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Abstract

NIST has considered the performance of AES candidates on smart-cards as an important

selection criterion and many submitters have highlighted the compactness and e�ciency

of their submission on low end smart cards. However, in light of recently discovered

power based attacks, we strongly argue that evaluating smart-card suitability of AES

candidates requires a very cautious approach. We demonstrate that straightforward

implementations of AES candidates on smart cards, are highly vulnerable to power

analysis and readily leak away all secret keys.

To illustrate our point, we describe a power based attack on the Two�sh Reference

6805 code which we implemented on a ST16 smart card. The attack required power

samples from only 100 independent block encryptions to fully recover the 128-bit secret

key. We also describe how all other AES candidates are susceptible to similar attacks.

We review the basis of power attacks and suggest countermeasures for a secure

implementation. Unfortunately, it appears that these software countermeasures result

in signi�cant memory and e�ciency overhead and therefore the most e�cient smart

card implementation cannot serve as a guide in evaluating AES candidates.

Keywords: Smart-Cards, Power Analysis, AES Candidates, AES Evaluation Criterion.

1 Introduction

The o�cial call for AES candidate algorithms [2], outlined three evaluation criteria for AES
submissions: \security", \cost" and \algorithm and implementation characteristics". In-
cluded in \cost" were Computational E�ciency and Memory Requirements and \algorithm
and implementation characteristics" included the criterion of Flexibility. The following was
stated as an example of exibility.

b. The algorithm can be implemented securely and e�ciently in a wide variety
of platforms and applications (e.g., 8-bit processors, ATM networks, voice &
satellite communications, HDTV, B-ISDN, etc.)
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NIST has justi�ed the importance of smart-card implementation feasibility for AES
candidates on the basis of these evaluation criteria , i.e., candidates should be exible
enough to have a reasonably e�cient implementation on smart-card CPUs with a small
RAM/EEPROM/ROM footprint. For example, in [3], NIST lists smart-cards under the
Cost/E�ciency criterion. Most AES submissions have also discussed 8-bit CPU or smart-
card performance [1]. This aspect has also been investigated in depth in [6], as part of an
e�ort to compare the performance of all AES candidates on a variety of platforms. It is
stated there that for widespread smart-card use, the algorithm must not only �t in high-end
smart-cards but also in the most primitive smart-cards, i.e, those which have at most 128
bytes of RAM, of which only 64 bytes would be available to the encryption algorithm. On
that basis, the argument is made that only CAST-256, Crypton, DEAL, Rijndael, SAFER+,
Serpent and Two�sh are suitable for widespread smart-card use1.

In this paper, we strongly argue that the evaluation of AES candidates on smart-cards
cannot be done simply by comparing the most e�cient implementation on a typical smart-
card CPU, because these implementations are very likely to be insecure. This is especially
true for low end smart-cards which are highly vulnerable to Power Analysis based attacks
[5] due to their simplicity. Therefore, any claim that an AES candidate is superior because
it runs on a low end smart card (with 128 bytes of RAM) would be hollow if, in fact, the
implementation leaks away its key in a power based attack. In its foresight, NIST phrased
the Flexibility evaluation criterion as being applicable to secure and e�cient implementa-
tions and not just to e�cient implementations. We therefore assert that when evaluating
smart-card implementations of AES algorithms, power based attacks on the implementation
cannot be ignored and wished away, since these are inherent in simple, low cost devices.
Instead, a true comparison can only be made with respect to power attack resistant imple-
mentations, which, in many cases, would be less e�cient and more resource intensive than
the fastest implementation.

To illustrate our point, we describe the vulnerability of naive smart-card implementa-
tions of AES algorithms to power attacks. Taking advantage of the publicly available 6805
Reference Code of one of the AES candidates, Two�sh, and a 6805 based smart card avail-
able to us (a ST16 2) we mounted a power-analysis attack on the implementation. It should
be noted that the same attack will work on most commonly available 6805 smart-cards.

Our investigations yielded startling results: The Two�sh Reference 6805 code when
implemented on a ST16 smart card together with a 128-bit \secret" key, requires power
samples of the input whitening process from only 100 independent block encryptions to
completely extract the key. With experience, the number of samples can be reduced to 50.

The attack uses Di�erential Power Analysis (DPA) [5] on the input whitening process
to extract the input whitening subkeys and uses them to reverse-engineer the master key.
Note that we did not have to attack the rounds of Two�sh, since for 128-bit keys, the
key-expansion step to derive input whitening keys is \almost reversible".

This attack has severe practical implications: An honest smart-card user who acciden-
tally does 50 secure transactions with another trustworthy entity via a rigged smart-card
reader risks exposing her key to the party who controls the reader. Major smart-card ap-
plications such as e-cash and Pay-TV require much higher security assurance, i.e., even

1This is highly debatable since other candidates can also �t in such cards with subkeys kept in EEPROM
2ST16 is manufactured by SGS-Thomson Microelectronics.
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malicious smart-card users who can resort to physical attacks should not be able to extract
the smart-card's internal keys. Clearly this implementation, even when protected by simple
hardware countermeasures 3 does not meet this requirement.

This problem and attack is hardly limited to Two�sh: based on our practical experience
with Two�sh and with the ST16, we analyzed the vulnerability of all AES candidates,
without actually implementing them. We discovered that straight-forward implementations
of almost all candidates would have similar vulnerabilities, although many would require
more e�ort than Two�sh. This is because many candidates explicitly or implicitly employed
the design principle that deriving the master key or other subkeys from a subset (or a small
subset) of subkeys should be computationally infeasible. Hence, power attacks on these
algorithms are proportionally harder since several rounds have to be attacked.

The rest of the paper is organized as follows: Section 2 describes a simple model for
smart card power consumption. Using this, we motivate our attack and explain the basis of
all smart card power attacks. This model is also key in designing and understanding the ef-
fectiveness of countermeasures. In Section 3, we describe in detail the attack on the Two�sh
reference code. In Section 4 we investigate possible vulnerabilities of straight-forward im-
plementations of all other AES candidates. Section 4.15 summarizes the vulnerabilities. In
Section 5 we discuss possible countermeasures against power attacks including a general
technique that can be employed to create \practically secure" smart-card implementations,
i.e., implementations that require an impractically large number of power-samples to be
break. However all these countermeasures come at the cost of reduced performance and
increased code size and memory requirements.

2 A Simple Power Model for Smart-Cards

Most smart-cards use CMOS technology which consumes power only when some change
occurs in the logic state of the chip. No signi�cant power is needed to maintain a state.
Such changes could include changes in the contents of the RAM, internal registers, bus-
lines, states of gates and transistors etc. Smart-card chips are clock driven, i.e., almost all
activity is triggered by an internal or external clock edge and usually all activity ceases
before the next clock edge is due. A few processes, such as on-chip noise generators etc,
operate independently of the clock and consume a small, possibly random amount of power
continuously.

Each clock edge triggers a sequence of power consuming events (such as transistor switch-
ing, charging of internal and external lines etc) within the chip which brings it to the next
state. This sequence of events is determined by the microcode executing within the chip
and depends on parts of the current state of the processor and parts of the state of other
subsystems that processor is accessing in that cycle. We use the term relevant state to
denote parts of the overall state of the chip which determine the sequence of events during
a clock cycle. Depending on the cycle, the relevant state could include values of the bits
of some internal registers, bits on internal and external buses, address and contents of the
external memory location being accessed etc. The smart-card being a digital circuit, its
relevant state can be represented by a binary string.

3E.g, on chip �lters etc., which can be easily bypassed by physical attacks
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The instantaneous power consumption of the chip, shortly after a clock edge, is a com-
bination of the instantaneous power consumption components from each of the events that
have occurred thus far. The power component from each event depends on several factors
such as the electrical properties of the chip substrate and layout, at the current operating
conditions (temperature, voltage, etc), as well as coupling e�ects between events occurring
in close proximity. The exact timing of each event is also likely to be equally complex, even
though the microcode will dictate a certain ordering between events. As a �rst approxima-
tion, we ignore coupling e�ects and create a linear model, i.e., we assume that the power
consumption function of the chip is the sum of the power consumption functions of all the
events that have taken place. This model may be applicable to somewhat larger chips as
well.

Consider a particular cycle of a particular instruction in the execution path of some
�xed code. At the start of the cycle, the smart card can be in one of several relevant
states depending on the input and processing done in earlier cycles. Let S denote the set of
possible relevant states when control reaches this cycle and let E be the space of all possible
events that can occur in that cycle. For each s 2 S, and each e 2 E , let occurs(e; s) be
the binary function which is 1 if e occurs when the relevant state is s and 0 otherwise. Let
delay(e; s) be the time delay of the occurence of event e in state s from the clock edge and
let f(e; t) denote the power consumption impulse function of event e with respect to time
t (here t = 0 when the event occurs and f(e; t) = 0 for t < 0). Then in our model, F (s; t),
the power consumption function of the chip in that cycle with state s and time t after the
clock edge can be written as

P (s; t) =
X
e2E

f(e; t� delay(e; s)) � occurs(e; s)

In reality, due to random asynchronous power consuming components in the chip and
noise introduced within the chip itself (e.g., due to local variations in operating conditions
and minor coupling e�ects) the actual power is better modeled by adding noise components
to it, i.e.,

P (s; t) = Nc(t) +
X
e2E

( f(e; t� delay(e; s) +Nd(e; s)) +N (e; t)) � occurs(e; s); (1)

where N (e; t) is a (small) Gaussian noise component associated with the power con-
sumption function of event e, Nd(e; s)) is a small Gaussian noise component a�ecting the
delay function and Nc is the (small) Gaussian external noise component.

Equation 1 shows that there is a strong dependence between the power consumption
function and the relevant state s at that cycle. This is because di�erent events occur in
di�erent states and even if the same set of events were to occur in two di�erent states, their
timing could be di�erent. This dependence is at the core of all di�erential power analysis
attacks which seek to exploit asymmetries in the power consumption function with respect
to state. These asymmetries are particularly pronounced in low end smart cards where the
relevant state space is quite small.

We discuss these attacks in detail in the next section.
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Figure 1: Power distributions when loading random bytes from RAM
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2.1 Di�erential Power Attacks

Consider two di�erent probability distributions D1 and D2 on the relevant state s before
the clock edge of a certain cycle. From equation 1, it is very likely that the distribution of
the instantaneous power when the state is drawn from D1 is going to be di�erent from the
distribution of the instantaneous power when the state is drawn fromD2 and these cases can
be distinguished by statistical tests on power samples. This di�erence and distinguishability
between the two distributions is the basis for di�erential power attacks. In most well
known attacks [5], the distributions D1 and D2 are very simple, e.g., D1 is the uniform
distribution on the set of all states which have a particular state bit 1 and D2 is the
uniform distribution on the set of all states which have that bit 0. The di�erence in the
power distribution for these two cases represents the e�ect of that particular state bit on
the net power consumption.

As an example, Figure 1 shows three distinct distributions of the instantaneous power
consumption of the ST16 chip in the middle of a cycle which loads the value of a RAM byte
into the accumulator. These three distributions correspond to three di�erent distributions
on the value of that particular RAM byte. All three power distributions are plotted on a
\normal scale" and each distribution shows up as a thick line in this plot, which means
all these three power distributions are close to normal. The middle line corresponds to the
power distribution when the RAM byte is drawn uniformly at random. It has a mean of
0 (we have shifted all power readings by an additive constant to enforce this). The top
line corresponds to the power distribution when the RAM byte is uniformly chosen from
all bytes with MSB of 1. It has a mean of �25. The bottom line corresponds to the power
distribution when the RAM byte is uniformly chosen from all bytes with MSB 0. This has
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a mean of +25.

3 Power based attack on Two�sh implementation

3.1 Target implementation

The target implementation was on an ST16 smart card by loading publicly available Two�sh
Reference code for the 6805 [8] onto the EEPROM of a ST16 smart card. The default
implementation options in the code were retained. We created an interface which allowed
us to send a 128-bit Two�sh key and a 128-bit plaintext as a command to the ST16 and
the card would return the ciphertext.

Although, a real implementation of Two�sh would go into the ST16's ROM, we are quite
con�dent that the behavior of such an implementation with respect to our attack would
be identical. This is because, the fact that the code is coming from EEPROM instead of
ROM only a�ects the processor cycles which fetch opcodes and operand addresses and not
the cycles dealing with the data and the key since these will always be in RAM. Therefore
our attack against the handling of plaintext data and key will be equally e�ective in both
situations.

3.2 Power Attack Equipment

The power attack equipment consisted of a special smart-card reader with a current sensor
attached to the Vcc contact. The output of this current sensor was sampled using a PC-
based oscilloscope and data acquisition board and software from Gage Applied Sciences
Inc. This equipment could acquire and record 12-bit power samples at 100Mhz sampling
rate on to the PC's hard disk. The board could be programmed to trigger and record a
speci�ed number of samples upon receiving an external signal, thus minimizing the amount
of sample data collected for each encryption. A PC with a 2GB disk was enough to collect
and store samples from thousands of encryptions. Another PC was used to send commands
to the smart card and triggering information to the board.

3.3 Attacking the Two�sh whitening process

In the Two�sh whitening process, a 128-bit whitening key consisting of 4, 32-bit whitening
key words K0; K1; K2; K3 are exor'ed into the input data block. The reference code to this
is given below. Note that the xor4 operation which seems to do a word whitening in the
code is actually a macro which expands to do byte-wise whitening since the 6805 is an 8-bit
machine.

jsr computeSubkey /* Function call to calculate K0, K1 in sk0, sk1 */

xor4 Text, sk0 /* Macro to whiten 1'st word */

xor4 Text+4,sk1 /* Macro to whiten 2'nd word */

jsr computeSubkey /* Function call to calculate K2, K3 in sk0, sk1 */

xor4 Text+8, sk0 /* Macro to whiten 3'rd word */

xor4 Text+12,sk1 /* Macro to whiten 4'th word */

Upon macro expansion, the actual 6805 code for the whitening process is:
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jsr computeSubkey /* Function call to calculate K0, K1 in sk0, sk1 */

lda Text /* Load 1'st byte of 1'st word in accumulator */

eor sk0 /* Xor accum with contents of 1'st byte of sk0 */

sta Text /* Store accum back as 1's byte of 1'st word */

lda Text+1 /* Load 2'nd byte of 1'st word in accum */

eor sk0+1 /* Xor accum with contents of 2'nd byte of sk0 */

sta Text+1 /* Store accum back as 2'nd byte of 1'st word */

...

As observed in [5], macro features such as a group of similar operations are clearly visible
in power traces of most smart cards. This will be true for the computeSubkey subroutine
which is invoked during whitening and in all rounds. Therefore, by inspection, the whitening
process can be identi�ed and the equipment can be set up to collect power samples of just
the whitening process for each encryption.

Let us focus on the least signi�cant bit (LSB) of the byte \Text" in RAM, a plaintext bit
known to the attacker. The �rst instruction which accesses this bit in the whitening process
is \lda Text". This brings Text, and in particular its LSB into the accumulator. The next
instruction exor's the whitening key into the accumulator and the next instruction stores
the result back into the RAM variable Text. If the LSB of the whitening key is 1, then Text
LSB is negated by the exor, and if the whitening LSB is 0, Text LSB remains unchanged.
These are the ONLY places where this bit is directly manipulated in the input whitening
process. Note however that when this bit is manipulated, e.g., brought from RAM into the
accumulator over the data bus, it value remains in some parts of the circuit (e.g., buses
or internal lines, latches, registers, etc) until it is overwritten by activities performed in
subsequent cycles. Therefore this bit will be part of the relevant state for the next few
cycles. From the code, it is easy to verify that the same properties hold for all input and
whitening key bits.

The DPA attack against Two�sh is now easy to describe: Obtain power samples of the
whitening process for several random encryptions. For each of the bits in the plaintext
input to these encryptions, calculate the co-variance between the bit and power samples of
the runs at every sample point.For each bit i, look at the co-variance plot for all the sample
points. It should be at except for a few strong peaks. Look at the �rst signi�cant peak.
That corresponds to the load of the plaintext. Look at the co-variance at a sample point
corresponding to the store of the whitened plaintext. The co-variance here should also be
a peak. If these peaks have the same sign then the i'th bit of the key is 0, else it is 1.4

3.4 Experimental Results

We performed the above experiment using 2000 random encryptions and then repeated it
with 500, 100 and 50 samples to see how few samples are needed to attack.

4This assumes that the i'th bit's average contribution to the power in both a load from RAM and a store

to RAM has the same sign, which was true in our experiment. In the worst case, depending on the smart-

card, a subset of the 128 bits will have similar contributions and the rest will have dissimilar contributions.

Once this subset is known, a similar attack can be mounted against that smart-card. This subset can easily

be learned by experimenting with load, exor and store operations with known operands.
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Figure 2: Pointwise Co-variance between 1'st data bit and Power during whitening
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Each experiment yielded 128 co-variance plots, one for each plaintext/key bit. Using
the above approach we were able to predict correctly all the 128 key bits when working with
2000, 500 and 100 samples. At 50 samples, there was di�culty de�ning \�rst signi�cant
peak", since the co-variance at other points was almost comparable to the real \�rst peak".
However, if the adversary could identify where the \�rst peak" should be, e.g., by looking
at the shapes of the actual power signal and the code to �gure out the correct cycle number
(something we, with experience with ST16, can easily do), then comparing the signs of the
two peaks still worked.

For example, Fig. 2 shows the covariance plot of the whole whitening process for the
�rst bit. At higher resolution, i.e., zooming on to the region of the peaks, we see in Figure
3 that the �rst peak at position 1495 is -ve and the peak corresponding to the store at 1506
is -ve and hence the key bit is 0. Note the presence of a few peaks after position 1495 and
after 1506. These represent cycles where the lingering value of the directly manipulated bit
in the earlier cycle is overwritten from parts of the state. Figure 4 which is the covariance
plot of the next input bit shows the �rst peak at 1495 is +ve and the peak corresponding
to the store at 1506 is -ve which show that the next key bit is 1.

3.5 From whitening keys to the 128-bit master key

We assume that the reader is familiar with the speci�cation of Two�sh and the notation
used in [7]. After the attack we know 32-bit whitening keys K0, K1, K2, and K3. From
the Two�sh speci�cation, K0 and K1 are derived from the quantities A0 and B0 using a
Pseudo-Hadamard Transform (PHT) and K2 and K3 are similarly derived from A1 and
B1. By inverting the PHT we derive the quantities A0; A1; B0; B1 from the whitening keys.
From the speci�cation of A0; A1; B0; B1 we then derive the value of the function h(0;Me),
h(�;Mo), h(2�;Me) and h(3�;Mo), where if M = (M0;M1;M2;M3) are the four words of
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Figure 3: Closer look at peaks in Figure 4
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Figure 4: Co-variance Peaks for 2'nd data bit
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the master key then Me = (M0;M2) and Mo = (M1;M3);
We then use our knowledge of h(0;Me) and h(2�;Me) to create possible candidates

for (M0;M2) and similarly our knowledge of h(�;Mo) and h(3�;Mo) to create possible
candidates for (M1;M3). Since the process is identical we only describe how to derive very
few candidates for (M0;M2) using h(0;Me) and h(2�;Me).

When considering h(0;Me) and h(2�;Me), L1 = M2 and L0 = M0 in the speci�cation
of the h function. Consider h(0;Me). From the speci�cation, the four byte h(0;Me) =
(z3; z2; z1; z0) is derived as

0
BBB@

z0
z1
z2
z3

1
CCCA =

0
B@

� � � �

� � MDS � �

� � � �

1
CA �

0
BBB@

y0
y1
y2
y3

1
CCCA

for some bytes (y0; y1; y2; y3). Since theMDS matrix is invertible, from h(0;Me) = (z3; z2; z1; z0)
we derive (y0; y1; y2; y3). By de�nition of h,

y0 = q1[q0[q0[0]� l1;0]� l0;0]

y1 = q0[q0[q1[0]� l1;1]� l0;1]

y2 = q1[q1[q0[0]� l1;2]� l0;2]

y3 = q0[q1[q1[0]� l1;3]� l0;3]

for �xed permutations q0 and q1 in the Two�sh speci�cation. Now note that if we know the
value of y0 and that

y0 = q1[q0[q0[0]� l1;0]� l0;0]

then we know that for any possible value of the byte l1;0 there can be at most one value of
the byte l0;0. We can therefore create a 256-entry dependence table T0 between l1;0 and l0;0.
Similarly, knowing the values of y1; y2; y3 allows us to create similar dependence tables T1
between l1;1 and l0;1, T2 between l1;2 and l0;2 and T3 between l1;3 and l0;3.

Similarly, unrolling the de�nition of h(2�;Me), we get yet another set of dependence
tables G0; G1; G2; G3 for the same quantities. The actual values of the bytes l1;0 and l0;0
can only be those values in which T0 and G0 coincide. Since T0 and G0 are derived from
di�erent starting points in the �rst q0 lookup that de�nes y0, T0 and G0 are likely to have
very few co-incidences. In experiments typical coincidences have ranged from 2� 9.

Thus from h(0;Me) and h(2�;Me), we get on average between 2 � 9 possibilities for
each the 4 byte pairs in Me. A similar analysis using h(�;Mo) and h(3�;Mo) yields 2 � 9
possibilities for each the 4 byte pairs in Mo. So we are very likely to have less than 98

possible 128-bit master keys which are consistent with a single whitening key. This is a
very small number of possibilities for the key and the right key can then be identi�ed by
encrypting known plaintext by all these possible keys to see which one yields the correct
ciphertext.

If we had attacked the output whitening process and derived the output whitening keys,
the attack and results would be very similar. Had we attacked both the input and output
whitening, we would have very few candidate keys to try out.
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4 Power Analysis Vulnerabilities of other AES Candidates

4.1 CAST-256

Unless protected, CAST-256 will leak all subkeys with DPA. The masking keys can be
attacked as in Two�sh and the rotation keys can be obtained by DPA based on the guess
of the rotation amount and correlating with the predicted output of the S-boxes. However
due to the strong key schedule design principle employed, it appears that all rounds will
have to be attacked to extract all subkeys.

4.2 CRYPTON

Unless protected, the whitening keys can be extracted as in Two�sh. Similarly the keys
exored in at the end of the �rst round can be extracted. These keys are su�cient to fully
reverse engineer the 128-bit master key.

4.3 DEAL

Unless protected, we can use the Kocher's DPA attack on the DES functions in the �rst
two rounds of DEAL to extract the DES key used. Each DPA attack will be applied on the
power samples on the �rst two rounds of DES. After the �rst two DES keys are extracted
the entire DEAL key can be reconstructed. To its advantage, DEAL can reuse the DPA
resistant implementations of DES that are currently in the market to make itself DPA
resistant.

4.4 DFC

To break DFC we need to be able to extract the 128-bit key (a; b) when it is used for the
operation (ax + bmod(264 + 13))mod(264), which should be easy unless protected. Due to
the pseudorandom nature of the key expansion process, it appears that these attacks have
to be carried on each round to extract all subkeys.

4.5 E2

Unless protected, DPA will be needed to strip each application of keys in E2 to get the
entire set of derived keys. This is because of the following sound design principle followed
in E2.

Requirement 5. Deriving master key or other subkeys from some subkeys should be
computationally infeasible.

Exor keys used in the IT can be extracted as in Two�sh. Multiplication keys used in
the IT can be extracted by a bit-by-bit DPA starting from the LSB. Round keys can be
extracted by a DPA attack similar to the Kocher DPA attack against DES.

4.6 FROG

FROG has decent resistance to DPA. The bomb permutation and the xorBuf can be ex-
tracted by DPA using a reasonable number of samples. However, the use of a key dependent
Subst Permutation makes DPA attack less e�cient since a large number of samples will be
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required to ferret out each of the elements of the Subst Permutation. This forces the ad-
versary to have roughly 256 times the number of samples as compared to other algorithms
on the same smart card.

4.7 Hasty Pudding Cipher

By design the key expansion process in HPC is supposed to be lossy so that it cannot be
easily reversed nor can one subkey (or table) be used to derive another. This makes HPC
have decent resistance to DPA, since a large number of samples of several steps of the cipher
will be needed to ferret out each entry in each of the �ve key tables.

4.8 LOKI-97

Unless protected,a DPA attack similar to the DES DPA attack, i.e., prediction of S-box
output based on guesses of few key bits can be used to derive the round subkeys and strip
away rounds. A direct DPA attack may also work on the permutation sub-key. If the
ciphertext is not available, then due to the non-linear key schedule based on an unbalanced
Feistel network, all rounds have to be attacked to get all subkeys. On the other hand if
ciphertext is available, then the attack should be mounted on the last 4 rounds, which will
give away the master key.

4.9 Magenta

Unless protected DPA will be e�ective in stripping out all the key bytes. The best place to
attack would be the calculation of PE(x; y) when one byte is known data and the other is
a key. Due to the simplistic nature of the key-schedule only 2 rounds need to be attacked
for 128-bit keys.

4.10 Mars

Unless protected, the whitening keys used in Mars can be obtained as in Two�sh. Due to
complex key schedule at least a large number of core rounds also need to be attacked to get
all subkeys. For each subsequent expansion box, the exor key should be attackable by DPA
and the multiplication key by a bit-by-bit DPA.

4.11 RC6

Unless protected, the additive input and output whitening keys can be extracted by bit-by-
bit DPA. The additive round keys can be extracted similarly. Due to complex key schedule
it appears that all rounds need to be stripped away to get all subkeys.

4.12 Rijndael

Unless protected, DPA can extract the Round 0 keys which are exored in after which all
subsequent subkeys can be derived for 128-bit Rijndael. The authors of Rijndael claim
a 34 byte smart card implementation which they claim will be DPA resistant on \good
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hardware". In reality, as of July 1998 [5], no such smart-card hardware existed and the
authors need to be more forthcoming.

4.13 SAFER+

Unless protected, SAFER+ is vulnerable to key add/exor DPA attacks and DES like DPA
attacks(i.e., table lookup after key exor/add). From the key schedule, it is clear that only
a half-round needs to be attacked for a 128-bit key.

4.14 SERPENT

Unless protected, SERPENT would be vulnerable to same type of DPA attacks as DES
(i.e., S-box lookup after key exor). From the key schedule, it is clear that the �rst 2 round
subkeys should be su�cient to derive the master key.

4.15 Summary of Power Vulnerabilities of AES Candidates

Based on the above analysis, we can summarize the power analysis vulnerabilities of straight-
forward implementations of AES candidates by placing them in three categories.

Easiest to attack are ciphers like CRYPTON, DEAL, LOKI-97, Magenta, Rijndeal,
SAFER+, SERPENT and Two�sh, where DPA needs to be done only on very few rounds,
since very few subkeys give enough information about the master key or all other subkeys.

Slightly harder to attack would be ciphers like CAST-256, DFC, E2, Mars and RC6,
where DPA will have to be carried out on several, if not all rounds. These ciphers have the
property that it is hard to get the master key or other subkeys from a several other subkeys.

Hardest to attack would be FROG and HPC which employ large key dependent tables,
which would require a large number to samples to perform a DPA attack to ferret out
each entry in these tables. However, it may be hard for these ciphers to maintain these
large key dependent tables within the RAM constraints of even some advanced smart card
architectures and they may need to use EEPROM to do so. However, EEPROM reads tend
to leak a lot of information about the value being read, and secure implementations of these
ciphers will need to exercise a lot of care about how this is done.

5 Countermeasures to Power Analysis

From a theoretical viewpoint, given current smart card architectures and their information
leakage model, it may be impossible to guard against all forms of power analysis attacks.
This is especially true if the adversary has a very good power consumption model for a
particular smart card, access to the source code, extremely high precision and high frequency
sampling equipment and a lot of time.

However, from a practical perspective, it is usually su�cient that an implementation be
resistant only to well known generic attacks such as Simple Power Analysis (SPA), Di�er-
ential Power Analysis (DPA) as well as esoteric Higher-Order Di�erential Power Analysis
Attacks [5]. The internal organization of most smart cards are kept as closely guarded se-
crets by the smart card hardware vendors and card speci�c attacks can be mounted only by
very few adversaries who have knowledge of the card internals or have the large resources
to derive a cards power consumption model via experimentation. Generic attacks, on the
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other hand, can be mounted by anyone and therefore pose a much more serious risk. Also,
from a practical perspective, it is easy to limit the number of encryptions a smart card will
perform and hence the number of samples available for generic attacks. E.g., a limit of 1
million encryptions can easily be enforced without a�ecting legitimate users.

With a reasonable upper bound on the number of power samples an adversary can
collect, it is possible to guard against large number of generic power based attacks. To
protect against SPA, the code execution path should be independent of the key and data.
Also, all means to introduce noise in the power signal should be enabled to prevent an
adversary from gaining enough information about the ongoing computation from a single
power sample and force him to resort to statistical tests (such as DPA or higher order DPA)
involving a large number of samples.

At an upper bound of 1 million, one should assume that the adversary can exploit every
relevant state bit in any instruction to mount a DPA attack, provided he can e�ciently
predict that bit in a signi�cant fraction of the runs based on the code speci�cation, known
inputs and small number of guesses for parts of the key. With a large number of samples,
simple countermeasures involving \balancing" approaches (i.e., trying to negate the e�ects
of one set of events by another \complementary" set) will probably fail because the power
consumption functions and the timing of even two \complementary" events will be slightly
di�erent and the adversary can maximize these di�erences by adjusting the operating con-
ditions (e.g., temperature, voltage, external clock) of the card.

Yet another approach involving random sequencing of operations and random delays may
also be quite ine�ective. Unless this random sequencing and delaying is done extensively,
it can be undone and a canonical order re-created by applying signal processing tools on
the power signal. Attacks can then be mounted on re-ordered signals. Even when full
re-sequencing is not possible, it is enough to identify \corresponding" sample points in a
large number of runs which having the property that a signi�cant fraction of these points
are samples from the same power function P for the same cycle, whereas other points are
power samples from unrelated power functions for other cycles. All statistical attacks that
work for P are also applicable on these \corresponding" points, although a lot more samples
would be needed to get rid of the noise introduced by the unrelated samples.

A sure defense against DPA would be to modify the code to ensure that the adversary
cannot predict any relevant bit in any part of the computation, without making several
other run-speci�c assumptions. This makes statistical tests involving even several tens of
runs impossible, since the chances of the adversary making the correct assumptions for each
of those runs is extremely low. While this approach solves the problem of DPA, it is not
clear how one can do serious computation if this requirement is to be satis�ed since no bit
that depends directly on the data and key can be manipulated at any cycle. Sometimes,
the function being computed itself has algebraic properties that permits such an approach,
e.g., for RSA one could use blinding [4, 9] to hide the actual values being manipulated.
However such structure is unlikely to be present in block ciphers.

One general technique would be to randomly split every relevant bit into several (say
k) shares. Each of the k shares and furthermore every collection of k � 1 shares should
be statistically independent of the bit required for computation. Computation can then be
carried safely by performing computation on the shares. This share based technique needs
to be applied for a su�cient number of steps into the computation until the adversary has
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very low probability of predicting bits, i.e., till su�cient secret key dependent operations
have been carried out. Similar splitting also has to be done at end of the computation if
the adversary can get access to its output. With a splitting technique, the adversary needs
is forced to mount k'th order di�erential attack, i.e., statistical information needs to be
collected from at least k points in each run in order to relate it to a bit of the computation.
At the same time, for simple power models or even for actual smart card implementations,
one can empirically deduce the number of runs needed to distinguish whether a 1 bit is
being coded or a 0 bit is being coded by using the information theoretic likelihood ratio test.
Our experiments based on a very simple power consumption model show that the number of
runs required grow exponentially in k and therefore very easily one can force an adversary
to require more samples than will be available.

However, the above technique is also very demanding on the code and memory require-
ments. It therefore remains to be seen how large secure implementations of AES candidates
on smart cards will be.
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