, editor, Fast Software Encryption — Third
International Workshop, Volume 1039 of Lecture Notes in Computer Sci-
ence, pp. 99–111. Springer-Verlag, Berlin, Heidelberg, New York, 1996.

[U97] U.S. Department of Commerce, National Institute of Standards and Tech-
nology. Announcing Request for Candidate Algorithm Nominations for the
Advanced Encryption Standard (AES), 1997. Federal Register: Volume 62,
Number 177, pp.48051–48058, (http://csrc.nist.gov/encryption/aes/
aes-9709.htm).

[Z69] H. Zassenhaus. On Hensel Factorization, I. Journal of number theory,
Vol. 1, pp. 291–311, 1969.

This article was processed using the LaTEX macro package with LLNCS style

11

