Key Schedule Classification of the AES Candidates

G. Carter \ddagger
E. Dawson \dagger
L. Nielsen \dagger

\dagger Information Security Research Centre
\ddagger School of Mathematical Sciences
Queensland University of Technology
GPO Box 2434 Brisbane 4001
Queensland Australia

Abstract

An important component of iterative, block ciphers is the key schedule. In most ciphers, a master key of specified length is manipulated to create round subkeys. This manipulation is known as the key schedule. A strong key schedule means a cipher will be more resistant to various forms of attacks, such as differential and linear cryptanalysis. In this paper, the Advanced Encryption Standard(AES) candidates are classified according to their key schedules.

1 The Classification Schedule

The most powerful methods of analysis of iterative block ciphers such as the Data Encryption Standard(DES) [4] are attacks which aim to reveal round subkeys. These methods include differential [5] and linear cryptanalysis [9].

In [1], the authors introduced a new classification scheme for iterative block ciphers based on their key schedules. In essence, this scheme creates two categories of ciphers based on whether or not knowledge of a round subkey generated by the key schedule reveals any information about other round subkeys or the master key. Those that do, fall into Category 1 and those that do not, fall into Category 2. Each of these categories is further subdivided into three Types, A, B and C.

A Category 1, Type A cipher(1A) is one in which all bits of the master key are used in each round, and hence knowledge of a round subkey yields all bits of the master key and all other round subkeys. The cipher NDS [3] is such an example. At the other end of the scale, 2 C ciphers are those in which each round subkey is generated independently, and the length of the master key is the sum of the lengths of all the round subkeys. The cipher DESI(DES with independent subkeys) [5] is an example.

A 1B cipher is one where knowledge of a round subkey gives some, but not all bits of the master key or other round subkeys. DES is an example. A 1C cipher is one in which knowledge of a round subkey yields bits of other round
subkeys or the master key after some simple arithmetic operations or function inversions. SAFER K-64 [6] is an example.

In Category 2, knowledge of a round subkey does not easily reveal information about other round subkeys or the master key. A 2 A cipher is one in which not all bits of the master key are used to create each round subkey. In these ciphers, certain master keys are guaranteed to produce at least two identical round keys. A cipher such as CAST-128 [7] is an example. In other words, the entropy of the round subkeys is not maximised. A 2 B cipher is one in which all master key bits are used in the determination of all round subkeys, thus maximising the entropy of the subkeys. An example is Blowfish [8].

The most secure schedule classification is 2 C . However, this may lead to unmanageably large master keys for ciphers whose security cannot hope to match what is naively suggested by the key length. Further, export restrictions on cryptographic materials often limit the size of the key. For these reasons, the best we can hope for is to mimic 2 C schedules as closely as possible, with the next strongest classification, 2B.

2 Classification of AES Candidates

In this section, all the AES candidates are classified according to the key schedule classification described in the previous section, and the justification for their placement in a certain category presented. Although many of these candidates permit parameter values outside the scope of the AES standard, the analysis presented below will assume a 128 -bit block size and a 128 -bit, 192 -bit or 256 -bit master key. The analysis of each of the AES candidates will assume the 256bit master key option and comments will be made on the other two master key options only where the master key length has ramifications for the classification.

For each of the AES ciphers, an outline of the key schedule will be presented and the following two questions posed.

1. Given knowlege of all the bits of a round subkey, does this reveal any bits of other round subkeys or the master key?
2. Do all round subkeys depend on all bits of the master key?

The answer to the first question will place the cipher in either Category 1 or 2 . The answer to the second question will determine whether the Category 2 ciphers are Type A or B. Note that no AES candidate is Category 2, Type C. The results of the classification appear in Table 1. The justification for the classification of each cipher according to this scheme is presented below. The description of the AES candidates was obtained from [2].

CAST-256

The 256 -bit master key can be described as eight, 32 -bit words, $b_{0}^{0} b_{1}^{0} \cdots b_{7}^{0}$. By setting low order bytes to zero, other master key lengths can be obtained. For example, if b_{6}^{0} and b_{7}^{0} are set to zero, the master key has length one hundred and ninety-two bits.

To determine the j 'th round subkey each b_{i}^{j-1} is modified as follows:

$$
b_{i}^{j}=b_{i}^{j-1} \oplus f\left(b_{i+1(\bmod 8)}, c_{j}, d_{j}\right), 0 \leq i \leq 7,1 \leq j \leq 12
$$

where f is one of three functions used in the cipher, and c_{j} and d_{j} are deterministic constants. The round subkey is, in fact, a key pair $\left(k_{r}^{j}, k_{m}^{j}\right)$. Key k_{r}^{j} is the

Type 1A	Type 1B	Type 1C	Type 2A	Type 2B	Type 2C
	MAGENTA	CRYPTON	DFC	CAST-256	
		DEAL		E2	
		Rijndael		FROG	
			SAFER+		HPC
				LOKI97	
				MARS	
				RC6	
				Serpent	
				Twofish	

Table 1: Classification of Key Schedules
concatenation of five least significant bits(LSB) of each of the modified words $b_{0}^{j}, b_{2}^{j}, b_{4}^{j}$ and b_{6}^{j} while k_{m}^{j} is the concatenation of modified words $b_{7}^{j}, b_{5}^{j}, b_{3}^{j}$ and b_{1}^{j}. Knowing the round subkey key pair (k_{r}^{j}, k_{m}^{j}) gives knowledge of words $b_{7}^{j}, b_{5}^{j}, b_{3}^{j}$ and b_{1}^{j} as well as the five LSB of each of $b_{0}^{j}, b_{2}^{j}, b_{4}^{j}$ and b_{6}^{j}. This is not enough information to determine the previous round subkey. Hence CAST-256 is a Type 2 cipher. However, it is worth pointing out, that if the remaining unknown bits of $b_{0}^{j}, b_{2}^{j}, b_{4}^{j}$ and b_{6}^{j} can be determined, then all previous round subkeys and the master key can be found.

To generate the subkey pair, $\left(k_{r}^{j}, k_{m}^{j}\right)$, all words b_{0}^{j} to b_{7}^{j} are used. As these words are dependent on all the original master key words, subkey pairs are dependent on all master key words. This leads to the conclusion that CAST-256 is a 2 B cipher.

CRYPTON

The master key, if not two hundred and fifty-six bits, is prepended by zeros to make it so. Using a mixture of linear and non-linear transformations, eight, 32 -bit expanded keys, $E_{0}, E_{1} \cdots, E_{7}$ are produced from the original master key. All subkeys are two hundred and fifty-six bits, the first and second subkeys respectively being, $K_{0}=\left(K^{3}, K^{2}, K^{1}, K^{0}\right)=\left(E_{0}, E_{1}, E_{2}, E_{3}\right)$ and $K_{1}=\left(K^{7}, K^{6}, K^{5}, K^{4}\right)=\left(E_{4}, E_{5}, E_{6}, E_{7}\right)$. Subsequent even round subkeys are given by, $K_{2 i+2}=\left(K^{8 i+11}, K^{8 i+10}, K^{8 i+9}, K^{8 i+8}\right), 0 \leq i \leq 5$ and odd round subkeys are given by $K_{2 j+3}=\left(K^{8 j+15}, K^{8 j+14}, K^{8 j+13}, K^{8 \bar{j}+12}\right), 0 \leq j \leq 4$. Now,

$$
\begin{aligned}
K^{8 i+8} & =K^{8 i} \ll(8 i), i \in\{0,2,4\} \\
K^{8 i+8} & =R C_{i} \oplus K^{8 i}, i \in\{1,3,5\} \\
K^{8 i+9} & =R C_{i} \oplus K^{8 i+1}, i \in\{0,2,4\} \\
K^{8 i+9} & =K^{8 i+1} \ll\left(3 i^{2}-20 i+41\right), i \in\{1,3,5\} \\
K^{8 i+10} & =K^{8 i+2} \ll\left(-3 i^{2}+10 i+16\right), i \in\{0,2,4\} \\
K^{8 i+10} & =R C_{i} \oplus K^{8 i+2}, i \in\{1,3,5\} \\
K^{8 i+11} & =R C_{i} \oplus K^{8 i+3}, i \in\{0,2,4\} \\
K^{8 i+11} & =K^{8 i+3} \ll(4 i+4), i \in\{1,3,5\} \\
K^{8 j+12} & =R C_{j} \oplus K^{8 j+4}, j \in\{0,2,4\}
\end{aligned}
$$

$$
\begin{aligned}
K^{8 j+12} & =K^{8 j+4} \ll(4 j+4), j \in\{1,3\} \\
K^{8 j+13} & =K^{8 j+5} \ll\left(-3 j^{2}+10 j+16\right), j \in\{0,2,4\} \\
K^{8 j+13} & =R C_{j} \oplus K^{8 j+5}, j \in\{1,3\} \\
K^{8 j+14} & =R C_{j} \oplus K^{8 j+6}, j \in\{0,2,4\} \\
K^{8 j+14} & =K^{8 j+6} \ll(4 j+12), j \in\{1,3\} \\
K^{8 j+15} & =K^{8 j+7} \ll\left(3 j^{2}-14 j+24\right), j \in\{0,2,4\} \\
K^{8 j+15} & =R C_{j} \oplus K^{8 j+7}, j \in\{1,3\}
\end{aligned}
$$

where $R C_{x}$ is a known constant and $x \ll y$ is a known left shift of x by y bits.
Knowing even round subkey ($K^{8 i+11}, K^{8 i+10}, K^{8 i+9}, K^{8 i+8}$) means that the following can be shown true by undoing the above equations, as follows.

$$
\begin{aligned}
K^{8 i} & =K^{8 i+8} \gg(8 i), i \in\{0,2,4\} \\
K^{8 i} & =R C_{i} \oplus K^{8 i+8}, i \in\{1,3,5\} \\
K^{8 i+1} & =R C_{i} \oplus K^{8 i+9}, i \in\{0,2,4\} \\
K^{8 i+1} & =K^{8 i+9} \gg\left(3 i^{2}-20 i+41\right), i \in\{1,3,5\} \\
K^{8 i+2} & =K^{8 i+10} \gg\left(-3 i^{2}+10 i+16\right), i \in\{0,2,4\} \\
K^{8 i+2} & =R C_{i} \oplus K^{8 i+10}, i \in\{1,3,5\} \\
K^{8 i+3} & =R C_{i} \oplus K^{8 i+11}, i \in\{0,2,4\} \\
K^{8 i+3} & =K^{8 i+11} \gg(4 i+4), i \in\{1,3,5\}
\end{aligned}
$$

Thus, the previous even round subkey is easily determined. A similar argument applies to odd round subkeys. It follows that knowing one even/odd round subkey enables all previous even/odd round subkeys to be determined by simple arithmetic operations. It is also worth noting that by using exactly the same arguments, knowledge of an even/odd round subkey enables all subsequent even/odd round subkeys to be determined. Hence CRYPTON is a 1 C cipher.

DEAL

The key schedule of DEAL is created from two, three or four, 64-bit DES keys, corresponding to 128 -bit, 192 -bit and 256 -bit master keys. The 128 -bit and 192bit master keys are used in six rounds of DEAL, while the 256 -bit version uses eight rounds. In all three cases, the creation of the round subkeys is essentially identical.

The eight round subkeys are generated from four independent master keys, designated K_{1}, K_{2}, K_{3} and K_{4}, as follows.

$$
\begin{aligned}
R K_{1} & =D E S E_{K}\left(K_{1}\right) \\
R K_{2} & =D E S E_{K}\left(K_{2} \oplus R K_{1}\right) \\
R K_{3} & =D E S E_{K}\left(K_{3} \oplus R K_{2}\right) \\
R K_{4} & =D E S E_{K}\left(K_{4} \oplus R K_{3}\right) \\
R K_{5} & =D E S E_{K}\left(K_{1} \oplus\{1\} \oplus R K_{4}\right) \\
R K_{6} & =D E S E_{K}\left(K_{2} \oplus\{2\} \oplus R K_{5}\right) \\
R K_{7} & =D E S E_{K}\left(K_{3} \oplus\{4\} \oplus R K_{6}\right) \\
R K_{8} & =D E S E_{K}\left(K_{4} \oplus\{8\} \oplus R K_{7}\right)
\end{aligned}
$$

Note that $\{i\}$ denotes the representation of i as a 64 -bit string and $D E S E_{K}(X)$ represents the encryption of X using DES with key K which is fixed and known.

Knowing one value of $R K_{i}, i \in\{2,3,4,5,6,7,8\}$ does not immediately yield any bits of other subkeys or the master keys despite the fact that the decryption $D E S D_{K}\left(R K_{i}\right)$ can easily be performed since K is known. On the other hand, knowledge of $R K_{1}$ easily yields the master key K_{1}, since $K_{1}=D E S D_{K}\left(R K_{1}\right)$. Hence $R K_{1}$ is much weaker than the other subkeys and puts DEAL in the 1C classification.

Further, $R K_{1}$ depends only on master key $K_{1}, R K_{2}$ depends only on master keys K_{1} and K_{2}, and $R K_{3}$ depends only on master keys K_{1}, K_{2} and K_{3}. The other $R K_{i}$'s depend on all four master keys. Hence, not all subkeys depend on all bits of the master key.

If the known key K is replaced by K_{1}, K_{2}, K_{3} or K_{4} then this would eliminate the weak $R K_{1}$ and the cipher would fall into the 2 A category. Another alternative would be to let $K=f\left(K_{1}, K_{2}, K_{3}, K_{4}\right)$ where f is a one way function(OWF) and this would put DEAL into the 2B category.

Decorrelated Fast Cipher-DFC

The master key K is initially padded on the right with a 256 -bit known constant, C_{0}. The result is then truncated to form padded master key K_{C}, so that what remains is two hundred and fifty-six bits long. This means that if K is one hundred and twenty-eight bits then only the one hundred and twenty-eight most significant bits(MSB) of C_{0} are used to form K_{C}. Similarly, if K is one hundred and ninety-two bits, the sixty-four MSB of C_{0} are used. Finally, if K is two hundred and fifty-six bits, no bits of C_{0} are required.

At this point, K_{C} is divided into eight, 32 -bit strings such that $K_{C}=$ $K_{C}^{1}\left|K_{C}^{2}\right| \cdots \mid K_{C}^{8}$. Note that $X \mid Y$ means X concatenated with Y.
Now the following are defined.

$$
\begin{aligned}
O A P_{1} & =K_{C}^{1} \mid K_{C}^{8} \\
O B P_{1} & =K_{C}^{5} \mid K_{C}^{4} \\
E A P_{1} & =K_{C}^{2} \mid K_{C}^{7} \\
E B P_{1} & =K_{C}^{6} \mid K_{C}^{3}
\end{aligned}
$$

and for $i=2,3$ and 4

$$
\begin{aligned}
O A P_{i} & =O A P_{1} \oplus C_{1}^{i} \\
O B P_{i} & =O B P_{1} \oplus C_{2}^{i} \\
E A P_{i} & =E A P_{1} \oplus C_{1}^{i} \\
E B P_{i} & =E B P_{1} \oplus C_{2}^{i}
\end{aligned}
$$

where C_{1}^{i} and C_{2}^{i} are known constants.
Now define

$$
E F_{1}(K)=\left(F_{1}\left|F_{2}\right| F_{3} \mid F_{4}\right)
$$

where $F_{i}=O A P_{i} \mid O B P_{i}$. Similarly, define

$$
E F_{2}(K)=\left(f_{1}\left|f_{2}\right| f_{3} \mid f_{4}\right)
$$

where $f_{i}=E A P_{i} \mid E B P_{i}$. Now define $R K_{0}=0$ and create round subkeys $R K_{i}, 0 \leq i \leq 8$, as follows.

$$
R K_{i}= \begin{cases}\operatorname{DFC}_{E F_{1}(K)}\left(R K_{i-1}\right) & \text { if } i \text { is odd } \\ \operatorname{DFC}_{E F_{2}(K)}\left(R K_{i-1}\right) & \text { if } i \text { is even }\end{cases}
$$

where $\mathrm{DFC}_{E F_{i}(K)}(X)$ means encrypt X using key $E F_{i}(K)$ in the DFC cipher.
Now, knowledge of $R K_{i}$ gives no bits of any other round subkeys unless the encryption process can be reversed. On the other hand, the generation of $R K_{i}, i$ odd involves only $E F_{1}(K)$ which in turn involves $F_{i}, i \in\{1,2,3,4\}$. Now F_{i} involves only $O A P_{i}$ and $O B P_{i}$. These in turn involve only $K_{C}^{1}, K_{C}^{4}, K_{C}^{5}$ and K_{C}^{8}, and not all bits of K_{C} or indeed K. A similar scenario applies for $R K_{i}, i$ even. Thus, not all subkeys depend on on all bits of the master key. Hence, DFC is a Category 2, Type A cipher.

E2

Define a 64 -bit constant C. If the length of the master key, K, is one hundred and twenty-eight bits, considered as the concatenation of K_{1} and K_{2}, then pass C through a given set of S-boxes three times to produce the 64 -bit value K_{3} and then a fourth time to produce 64 -bit K_{4}. In this process, the output of the S-boxes on each pass becomes the input for the next pass. If a 192-bit master key is used, considered as the concatenation of K_{1}, K_{2} and K_{3}, repeat the above process to produce K_{4}. If a 256 -bit master key is in use then C is not processed as above. Let the key resulting from the above procedure be $K A=K_{1}\left|K_{2}\right| K_{3} \mid K_{4}$. The round subkeys are then formed as follows.

Firstly, $K A$ and C are put into a function G used in the cipher such that the output $\left(L_{0},\left(Z_{0}, C_{0}\right)\right)=G\left(\left(K_{1}, K_{2}, K_{3}, K_{4}\right), C\right)$ where $L_{0}=\left(U_{1}, U_{2}, U_{3}, U_{4}\right), Z_{0}=$ ($Y_{1}, Y_{2}, Y_{3}, Y_{4}$), and $C_{0}=V$, and for $i=1,2,3,4$

$$
\begin{aligned}
Y_{i} & =f\left(K_{i}\right) \\
U_{i} & =f\left(U_{i-1}\right) \oplus Y_{i} \text { and } U_{0}=C \\
V & =U_{4}
\end{aligned}
$$

where f is a function used in the cipher. Note that U_{i}, Y_{i} and V are all 64-bit values.

For $i=0,1, \cdots, 7$ define

$$
\begin{align*}
\left(L_{i+1},\left(Z_{i+1}, C_{i+1}\right)\right) & =G\left(Y_{i}, C_{i}\right) \tag{1}\\
L_{i+1} & =\left(l_{4 i}, l_{4 i+1}, l_{4 i+2}, l_{4 i+3}\right)
\end{align*}
$$

Next i
where l_{i} is a 64 -bit block.

$$
\begin{aligned}
\text { For } i & =1,2, \cdots, 31 \text { define } \\
l_{i} & =\left(t_{i}^{0}, t_{i}^{1}, \cdots, t_{i}^{7}\right)
\end{aligned}
$$

Next i
Each 128-bit subkey is now generated as follows.
For $i=0,1, \cdots, 15$,

$$
k_{i+1}=\left(t_{0+(i \bmod 2)}^{<i / 2>}, t_{2+(i \bmod 2)}^{<i / 2>}, \cdots, t_{30+(i \bmod 2)}^{<i / 2>}\right)
$$

Next i
where $\langle x\rangle$ means the greatest integer $\leq x$.
Knowledge of subkey k_{i}, i even, yields only eight bits out of a possible fiftysix from each of $l_{2 j+1}, j=0,1, \cdots, 15$ and hence only sixteen bits out of a
possible two hundred and fifty six bits of each L_{i}. In any L_{i}, only the bits involved in k_{i} are known, and these do not reveal any of the other bits of the L_{i} 's involved with other round subkeys. A similar argument applies when k_{i} is known and i is odd. Further, there is no simple way to invert equation 1 which is required to track back to the master key. Thus, knowledge of a round subkey yields no bits of other round subkeys or the master key.

An examination of the way L_{1} is constructed will show that it depends on all master key bits and hence all subsequent L_{i} 's depend on L_{1}. Since round subkey i depends on L_{i}, it follows that all round subkeys depend on L_{1} and hence on all bits of the master key.

Now $L_{1}=G\left(Z_{0}, C_{0}\right)$, that is $G\left(\left(Y_{1}, Y_{2}, Y_{3}, Y_{4}\right), U_{4}\right)$. As well, $U_{4}=f\left(U_{3}\right) \oplus f\left(K_{4}\right), U_{3}=f\left(U_{2}\right) \oplus f\left(K_{3}\right), U_{2}=f\left(U_{1}\right) \oplus f\left(K_{2}\right)$ and $U_{1}=$ $f(C) \oplus f\left(K_{1}\right)$. Thus, U_{4} depends on all bits of the master key. Now $L_{1}=$ $\left(U_{1}^{\prime}, U_{2}^{\prime}, U_{3}^{\prime}, U_{4}^{\prime}\right)$ where $U_{1}^{\prime}=f\left(U_{4}\right) \oplus f\left(Y_{1}\right)$. Since U_{4} depends on all bits of the master key so does U_{1}^{\prime} and since U_{i}^{\prime} depends on U_{i-1}^{\prime}, L_{1} depends on all bits of the master key. All the L_{i} 's contribute to the determination of subkey one, so subkey one depends on all bits of the master key.

Now L_{i} depends on Y_{i-1} which in turn depends on L_{i-1}, so L_{i} depends on L_{i-1} and hence on L_{1} and all bits of the master key. The conclusion is that E2 is a 2 B cipher.

FROG

The master key, K, in this cipher is essentially hashed to produce a 2304 -byte valid internal key, $K I V . K I V$ can be thought of as the concatenation eight, 288 -byte round subkeys. Each of these subkeys has three records, and each of these records is used in a different way to encrypt the plaintext. The hashing process begins by concatenating copies of the master key until a 2304-byte array has been produced. The elements of this array are then XOR'd with a randomly generated, but known constant. This unformatted array is then formatted so that the resulting array is a preliminary version of the $K I V$. This formatting is necessary so that the three records mentioned earlier achieve rapid diffusion and confusion. The formatted array is then encrypted by the FROG algorithm itself to further the random appearance of the subkeys. This encrypted output is again formatted to satisfy the reqiurements of the subkey records.

Knowledge of a round subkey does not reveal any bits of other round subkeys, since the 288 -byte blocks of $K I V$ which determine each subkey are generated at the same time and are essentially independent. Thus the FROG cipher belongs in Category 2, Type B.

Hasty Pudding Cipher-HPC

Assuming a 256 -bit master key, K, divide it into four, 64 -bit words, K_{0}, K_{1}, K_{2} and K_{3}. Now construct a 256 -element array, $K X$, each element, a 64 -bit word. The first three elements, $K X[0], K X[1]$ and $K X[2]$ are respectively initialised to known constants c_{0}, c_{1} and c_{2}. The remaining elements of the array are constructed as follows.

For $i=3,4, \cdots, 255$

$$
K X[i]=K X[i-1]+(K X[i-2] \oplus K X[i-3] \gg 23 \oplus K X[i-3] \ll 41)
$$

Next i,
where $x \gg y$ and $x \ll y$ are respectively quantity x right shifted/left shifted by
y bits. Master key K is now introduced into $K X$ as follows.
For $i=0,1, \cdots, 127$

$$
K X[i]=K X[i] \oplus K_{i \bmod 4}
$$

Next i
The resulting elements are then stirred as follows.
State variables, $s_{j}, j=0,1, \cdots, 7$ are initialised respectively to $K X[248+j]$ and the following series of steps are performed in each of three passes over the array $K X$.

For each $K X[i], i=0,1, \cdots, 255$

$$
\begin{aligned}
s_{0} & =(K X[i] \oplus K X[(i+1) \wedge 255])+K X\left[s_{0} \wedge 255\right] \\
s_{1} & =s_{1}+s_{0} \\
s_{3} & =s_{3} \oplus s_{2} \\
s_{5} & =s_{5}-s_{4} \\
s_{7} & =s_{7} \oplus s_{6} \\
s_{3} & =s_{3}+\left(s_{0} S L 13\right) \\
s_{4} & =s_{4} \oplus\left(s_{1} S L 11\right) \\
s_{5} & =s_{5} \oplus\left(s_{3} S L\left(s_{1} \wedge 31\right)\right) \\
s_{6} & =s_{6}+\left(s_{2} S R 17\right) \\
s_{7} & =s_{7} \vee\left(s_{3}+s_{4}\right) \\
s_{2} & =s_{2}-s_{5} \\
s_{0} & =s_{0}-\left(s_{6} \oplus i\right) \\
s_{1} & =s_{1}+c_{0} \\
s_{2} & =s_{2}+\left(s_{7} S R j\right) \\
s_{2} & =s_{2} \oplus s_{1} \\
s_{4} & =s_{4}-s_{3} \\
s_{6} & =s_{6} \oplus s_{5} \\
s_{0} & =s_{0}+s_{7} \\
K X[i] & =s_{2}+s_{6}
\end{aligned}
$$

Note that the operations + and - are performed modulo 2^{64}, \wedge means logical and, \vee is logical or, $S R$ and $S L$ are right and left shifts respectively, and $j=0,1,2$ represents the pass number over the array $K X$.

Suppose $K X[i]$ is known. From the last line in the set of steps above, $s_{2}+s_{6}$ is known. However, there is no obvious way to determine either s_{2} or s_{6}. Even if these were known, the nature of the stirring process means that it is not invertible, so no bits of the master key or other round subkeys can be obtained from a knowledge of $K X[i]$.

Now $s_{i}, i=0,1, \cdots, 7$ contains two copies of the master key arranged such that any four s_{i} values, say s_{k}, s_{l}, s_{m} and s_{n}, with $k \not \equiv l \not \equiv m \not \equiv n(\bmod 4)$, contain all bits of the master key. From the last line of the above series of steps, $K X[i]$ depends on s_{2} and s_{6}. Tracing back through this series of steps it is easy to see that s_{6} depends on s_{5}, s_{3}, s_{1} and s_{0} and that s_{5} is related to s_{3}, s_{1} and s_{4}. Hence, s_{6} depends on at least s_{0}, s_{1} and s_{3}. Thus, $K X[i]$ depends at least
on s_{0}, s_{1}, s_{2} and s_{3}, and since $0 \not \equiv 1 \not \equiv 2 \not \equiv 3(\bmod 4), K X[i]$ depends on all bits of the master key. Thus, all round subkeys depend on all bits of the master key. This puts the HPC cipher in the 2B class.

Because the 'spice' is not necessarily a secret key, it has been deliberately omitted from this discussion.

LOKI97

The master key, K is initialised into four, 64 -bit words, $K_{1}^{0}\left|K_{2}^{0}\right| K_{3}^{0} \mid K_{4}^{0}$, as follows.

256-bit $K=K_{1}\left|K_{2}\right| K_{3} \mid K_{4}$ yields $K_{1}^{0}\left|K_{2}^{0}\right| K_{3}^{0}\left|K_{4}^{0}=K_{1}\right| K_{2}\left|K_{3}\right| K_{4}$.
192-bit $K=K_{1}\left|K_{2}\right| K_{3}$ yields $K_{1}^{0}\left|K_{2}^{0}\right| K_{3}^{0}\left|K_{4}^{0}=K_{1}\right| K_{2}\left|K_{3}\right| f\left(K_{1}, K_{2}\right)$ where f is a non-linear function used in the encryption process.

128-bit $K=K_{1} \mid K_{2}$ yields $K_{1}^{0}\left|K_{2}^{0}\right| K_{3}^{0}\left|K_{4}^{0}=K_{1}\right| K_{2}\left|f\left(K_{2}, K_{1}\right)\right| f\left(K_{1}, K_{2}\right)$.
These initialised keys are then processed as follows to yield forty-eight, 64-bit round subkeys, $S K_{i}$.

For $i=1, \cdots, 48$

$$
\begin{align*}
K_{1}^{i} & =K_{4}^{i-1} \oplus g_{i}\left(K_{1}^{i-1}, K_{3}^{i-1}, K_{2}^{i-1}\right) \tag{2}\\
S K_{i} & =K_{1}^{i} \\
K_{4}^{i} & =K_{3}^{i-1} \\
K_{3}^{i} & =K_{2}^{i-1} \\
K_{2}^{i} & =K_{1}^{i-1}
\end{align*}
$$

Next i
Note that $g_{i}\left(K_{1}, K_{3}, K_{2}\right)=f\left(K_{1}+K_{3}+\delta i, K_{2}\right)$ where δ is a constant and f is a function used in the cipher.

Knowledge of $S K_{i}$ does not reveal any bits of previous or subsequent round subkeys, as these are dependent on at least other three other unknown subkeys or initialised master keys. Further, the generation of subkey $S K_{1}$ involves all bits of the master key as per equation 2. Since the generation of subkey $S K_{i}$ depends on subkey $S K_{i-1}, S K_{i}$ ultimately depends on $S K_{1}$ and hence on all bits of the master key. Thus, LOKI97 is a 2B cipher.

MAGENTA

For a master key, K, of one hundred and twenty-eight bits, this cipher has six rounds under the control of the master key considered as two, 64 -bit blocks, K_{1} and K_{2}. In rounds one, two, five and six of the encryption process, K_{1} is used. In rounds four and five, K_{2} is used.

In the 192 -bit version of $K=K_{1}\left|K_{2}\right| K_{3}, K_{i}$ is used in rounds i and $7-i$.
In the 256 -bit version, $K=K_{1}\left|K_{2}\right| K_{3} \mid K_{4}$, and the cipher has eight rounds with K_{i} being used in rounds i and $9-i$. Clearly, knowledge of a round subkey yields immediately bits of the master key, as in DES. Thus, MAGENTA is a 1B cipher.

MARS

In this cipher, forty, 32-bit subkeys are required. An array, A, of forty-seven, 32 -bit words is initialised using an n-word master key, k, as follows.

$$
\begin{aligned}
& \text { For } i=-7,-6, \cdots,-1, \\
& \quad A[i]=S[i+7] \\
& \text { Next } i
\end{aligned}
$$

where $S[j]$ is the j 'th entry of a fixed and known S-box.

$$
\begin{aligned}
& \text { For } i=1,2, \cdots, 38 \\
& \quad A[i]=((A[i-7] \oplus A[i-2]) \ll 3) \oplus k[i \bmod n] \oplus i \\
& \text { Next } i \\
& A[39]=n
\end{aligned}
$$

This initialised array is further stirred as follows.

$$
\begin{aligned}
& \text { For } j=1,2, \cdots, 7 \\
& \quad \text { For } i=1,2, \cdots, 39 \\
& \quad A^{j}[i]=\left(A^{j-1}[i]+S_{9}\left[A^{j-1}[i-1]\right]\right) \ll 9 \\
& \quad \operatorname{Next} i \\
& A^{j}[0]=\left(A^{j-1}[0]+S_{9}\left[A^{j}[39]\right]\right) \ll 9 \\
& \text { Next } j
\end{aligned}
$$

Note that $S_{9}[x]$ is the S-box entry indexed by the nine LSB of x. The subkeys are then created as follows.

For $i=0,1,2, \cdots, 39$
$A[i]$ becomes subkey $K[7 i \bmod 40]$
Next i
Consider now the case of $n=8$, that is a 256 -bit master key. In the initialization of array $A, A[i]$ depends on array words $A[i-7]$ and $A[i-2]$ as well as master key word $k[i \bmod 8]$. A careful analysis shows that not until the creation of $A[13]$ are the elements of array A dependent on all eight words of the master key. Subsequent elements, with the exception of $A[39]$, are also dependent on all master key words. $A[39]$ does not depend on any bits of the master key at all.

Now suppose an attacker knows $\left.K[i]=A^{(7)}[j]=\left(A^{(6)}[j] \oplus S_{9}^{[} A^{(6)}[j-1]\right]\right) \ll$ 9 , for some j. There exists keys $K[h]$ and $K[g]$ such that $K[h]=A^{(7)}[j-1]=$ $\left(A^{(6)}[j-1] \oplus S_{9}^{(6)}[A[j-2]]\right) \ll 9$ for some j, and $K[g]=A^{(7)}[j+1]=\left(A^{(6)}[j+\right.$ 1] $\left.\left.\oplus S_{9}^{[} A^{(6)}[j]\right]\right) \ll 9$ for some j. Knowledge of $K[i]$ does not reveal $A^{(6)}[j]$ or $S_{9}\left[A^{(6)}[j-1]\right]$ which are components of $K[h]$ and $K[g]$. Neither does it reveal any information on $A^{(7)}[j-1]$ or $A^{(6)}[j+1]$, the other components of $K[h]$ and $K[g]$ respectively. Similarly, knowledge of $K[i]$ does not reveal any information about the master key.

The 7-round stirring process esentially combines successive entries in array A to create a new array $A^{(7)}$. After the first round of stirring, only elements $T^{(1)}[1]$ through to $T^{(1)}[6]$ inclusive do not depend on all bits of the master key. In each of the remaining six rounds of stirring, $T^{(2)}[1], T^{(3)}[2], T^{(4)}[3], T^{(5)}[4], T^{(6)}[5]$ and $T^{(7)}[6]$ successively come to depend on all master key bits. Hence, all subkeys depend on all bits of the master key. Thus, MARS is a 2B cipher.

RC6

This cipher has a precursor named RC5 [?]. The key schedule of RC6 is identical to that of RC5 with the exception that a total of $2 r+4$ subkeys are required for RC6 while RC5 requires only $2 r+2 \operatorname{subkeys}(r$ is the number of rounds of
the cipher). The proposed number of rounds of RC6 is twenty, so the number of subkeys required is forty-four. The subkeys are generated as follows.

From a master key of sixteen, twenty-four or thirty-two bytes, an array L of four, six or eight, 32-bit words is constructed. A second array S of fortyfour, 32 -bit words is initialised by known constants. The following loop is then executed one hundred and thirty-two times (3×44), after the variables i, j, A and B are initialised to zero.

$$
\begin{aligned}
& \text { For } s=1 \text { to } 132 \\
& \quad S[i]=(S[i]+A+B) \ll 3 \\
& \quad A=S[i] \\
& L[j]=(L[j]+A+B) \ll(A+B) \\
& \quad B=L[j] \\
& \quad i \equiv(i+1)(\bmod 44) \\
& \quad j \equiv(j+1)(\bmod c) \\
& \text { Next } s
\end{aligned}
$$

Note that $c=4,6$ or 8 when the master key used is 128 -bit, 192 -bit or 256 -bit respectively.

Suppose now that round key $S^{3}[i]=\left(S^{2}[i]+A+B\right) \ll 3$ is known. From this knowledge, it is not possible to determine any of the quantities that are involved in the calculation of $S^{3}[i]$. Even if these quantities were known, it would not be possible to determine, from a knowledge of these, $S^{3}[i+1]$ or $S^{3}[i-1]$, as the quantities which form these are related to those of $S^{3}[i]$ in a very difficult to invert way. Hence, knowledge of a round subkey does not yield any bits of any other round subkey or the master key.

Further, each entry in the array S is updated three times in the above loop. At the end of the first update, call it S^{1}, corresponding to $s=44, S^{1}[0]$ to $S^{1}[7]$ inclusive are the only elements of array S^{1} that are not dependent on all elements of the array L, that is, all elements of the master key. By the end of the second pass, all elements of S^{2} are dependent on all elements of the master key. It follows that RC6 is a 2 B cipher.

Rijndael

This cipher stores its master key, K, in a $4 \times i$ array of bytes, where $i=4,6$ or 8 when K is a 128 -bit, 192 -bit or 256 -bit key respectively. Given that the AES standard supports a 128 -bit block size, the number of subkeys required is $\frac{128}{4} \times(r+1)$, where r is the number of rounds. For a 128-bit master key, $r=10$, for a 192-bit master key, $r=12$ and for a 256 -bit master key, $r=14$.

An expanded key, K_{e}, is formed from the 256 -bit master key array, $A_{x, y}, 0 \leq$ $x \leq 3,0 \leq y \leq 7$ as follows. Note that elements of array A are bytes.

An array, W, with $4 \times(14+1)(=60)$ elements is constructed by setting $W[t], t=0,1, \cdots, 7$ to be successively equal to the four bytes of the master key, $A_{0, t}, A_{1, t}, A_{2, t}, A_{3, t}$. Subsequent elements of array W are constructed by the recursive relationship:

$$
\begin{aligned}
& \text { For } j=8, j<60 \text { and } j \text { incremented by } 8 \\
& W[j]=W[j-8] \oplus f(W[j-1]) \oplus g\left(c_{j}\right) \\
& \text { For } l=1,2 \text { and } 3 \\
& \quad W[l+j]=W[l+j-8] \oplus W[l+j-1] \\
& \text { Next } l \\
& W[j+4]=W[j-4] \oplus h(W[j+3]) \\
& \text { For } l=5,6 \text { and } 7
\end{aligned}
$$

$$
\begin{aligned}
& W[l+j]=W[l+j-8] \oplus W[l+j-1] \\
& \text { Next } l
\end{aligned}
$$

The functions f, g and h are functions associated with encryption and decryption and c_{j} is a deterministic constant.

For $x=0,1,2, \cdots, 14$, round subkey x is given array entries $W[8 x]$ through to $W[8 x+7]$.

Now suppose that round subkey $K S_{x}$ is known. It follows that $W[8 x], W[8 x+$ $1], \cdots, W[8 x+7]$ are known. Subkey $K S_{x+1}$ consists of array elements $W[8 x+$ 8], $W[8 x+9], \cdots, W[8 x+15]$. Now

$$
\begin{equation*}
W[8 x+8]=W[8 x] \oplus f\left(W[8 x+7] \oplus g\left(c_{x}\right)\right) \tag{3}
\end{equation*}
$$

All of the quantities on the right hand side of equation 3 are known since they are from the known subkey x or are constants. Hence $W[8 x+8]$ is known. Since $W[8 x+p], p=9,10, \cdots, 15$ depends in a simple way on $W[8 x+p-1]$ and $W[8 x+p-8]$ which is known from round subkey $R K_{x}$, calculating $W[8 x+p]$ is easy. Hence, knowing subkey $R K_{x}$ enables subkey $R K_{x+1}$ to be easily determined. In fact, knowing subkey $R K_{x}$ enables all subsequent subkeys to be determined. The conclusion is that the 256 -bit master key version of the cipher Rijndael is 1C.

SAFER+

For 128-bit, 192-bit and 256-bit master keys K, the respective number of rounds in the cipher is eight, twelve and sixteen. The number of subkeys required is respectively seventeen, twenty-five and thirty-three. An analysis of the case when a 256 -bit master key will be presented.

Firstly, thirty-three, 16-byte bias words, B_{i}, are created as follows.
For $i=0,1, \cdots, 15$

$$
\begin{equation*}
B_{i}^{j} \equiv 45^{\left(45^{17 i+j+18} \bmod 257\right)}(\bmod 257) \tag{4}
\end{equation*}
$$

Next i,
where B_{i}^{j} is the j 'th byte of bias word B_{i} and $j=0,1, \cdots, 15$. If the value of B_{i}^{j}, calculated in equation 4 , is 256 , then B_{i}^{j} is set to zero. The remaining bias words B_{17} to B_{32} inclusive are calculated as follows.

$$
\begin{aligned}
& \text { For } i=17,18, \cdots, 32 \\
& \quad B_{i}^{j} \equiv 45^{17 i+j+18}(\bmod 257)
\end{aligned}
$$

Next i
Note that B_{0} is a dummy and is not used at all.
A 33-byte word, K_{e}, is initialised by concatenating the thirty-two bytes of the master key K and the byte formed by the XOR sum of the corresponding bits of the thirty-two bytes of the master key. This last byte is known as the parity byte. The bytes of K_{e} will be denoted by $b_{0}, b_{1}, \cdots, b_{31}, b_{32}$. Round i uses two, 16-byte subkeys, K_{i} and K_{i+1}. The round one subkey, K_{0}, is calculated as follows.

$$
K_{0}=b_{0}\left|b_{1}\right| \cdots \mid b_{15}
$$

The concatenation of x_{i} through to x_{j} will be written as $C_{k=i}^{j}\left(x_{k}\right)$. Hence $K_{0}=C_{k=0}^{15}\left(b_{k}\right)$. Subsequent subkeys are generated as follows.

```
For \(i=1,2, \cdots, 32\)
For \(j=0,1, \cdots, 32\)
    \(b_{j}=b_{j} \ll 3\)
Next \(j\)
\(K_{i}=C_{k=i}^{(i+15) \bmod 33}\left(b_{k}+B_{i}^{(k-i) \bmod 33}\right)(\bmod 256)\)
```

Next i.

Now suppose round subkey, K_{i}, is known. Hence,

$$
C_{k=i}^{(i+15) \bmod 33}\left(b_{k}+B_{i}^{(k-i) \bmod 33}\right)(\bmod 256)
$$

is known. Since all the biases B_{i} are predetermined constants, b_{k} is simply calculated as $\left.\left(K_{i}^{(k-i) \bmod 33}-B_{i}^{(k-i) \bmod 33}\right)(\bmod 256)\right)$. Thus, bytes b_{i} to $b_{(i+15) \bmod 33}$ are known. Right shifting each of these bytes by three bits, yields fifteen of the sixteen bytes used in in the calculation of K_{i-1}. Left shifting these known bytes by three bits will yield fifteen of the sixteen bytes used in the calculation of K_{i+1}. Thus, fifteen bytes of subkeys K_{i-1} and K_{i+1} are easily determined. In fact, if the known bytes of K_{i} are right shifted by an amount $3 i$, then either fifteen or sixteen bytes of the master key will be known. Sixteen will be known if b_{33} is not one of the sixteen known bytes of K_{i}. On the other hand, if b_{33} is one of the known bytes of K_{i}, then fifteen bytes of the master key can be determined. Hence SAFER+ with a 256 -bit master key is a 1 C cipher. Serpent
This cipher requires thirty-three, 128-bit, round subkeys, and these are created from one hundred and thirty-two, 32 -bit, interim words which are generated from the master key, K. If the master key is not two hundred and fifty-six bits in length, it is padded until it is. This padded master key, K_{p}, can be thought of as eight, 32 -bit words labelled $W_{-8}, W_{-7}, \cdots, W_{-1}$. The one hundred and thirty-two, interim words are calculated as follows.

For $i=0,1, \cdots, 131$

$$
\begin{equation*}
W_{i}=\left(W_{i-8} \oplus W_{i-5} \oplus W_{i-3} \oplus W_{i-1} \oplus \phi \oplus i\right) \ll 11 \tag{5}
\end{equation*}
$$

Next i,
where ϕ is a known constant.
Now suppose that subkey, K_{i}, is known.
Hence $X=\left(W_{4 i}, W_{4 i+1}, W_{4 i+2}, W_{4 i+3}\right)$ is known. Each component of X is essentially the XOR sum of three previously calculated W_{j} values. The removal of the constants ϕ and i from the calculation is trivial(see equation 5). Thus, each component on its own does not reveal any information about any other W_{j} 's and hence does not reveal any information about other round subkeys. Further, the XOR linear combination of any number of the components of X, does not isolate any single W_{j} value used in another round subkey. Hence, knowledge of a round subkey does not reveal any bits of other round subkeys or the master key.

Now, round i subkey, K_{i}, is the concatenation of $k_{4 i}, k_{4 i+1}, k_{4 i+2}, k_{4 i+3}$, where

$$
\begin{equation*}
\left(k_{4 i}, k_{4 i+1}, k_{4 i+2}, k_{4 i+3}\right)=S_{(3-i) \bmod 7}\left(W_{4 i}, W_{4 i+1}, W_{4 i+2}, W_{4 i+3}\right) \tag{6}
\end{equation*}
$$

and S_{x} is an S-box of the cipher. From equation 6, the round i subkey, K_{i}, depends on $W_{4 i}, W_{4 i+1}, W_{4 i+2}, W_{4 i+3}$. From equation 5 the following three statements are true.

1. W_{0} depends on key words W_{-8}, W_{-5}, W_{-3} and W_{-1}.
2. W_{1} depends on key words W_{-7}, W_{-4}, W_{-2} and W_{0} and since the dependencies of W_{0} are known from $1, W_{1}$ depends on $W_{-8}, W_{-7}, W_{-5}, W_{-4}, W_{-3}, W_{-2}$ and W_{-1}.
3. W_{2} depends on key words W_{-6}, W_{-3}, W_{-1} and W_{1} and since the dependencies of W_{1} are known from $2, W_{2}$ depends on $W_{-8}, W_{-7}, W_{-6}, W_{-5}, W_{-4}, W_{-3}, W_{-2}$ and W_{-1}, that is all bits of the master key.

Since from equation $5, W_{i}$ depends on key word W_{i-1}; for $i>2, W_{i}$ will ultimely depend on W_{2} and hence on all bits of the master key. Since every subkey K_{i} is dependent on a $W_{i}, i>2$, all subkeys are dependent on all bits of the master key. This analysis classes Serpent as 2B.

Twofish

Twofish employs sixteen rounds with two, 32-bit subkeys in each round. Eight other subkeys are required. Four are added to the plaintext before encryption and the other four are added to the output of the last round of encryption. Thus, forty round subkeys are required. As in previous ciphers, the case of a 256 -bit master key will be examined in detail.

Master key K is split into eight, 32 -bit words, $K_{0}, K_{1}, \cdots, K_{7}$ where $K_{i}=$ $m_{4 i+3}\left|m_{4 i+2}\right| m_{4 i+1} \mid m_{4 i}$ and m_{j} is the j 'th byte of K. Let $M_{e}=K_{0}\left|K_{2}\right| K_{4} \mid K_{6}$, the concatenation of the even index K_{j} 's, and $M_{o}=K_{1}\left|K_{3}\right| K_{5} \mid K_{7}$, the concatenation of the odd index K_{j} 's. Define constants A_{i} and B_{i} as follows.

$$
\begin{aligned}
A_{i} & =h\left(2 i \rho, M_{e}\right) \\
B_{i} & =\operatorname{ROL}\left(h\left((2 i+1) \rho, M_{o}\right), 8\right)
\end{aligned}
$$

Note that ρ is a defined constant, h is a function used in the cipher and $R O L(x, y)$ means rotate left, the quantity x, by y bits.

The forty, round subkeys, K^{i}, are created as follows.
For $i=0,1, \cdots, 19$

$$
\begin{align*}
K^{2 i} & =\left(A_{i}+B_{i}\right)\left(\bmod 2^{32}\right) \tag{7}\\
K^{2 i+1} & =\operatorname{ROL}\left(\left(A_{i}+2 B_{i}\right)\left(\bmod 2^{32}\right), 9\right) \tag{8}
\end{align*}
$$

Next i
Suppose K^{j} is known. From equations 7 and 8 , there is no obvious way to determine A_{i} and B_{i} and hence M_{e} and M_{o}, which are required, if other round subkeys are to be found from a knowledge of K^{j}. Thus, knowledge of a round subkey does not enable bits of other round subkeys or the master key to be determined.

Clearly, each round subkey is a function of A_{i} and B_{i} which respectively are functions of M_{e} and $M_{o} . M_{e}$ and M_{o} encompass all bits of the master key, so it follows likewise for A_{i} and B_{i}. Hence, all round subkeys depend on all bits of the master key. It is now possible to classify Twofish as a 2B cipher.

However, it is worth noting that if two successive subkeys, $K^{2 i}$ and $K^{2 i+1}$ are known, subtracting $\left(\bmod 2^{32}\right) K^{2 i}$ from $R O R\left(K^{2 i+1}, 9\right)$ will give B_{i}. From
this, A_{i} can be determined from equation 8 . With A_{i} and B_{i} now known, it is possible to invert the function h and hence determine M_{e} and M_{o} which comprise the master key.

3 Conclusion and Future Research

This paper is in response to calls by NIST for the analysis of the strengths and weaknesses of the AES candidates. It concentrates solely on the key schedules and makes no comment on the strengths and weaknesses of the algorithms or other aspects of the ciphers. The majority of candidates fall into the 2B, key schedule classification and these exhibit stronger key schedules than those that do not. For those in the other classifications, it is recommended that they be upgraded to the 2B category. In some cases, this is easily achieved as explained in the DEAL cipher. For the others, the natural extension of this paper is to upgrade them to the 2 B class, and this is planned.

References

[1] Carter G., Dawson E., Nielsen L., Key Schedules of Iterative Block Ciphers, Information Security and Privacy ACISP'98, LCNS 1438, pp. 80-89, 1998.
[2] Candidate Algorithms, http://www.nist.gov/aes.
[3] Beker H., Piper F. Cipher systems: the protection of communications, Northwood Books, London, 1982.
[4] National Bureau of Standards, Data Encryption Standard, US Department of Commerce, FIPS publication 46, 1977.
[5] Biham E., Shamir A. Differential Cryptanalysis of DES-like cryptosystems, Advances in Cryptology-Crypto'90, LNCS 537, pp 2-21, Springer, 1991.
[6] Massey J., SAFER K-64: a byte-oriented block ciphering algorithm, Fast Software Encryption, LNCS 809, Springer-Verlag, 1994, pp 1-17.
[7] Adams C.M., Constructing Symmetric Ciphers Using the CAST Design Procedure, Designs, Codes and Cryptography, Vol. 12, No. 3, Nov. 1997.
[8] Schneier B., Description of a new variable-length key, 64-bit block cipher(Blowfish), Fast Software Encryption, LNCS 809, Springer-Verlag, 1993, pp. 191-204.
[9] Matsui M., Linear cryptanalysis method for DES cipher, Advances in Cryptology, Eurocrypt'93, LNCS 765, Springer-Verlag, 1994, pp. 386-397.
[10] Rivest R., The RC5 encryption algorithm, Fast Software Encryption, LNCS 1008, Springer-Verlag, 1995, pp. 86-96.

