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Magenta [1] is an encryption algorithm submitted for AES by Deutsche Telekom
AG. In this note we cryptanalyze Magenta, and any algorithm of the same structure
and key schedule.

We refer the reader to the �gure on slide 7 of the Magenta presentation (given
in the handouts at the �rst AES candidate conference). This �gure describes the
block structure and key schedule for 128-bit keys. Magenta is a Feistel cipher with
6 rounds, in which the key is divided into two halves, called K1 and K2, and these
halves are used in the following way: K1 is used in rounds 1,2,5,6, and K2 is used
in rounds 3 and 4. We use the following notation for the intermediate values during
encryption: X0 is the plaintext, X1 is the data after one round, Xi is the data after
i rounds, and X6 is the ciphertext. The data Xi is divided into two halves: XT

i
is

the top half of the data, and XB
i

is the bottom half.
We �rst present a chosen plaintext attack using 264 chosen plaintexts and re-

quiring 264 steps of analysis.

1. Choose an arbitrary plaintext X0.
2. Request the ciphertext X6 of X0 under the unknown key K.
3. Try all 264 possible values K 0

1
, and for each compute the following:

(a) Partially encrypt X0 for the �rst two rounds to get a candidate for X2.
(b) Choose an arbitrary X 0

2
such that X 0

2

T = XT
2
.

(c) Partially decrypt X 0

2
under the trial subkey K 0

1
to get X 0

0
.

(d) Request the ciphertext X 0

6 of X 0

0 under the unknown key K.
(e) Partially decrypt X6 and X 0

6
under the trial subkey K 0

1
to get X4 and X 0

4
.

(f) From X2 and X4 compute the output of the E function of round 3, and
similarly for X 0

2 and X 0

4.
(g) Reject the trial subkey K 0

1
if the outputs are di�erent.

4. Make a list of all the keys that passed the equality test.

The correct key must be on the list, since equality of the two inputs of the E
function must cause the output to be equal as well. It is expected that the list
contains only a few candidates, and the wrong candidates can be easily discarded
using one additional trial encryption.

This attack can be converted into a known plaintext attack using only 233 known
plaintexts but 297 steps of analysis. In this attack the attacker receives the 233 known
plaintexts and their corresponding ciphertexts and searches for collisions ofXT

2
. The

attack is as follows:

1. Try all the 264 possible values K 0

1
of K1, and for each compute the following:

(a) Partially encrypt all 233 X0's for the �rst two rounds to get candidates for
X2.



(b) Search for collisions of XT
2
in the received results.

(c) Partially decrypt, for the last two rounds, the pairs of ciphertexts X6 of the
colliding XT

2
to get candidates for X4.

(d) From the X2's and X4's compute the output of the E function of round 3.
(e) Reject the trial subkey K 0

1 if the outputs are di�erent.
2. make a list of all the keys that passed the equality test.

It is interesting to note that the same attack applies to the larger key sizes with
the same reduction in complexity over brute force. We guess all the subkeys except
for the subkey used in the middle two rounds, and perform the same key recovery
attack. A 192-bit key can be found using 2128 chosen plaintexts within 2128 steps,
or using 233 known plaintexts within 2161 steps. A 256-bit key can be found using
2128 chosen plaintexts within 2192 steps, or using 233 known plaintexts within 2225

steps.
We would also wish to note that due to the symmetry of the key scheduling,

encryption and decryption are identical except for the order of the two halves of
the plaintexts and ciphertexts. Therefore, given a ciphertext, one can decrypt it by
swapping its two halves, reencrypting the result, and swapping again. Note that
this attack uses an adaptive access to an encryption device and cannot be used to
recover the key. Such a property is undesirable in various scenarios. Furthermore,
the symmetry in the key schedule of all versions of Magenta also introduces 264

\weak plaintexts" for each value of the secret key. More precisely, for each value
of the secret key there are 264 plaintexts for which the ciphertexts are just the
swapped values of the plaintexts. To see this, consider r-round Magenta for r = 6; 8.
Consider one of the 264 ciphertexts, say ~c, with equal 64-bit halves after r=2 rounds
of encryption. For any value of the secret key, it follows that the decryption of ~c
from round r=2 to the plaintext equals the encryption of ~c from round r=2 to the
plaintext except for a swapping of the halves, and the result follows.

We are grateful to Michael Jacobson, Jr. for his lucid presentation of the Magenta
algorithm and for patiently answering our questions regarding cryptanalysis.
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